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Spectrum cascade in drift wave turbulence in a magnetized plasma as well as Rossby wave turbulence in
an atmospheric pressure system are studied based on a three-wave decay process derivable from the model
equation applicable to both cases. The decay in the three-way interaction occurs to smaller and larger

values of [k|. In a region of large wavenumbers this leads to the dual cascade; the energy spectrum
cascades to smaller k| and the enstrophy spectrum to larger |k|, similar to the case of two-
dimensional Navier-Stokes turbulence. In a small wavenumber region a resonant three-wave decay
process dominates the cascade process, and an anisotropic spectrum develops. As a consequence of the
cascade, zonal flows in the direction perpendicular to the direction of inhomogeneity appear which
presents a potential implication for the particle confinement in a turbulent plasma.

. INTRODUCTION

A unique property of two-dimensional hydrodynamic
turbulence is that energy cascades into longer wave-
lengths; that is, it has the so-called inverse cascade
process.!”* Electrostatic turbulence in E X B guiding
center plasma obeys the Euler equation for an incom-
pressible fluid; hence, it possesses the same cascading
property as two-dimensional hydrodynamic turbulence,®®

In weak turbulence theory”™ developed in plasma phy-
sics, the spectrum cascade is shown to occur toward
lower frequencies as a consequence of conservation of
wave action. The cascade direction in wavenumber (k)
space is decided by the order of frequencies of interact-
ing waves. Since many waves have dispersion proper-
ties such that the frequency w increases with |k|,
{i.e., 8w/8k>0), the “inverse cascade” is a rather
common phenomena in weak turbulence theory. How-
ever, it is the consequence of the cascade in w;
hence, if 8w/8k <0, the spectrum should cascade to
a larger value of |k|. Even if there exists no general
proof, weakly interacting waves have this property.

A drift wave!® which exists in a nonuniform, magne-
tized plasma has interesting properties in this respect.
It does not obey the standard wave equation since it does
not have the symmetry property of a left and right going
wave, The dispersion relation is given by w =~ T (2
X k)*V lnny/e By, where 2 is the unit vector in the direc-
tion of the magnetic field, ny(x) is the plasma density,
T, is the electron temperature, and B is the ambient
magnetic field. In a uniform plasma, w =0, similar to
the hydrodynamic case. The wave exists only in the
three-dimensional situation and its dispersion depends
only on k XZ; hence, it is expected to have a property
distinct from the isotropic two-dimensional hydrody-
namics,

In hydrodynamics, a situation similar to the drift
wave exists when two-dimensional horizontal flow is
coupled to gravity. There, three-dimensional dynamics
are essential, even though the flow pattern can be de-
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scribed in terms of two-dimensional horizontal coordin-
ates, because the vertical coordinate becomes a depen-
dent variable.

Inaninhomogeneous fluid, such aflow has afinite fre-
quency similar to the drift wave. One well known example
is the Rossby wave'! in the atmospheric pressure sys-
tem. There, the gradient in the Coriolis force works
to produce a finite frequency.

Both the drift wave and the Rossby wave have proper-
ties which do not belong to either of these previously
known cases in that they are pseudo-three-dimensional
and have both strong (in large % region) and weak (in
small # region) wave-wave interactions as will be shown,
Hence, it is interesting to ask what is the nature of the
turbulence produced by these waves. Does it obey an
inverse cascade law as in two-dimensional hydrodynam-
ic turbulence ? Does it produce a cascade to shorter
wavelengths as in the three-dimensional hydrodynamic
case? Or a cascade in w as for the weakly interacting
waves ?

In this paper we study this question. We first show in
Secs, II and III that the drift wave turbulence and the
Rossby wave turbulence obey identical nonlinear partial
differential equations of the form

—;—t(vqu -¢) - [(vo x 2) v](v% +ln-:-0“>=0. (1)
Here, w, and ¢ represent the ion cyclotron frequency
and electrostatic potential for the drift wave and the
Coriolis parameter and depth of the atmosphere for the
Rossby wave. This equation was derived by Hasegawa
and Mima'? to describe drift wave turbulence; for con-
venience, we will subsequently refer to it as the Hase-~
gawa—Mima equation.

In Sec. IV, we present conservation laws and the vor-
tex solution of Eq. (1) and its dynamics and compare
them with the two-dimensional Navier—Stokes vortices.
In Sec. V, we present a decay rule among three inter-
acting plane waves by considering the number of equiva-
lent quanta. It is shown that the wavenumber splits into
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a larger and smaller value by the interaction, similar
to two-dimensional Navier-Stokes turbulence.

In Sec. VI, we present the results of a numerical
evaluation of the spectrum cascade using the decay rule
for the three-wave interaction obtained in Sec. V. It is
shown that the energy spectrum divides into two distinc-
tive regions. One is the region of large wavenumbers,
where the nonlinear term dominates the linear term.
There, the spectrum is isotropic and the unidirectional
energy spectrum obeys a k™* law as in the two-dimen-
sional inertia range. The other region is the small
wavenumber region where the linear term dominates.
Here, the energy cascade occurs through resonant three-
wave interactions which induce anisotropy in the spec-
trum.

The energy is found to condense at 2, ~k_and £,~0,
where x is the direction of inhomogeneity (radial direc-
tion for a drift wave and latitudinal direction for a Ross-
by wave) and k,=(k/4] p,1)'/3; « is the measure of in-
homogeneity and ¢, is the maximum amplitude of ¢.
This result predicts the appearance of zonal flows in
the v (azimuthal) direction. The appearance of two re-
gions in the Rossby wave spectrum was noted by
Rhines'® and the resulting anisotropy in the spectrum
has also been studied by Holloway and Hendershott.!*
The appearance of an anisotropic spectrum has been
noted by Williams!® in his numerical analysis of nonlin-
ear Rossby wave turbulence, a result clearly supported
by the observed zonal flow pattern of Jupiter, The
present result is the first verification of energy con-
densation to the zonal flow pattern through spectrum
cascade.

Il. DRIFT WAVE

Consider an electrostatic wave at frequency w much
smaller than the ion cyclotron frequency w.; in'a mag-
netized (with magnetic field Byz) and inhomogeneous
|with density ny(x)] plasma. A linear wave is known to
exist in such a plasma if the phase velocity in the direc-
tion of the magnetic field, w/k,, is between the electron
and the ion thermal speed, vy, and vr;. The dispersion
relation of the wave is given by w =k-v,, where v, is
the diamagnetic drift velocity; the wave is called a drift
wave.!’ It is sometimes called a universal mode because
it is always excited by Cerenkov emission of electrons
and is considered to play a crucial role in the magnetic
confinement of a plasma.

The specirum transfer in drift wave turbulence has
been studied using nonlinear Landau damping of ions!®'?
or nonlinear mode coupling.!® In either case, the non-
linearity which originates from the E X B drift is found
to play the dominant role.

Here, we consider the mode coupling process. For
the sake of comparison with the Rossby wave, it is con-
venient to assume that the ion temperature is much
smaller than the electron temperature. For the drift
wave description, it is convenient to use the small pa-
rameter ¢,

1 9 1

€ Twey 0t k,z)”t'9_t~ps

(2)

n 1Q)
v(mEQ) ‘ ~—
0 Wey
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where (= V xv) is the vorticity of the ion fluid,
ps=(To/m) w7t (3)

and T, is the electron temperature, m; is the ion mass,
and v is the velocity field of ions.

The equations to describe the ion dynamics are the
equation of motion for the cold ion fluid in an electro-
static field

dav e
— =V +VXWw, ,

dt m; (4)

and the equation of the number density conservation of
ions

(5)

d
Vev=- i Inn,
where v is the ion fluid velocity, m; is the ion mass, ¢
is the electric charge of the ion, ¢ is the electrostatic
potential, and w.(x) (=eBy(x)z/m;) is the vector ion
cyclotron frequency.

The quasi-neutrality condition relates »n to the electron
density which can be shown to obey the Boltzmann dis-
tribution

n :ﬁo(X) eXp(e d)/Te) )

within the framework of the small parameter, Eq. (2).

(6)

From Eqgs. (5) and (6) we have

d e
Y — . — +—= .
Vev= dt(lnno Te)

Since the drift wave is basically a vortex mode, we con-
struct an equation for the vorticity Q(=V X v) by taking
the curl of Eq. (4). If we note

(7)

v _3v

. ov 1_ .,
=t (Ve =tV
FTRREY (veV)v +-VW-vxQ,

or 2
and

VX(VXQ)==QVev+ (Vv = (VV)Q
=-QV v, —(v-V)Q,

we have

d

QT +HQHw )V, v, =0, (8)
Here the subscript L indicates the components perpen-
dicular to the direction of the magnetic field, z. Now,
we assume a pseudo-three-dimensional situation such
that

(9)

v
'-aj| A AR

This assumption is consistent with the condition of the
existence of a drift wave. Physically, the assumption
means that the ion inertia in the direction of the ambi-
ent magnetic field is negligible.

Equation (7) is then approximated by

d
A = (hmo +%‘E).
e

(7
If we substitute Eq. (7’) into Eq. (8) and use the small
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parameter expansion of Eq. {2), we have

d wei 2 ed
—_— A — e | R
dt (ln ny We Te) 0 (10)
Here, if we use the ordering of Eq. (2) the vorticity
Q42 is given by the EX B drift,
. Voxz) . 1
Q=(Vxv,) z=V X(- ¢ x )‘z='—V2¢, (11
B By
and
d 3 Vox3z
dt~ a8t B, (12)

Equations (10), (11), and (12) form a closed set for the
electrostatic potential ¢,

In a low 8 plasma, the inhomogeneity in the magnetic
field is regarded as small compared with that of the
plasma density. If we take w.; to be approximately con-
stant and use the following normalization for time,
space, and ¢,

wcitEt > (13)

x/ps =%, (14)

e¢/T,=9¢, (15)
Egs. (10), (11), and (12) reduce to

Z(v% - 91 -L(vo x3)-9] 7% -m(Z)]=0, )

which is the equation derived by Hasegawa and Mima.!?

Here, we suppressed the subscript 1 in the gradient op-
erator V; V means

~0 a0
V= xa—x- +y -a—; .
We note here that in a homogeneous case this expres-
sion, Eq. (16), closely resembles that for the stream
function ¢ of the two-dimensional Euler equation for an
incompressible fluid, which, in a homogeneous fluid,
can be written

(V) (W x2) 9] =0, (1)

There exist two fundamental differences between these

two equations. First, Euler’s equation does not have a
characteristic spatial scale, while the spatial scale of
the Hasegawa~Mima equation is given by p, in Eq. (3).
Second, the fluid motion of the Hasegawa-~Mima equa-
tion is not divergence-free. There exists a sink or a
source in the x, y plane which is due to the implicit
connection of the fluid in the z direction.

In the presence of an inhomogeneity, the Hasegawa-—
Mima equation admits a linear wave whose dispersion
relation is given by

w*==[(k%xZ)*Vinn]/(1+~%, (18)

where k is the wave vector in the direction perpendicular
toz. This is the well known drift wave frequency.

The typical size of the time and space parameters in
a tokamak plasma are
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we; = 108~10° sec™,
w*=~108~10" sec”!,
0s~10"°m.

The size of the nonlinearities e¢/T, and Q/w.; as mea-
sured by laser!® and microwave scattering®® from a
tokamak plasma are

ed/T,~10"1~107%,
Q/w =k pied/T,)]~ 10

2~1073,

Ill. ROSSBY WAVE

There exists a wave in the atmospheric pressure sys-
tem which is almost identical in its properties to the
drift wave. The wave is called a “Rossby wave,” and it
propagates by the gradient of the Coriolis force.

Let us consider the atmospheric motion on the surface
of a rotating planet. The two-dimensional velocity of
the atmospheric flow in the horizontal plane obeys the
equation of motion, *!

av

—=—gVh+IXZ,

dt (19)

where f(x) is the Coriolis parameter, / is the surface
displacement of the atmosphere in the vertical (Z) di~
rection, and g is the constant of gravity., The quantity
h also represents the surface density of the atmosphere;
hence, it obeys the continuity equation,

d

Vev==—InH,

dt (20)

where V is again the two-dimensional differential oper-
ator in the x-y plane and H is the total depth of the at-
mosphere

H=H,+h, (21)

and H, is the average depth. We see immediately the
close resemblance of Eqgs. (19) and (20) to Eqgs. (2) and
(5). In fact, they are identical if # <<H,, and when f is
replaced by w,;, and 2 by ¢. The only difference is
that the spatial variation of f is generally larger than
that of H;. If we introduce a small parameter called the
Rossby number,

€ :%.)58;5(%2 PV lnyfﬂl , (22)
and introduce the following scaling

HHe=t, (23)

X/p.=x, {24)

h/Hy=h, (25)

where the spatial scale p, (Rossby radius) is given by
pe=(gHo)'"*/(f), (26)

and {f) is the average of f, Egs. (19) to (21) can be re-
duced to the form of Eq. (1),

d N H
—a-t—(vzh—h)—[(Vh XZ): V] (VZh—1n7‘1>=0. 27

The linearized solution gives the dispersion relation for
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the Rossby wave as

wr ={(k XZ)* VInf]/(1 +k%).
t22

(28)

Stewart?? and Morikawa® have studied the nonlinear
dynamics of Rossby waves in terms on interacting vor-
tices (geostrophic vortices) using Eqgs. (19) and (20) in
a uniform fluid. Typical parameters in the earth at-
mospheric system in the midlatitude are

Hy~8x10* m, p,~2x10°m,
{(fY=15%x10"* sec™!, wp/f=~10"",

Unlike the case of a magnetized plasma, where the fi-
nite ion gyroradius effects disallow the use of a simpli-
fied fluid expression for kp > 1 (if T;~T,), in the case
of geostrophic turbulence kp, can become very large,

Other than this point, we can see the close similarity
between the drift wave and the Rossby wave.

IV. CONSERVATION LAWS AND VORTEX SOLUTIONS

To consider the turbulence which can be described by
the Hasegawa—Mima equation it is convenient to review
some of the properties of this equation. First, it can
easily be shown!? that this equation contains two funda-
mental conserved quantities; the total energy,

w _3

2 =27 ) (VO +e'lav=0, (29)
and the (potential) enstrophy,

0 0

a—[t]=a—t f (Vo) +(v*¢)]dv=0, (30)

where f dV is the volume integral. Using these con-
served quantities, a stationary spectrum (| ¢,I%) for a
loss-less case has been obtained®

(1ol =(1+E)  a +8EH ", (31)
Hence, the energy spectrum becomes
Wy=(1+k) ¢yl *=(a + )", (32)

and is the same as for the case of the two-dimensional
Euler equation.! If a8 <0, the spectrum indicates a
negative temperature state and condensation at a small
k value (=la/Bl).

Assuming a certain rigidity of the vortices, Stewart®?
and Morikawa®! studied interactions among vortex so-
lutions of Eq. (1) without the inhomogeneous term. The
formulation is similar to the two-dimensional vortex

solutions.! The solution can be written

¢ =Zw,Ko(| r-r,t)l), (33)
and J

ar; __ Vo X%, (34)

dt

where K, is the modified Bessel function of the second
kind, and w; is the circulation.

In contrast, the two-dimensional Euler’s vortex solu-
tionis w;Inlr—r;i. If Ir —r;| <1, these two solutions
are the same, but Stewart’s vortex dies off exponential-
ly at Ir~-r;l =1, hence, it can be considered as a
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shielded vortex. This means that the vortex of Eq. (1)
has a finite size given by p, (or p,). This has a signifi-
cant effect on the convection.

The interacting n vortices of the homogeneous Hase-
gawa-Mima equation can be described by the Hamiltoni-
an,

H:ZZw,-wao(lri—rjl); (35)
]
here, the canonical variables are the x and y coordin-
ates of the centers of the vortices, x;, y;. The Hamil-
tonian equations of motion for these centers are
oH oH

o Wilis W='Wixi-
3

9x; (36)

It can easily be verified that the following conservation
relations exist;
(i) invariance of H:

dH

FTR

(ii) stationary mass center:

%Z w;r;=0,

(iil) conservation ef total angular momentum:
LN w(rixv,) =0,
dt %=

(iv) conservation of moment of inertia:

d—dZZwinzo.

We note here that these solutions of interacting vor-
tices break down when the vortex density is increased
and the inelastic collision starts to dominate. As the
density is further increased, the field becomes turbu-
lent.

V. SPECTRUM CASCADE

Here, we consider the turbulence property of the
Hasegawa-Mima equation. It is convenient to consider
the dynamic change of the spatial Fourier spectrum,

If we write

1
o(x, 1) =5 2 Lou(t) explik-x) + c.c.], (37)
k
Eq. (1) becomes
d .
Trring= 3 Moot (38)
where the asterisk indicates the complex conjugate,
_ kXZVin(ny/w,;)
| S 1 +k2 3 (39)

is the drift or Rossby wave frequency and the matrix
element Af .. is given by

1 1 ’ ” o r” ’
Mpw =5 T & XK 2" -, (40)

Let us consider three plane waves with wavenumbers
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ky, k;, and k; such that k; +k, +kg=0. Let us suppose
that these waves have amplitudes larger than other waves
in the summation of Eq. (38) and study the energy flow
among these three waves.” Equation (38) for the three
interacting waves may be written

doy . .

_(;%14'2(”1‘1’1:/\12,3(1’?‘733*, (41)

dd; . .

L2+ ionp, =AY 0808, (42)

sy . .

T+ gy =, 00707 (43)
where

¢,t) = (1), (44)
and

wj:wkjy j:17273' (45)

The direction of energy flow or decay may be found by
studying the stability of a situation in which one of the
modes, 1, 2, 3 is more highly populated than others.
For this purpose we first assume, without loss of gen-
erality, that %, = |k;| such that

ky<hk,<ks, (46)
We first consider a case in which the k, mode is highly
populated so that | ¢5l > | ¢y, [¢31. We can then line-
arize Egs. (41)—(43) to give,

¢, =A,exp(—iw,t), A,=const, (42"
and

dA .

#:A%_QAQ‘A{ exp(idt), (41")

%:A{?A;A,* expl(ift), (43"
with

¢; =A;(t) exp(—iw;t), 7=1,3
and

f=w; +w, twg, (47)
is the frequency mismatch.

From Egs. (41') and (43"), we have
2
d—Ayl-ied—Ai-Ag'aAi,zlAzl A, =0. (48)

dt dt

Hence, the instability (exponential growth of A; and Aj)
occurs when

6% —aA} 3Ad ,14,1%<0; (49)
and the decay rate y is given by
y=(A30%51 4,17 - 2657 (50)

Inequality (49) shows that the stability is decided by the
sign of the product AL A 5.

Now, in view of the assumed relation (46), both of the
quantities k% —k§ and k% -k% are negative (or zero) in Eq.
(40), and (k; X kg)*Z and (k, Xk,)*Z have the same sign
(if not zero). Hence, A} 3A} ;>0 and this situation can
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be unstable.

On the other hand, since A} (A?, and A} jA%, are al-
ways negative (or zero), if modes 1 or 3 are highly
populated, the system is stable. Hence, we conclude
that the necessary condition for a spectrum cascade is
to excite a shorter and a lower wavelength mode simul-
taneously. We note here that since this is not a reso-
nant decay, by the time the decay process is completed,
many other modes have also been excited.

Let us discuss the conservation of quanta in the decay
process. If we introduce a number of quanta of the three
waves, defined by

Ny=(1+E) 0,12 /1R = kA, Ki#RE, (51)
irom Eqgs. (41) to (43), we find

Ny =Ny =const,
and

N, +Ny=const, N;+N,=const. (52)

These relations show that a loss of one quantum in N,
appears as a gain of one quantum in Ny and N;, respec-
tively. The quantity N defined in Eq. (51) thus serves as
the role of number of quanta in the decay process.

Since the characteristic frequency of a vortex is zero,
the standard definition of a number of quanta, energy/
fiw, does not apply here. The number of quanta defined
here has the strange property that it depends on the
wavenumbers of the other interacting waves.

In a region of small wavenumbers, the first term in
the decay rate expression, Eq. (50), becomes small
and decay occurs only when 6 =0, i.e., when the fre-
quency mismatch is small, In this case the resonant
three-wave interaction dominates the decay process.
The number of quanta defined in Eq. (51) reduces to the
conventional form because

RE—ki=ky /w0, =k 0, =wM ,

where

(53)

M :(swpwuwr)-ll.wp(kry _kay) tw(kyy -k,)
+ wr(kcy —ku)]

and k, is the component of the k vector in the direction
of ZX Vlnn,. Equation (53) with Eq. (51) gives N,

« W,/Hw,. Hence, in the long wavelength region, decay
occurs from a highest frequency mode to two lower fre-
quency modes.

Now, the energy W, of the k mode is given by W,
=1¢,%1 +%Y. Hence, from Egs. (51) and (52), we see
that the partition of energy of modes 1 and 3, for the
loss of an energy AW, =1 of mode 2 is given by

kZ - k2 kZ _ k2

oWy =—4—%, awy=.4—3. (54)
kg = Ry k3 — ki

In summary, the cascade occurs from the wave with
wavenumber k, such that &y <k, <kg to waves with wave-
numbers k; and k3. If the frequency mismatch, 6(=w,
+ wy + wg), is zero the cascade occurs from the wave
with the highest frequency w{=-w; —w3) to waves with
lower frequencies w; and wg.
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Vi. SPECTRUM DISTRIBUTION

In this section we present a computer experiment of
spectrum cascade and show the resulting stationary
spectra. In Sec.V, it was shown that a three-wave de-
cay occurs when y in Eq. (50) is real. A necessary
condition for decay is that the wavenumber of the decay-
ing wave must have a magnitude which is between those
of the wavenumbers of the waves to which it decays.
The computer experiment utilizes this decay concept.

A wave with amplitude larger than that of the stationary
spectrum at the corresponding wavenumber will decay
to two other waves, if the wavenumbers of these waves
satisfy the decay condition.

We designed the computer experiment in the following
way. First, we assumed a wave at 2,=1 and k, =0 with
energy W=1. We then chose a random triangle of k
vectors with one side corresponding to k,=1, k, =0, If
the other two sides (call them k =k, and k=ky), had
values of A and 6 that would make y real in Eq. (50),
we allow the decay. We calculate energy at wave vectors
k, and k3 using the partition formula, Eq. (54). The only
parameter needed here is k(= Vlnny), which we take to
be constant, assuming an exponential density gradient.
If y happened to be imaginary, we choose another set
of k; and k; until y becomes real, After the initial wave
decays to two waves, we repeat the procedure, i.e., we
choose a random triangle with one side now given by
k; (or kg) and check the decay condition by evaluating
the value of y now using the new amplitude of the k, (or
k) mode obtained from the energy partition law in the
previous step. After several cascades, the energy
spectrum spreads out. To obtain the inertia range
spectrum at 2> 1, we set a maximum value of k(=k,,)
and when a mode with 2 >k, is born, it is taken away
and its energy is reintroduced at 2,=1 so that the total
energy is conserved, but with loss of the potential ens-
trophy. This technique should produce an inertia range
spectrum for the enstrophy. Normally, we chose %,
=102, As the energy cascades to smaller values of &,
the matrix element A decreases rapidly and the decay
condition becomes more difficult to satisfy. The decay
requires the condition of frequency matching such that
6~0 in Eq. (50). Since 6 depends only on k&, [cf. Egs.
(18) and (28)], the anisotropy of the spectrum evolves
at a smaller value of k. With respect to the 2, dependen-
cy of the spectrum, since the energy tends to decay to
lower frequencies, hence to smaller &, the spectrum
tends to condense at k,~0. On the other hand, the cas-
cade in the k, plane tends to stop at a critical value of
k (=k,.) because a further cascade into smaller values
of &, does not lower the frequency, and in addition, re-
duces the coupling coefficient, Thus, the energy spec-
trum tends to condense at k,~%k_, where k_ is roughly
obtained by ¥ =0 for an isotropic value of k, i.e.,

k8 ¢> l2~ﬁ k2
T+ 7 g 1+ EDT

Bo=(r/41 ¢y )12, (55)

where ¢, is the amplitude of the initial wave (¢,=1/v2
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FIG. 1. Unidirectional energy spectrum W, =(L+%%)| ¢,|? ob-
tained using the cascade model plotted as a function of &,,
where x is the direction of the inhomogeneity for the case with
k. =0.89 [k, is defined in Eq. (55)]. Note that the spectrum
obeys k™% at k> k., and has a peak at k= k.

for the choice of initial W=1),

The only parameter that controls the spectrum is %,
The quantity 2.! play a role somewhat similar to the
Reynold’s number since if k;! -, the system is inher-
ently turbulent, while if k;’ -0, the linear drift waves
dominate the dynamics.

The energy spectra obtained using the computer ex-
periment described here are shown in Figs, 1-4. Fig-
ures 1 and 2 are the results for k,=0.89. Figure 1 is
the energy spectrum obtained at the 59th step of cas-
cade plotted as a function of k,, while Fig. 2 is that plot-
ted for k,. We see that at k> k_, the spectrum is iso-
tropic and both %, and &, obey Kraichnan’s inertial range

2
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. .
[ ]
o} ¢
*, o
Po o
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2k
LX)
-
E 3
o -4 b4
o
-6 |
-8 1. o. %
L) 'r
«**
-10 i 1 1 1 )
-3 -2 -1 o] 1 2
log ky

FIG. 2. W, for k,=0.89 plotted as a function of #,. The spec~
trumat &>k, is isotropic and obeys %2~ % The energy cascades
to &, —0.

y
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FIG. 3. W, vs &, for £,=0.28, indicating a higher level of
turbulence than in Figs. 1 and 2. The hydrodynamic turbulence
region is extended to a smaller value of k.

spectrum W,~%k"!, This result is in agreement with the
numerical solution of the Hasegawa—Mima equation for
a uniform case obtained by Fyfe and Montgomery25 and
with the results of Prater e/ a/.?® and Basdevant and
Sadourny®’ for the Navier~Stokes equation. This result
justifies the applicability of the present rather empiric-
al method.

As is expected at k Sk, the spectrum develops aniso-
tropy. The energy continuously cascades to smaller
values of &, and tends to condense as k,—~0, while it
tends to accumulate at k., ~k,. The spectrum obtained
here has a qualitative agreement with the observation in
ATS tokamak plasmas.!®

When %, is decreased, the hydrodynamic turbulent re-
gion expands into smaller values of k. An example of
the energy spectrum for such a case is shown in Figs. 3

log Wy
IS
—T

log ky
FIG. 4. Wy vs k, for &, =0.28.
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FIG. 5. Predicted zonal flow pattern in a magnetized cylin-
drical plasma which appears as a consequence of energy cas-
cade and condensation at 2,=0 and &, = k..

and 4. Figures 3 and 4 are the energy spectrum ob-
tained at the 80th step of the decay plotted versus k, and
k, for k,=0.28, In this case 1 >k >k_, the gradient be-
comes weaker which may indicate the appearance of the
inertia range of energy cascade,®® i.e., W,k 8/3,

The fact that the stationary energy spectrum peaks at
k,=Fk, and k,=0, indicates that the energy condensates
to zonal flows which are periodic in x, the direction of
the density gradient for a drift wave and of the Coriolis
parameter for a loss by wave. The appearance of zonal
flows was noted by Williams'® who numerically solved
the nonlinear Rossby wave equation.

In a magnetized cylindrical plasma, the zonal flows
appear in the azimuthal direction with a radially period-
ic structure with periodicity 27 /k, as shown in Fig, 5.
The present result has a significant implication for
plasma confinement by magnetic fields. Drift wave tur-
bulence which always seems to be present in a nonuni-
form plasma has beén predicted to produce anomalous
diffusion of plasma particles., However, if zonal flow
is the ultimate form of drift wave turbulence, it will in-
hibit particle transport across the flow and the plasma
will be well confined, even in a highly turbulent state.
One evidence of such a state is the zonal flows of the
planet Jupiter.x5 The clear longitudinal patterns of dif-
ferent color zones are a strong indication of little trans-
port across the zonal flows,

Recent experimental results seem to indicate that par-
ticle confinement is not correlated with a level of turbu-
lence.’® These results may be explained by the appear-
ance of zonal flows in drift wave turbulence which in-
hibit radial transport.

Vil. CONCLUSION AND DiSCUSSION

We have discussed a variety of subjects in this paper,
hence the conclusion cannot be stated in a simple para-
graph. We therefore list the following important con-
clusions that we have obtained in this work.,

(1) We have shown that both the drift wave turbulence
and the Rossby wave turbulence can be described by a
nonlinear partial differential equation with the structure
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of Eq. (1). Hence, aside from the physical scaling in
time and space, these two waves should have similar
properties both in the linear and nonlinear regions.

(2) For a uniform case, the model equation admits a
solution with interacting vortices. This aspect has been
well known in geostrophic vortices in the atmospheric
pressure system, however, it is less well known in the
case of the drift wave in a magnetized plasma. This
analog indicates that the vortex dynamics in drift wave
turbulence are also important.

(3) We have derived a new cascading model based on
the decay of a plane wave to other plane waves of the
Hasegawa—-Mima model equation. By obtaining % values
of two waves produced by the decay one can trace the
cascade process. These %k values also decide the parti-
tion of energy and enstrophy of the newly created waves.
The cascade process therefore gives the energy and
enstrophy transfer in 2 space. Using this new technique,
energy spectra on the drift wave and Rossby wave tur-
bulence are obtained.

(4) The cascade model has produced an energy spec-
trum which has two distinctive regions. One is at k> k,
|k, defined in Eq. (55)] where the unidirectional spec-
trum W, is isotropic, and is given by k"‘; this region
corresponds to the inertia range spectrum of two-di-
mensional hydrodynamic turbulence. The other region
is for k <k, where the spectrum is anisotropic and obeys
the mode of the resonant three wave interaction.

(5) The spectrum tends to condense at k,~ 0 and &,
=~} which predicts the formation of zonal flows in the y
direction which are periodic in the x direction, The for-
mation of such zonal flows has a potential implication on
the effect of drift wave turbulence on particle transport
since the zonal flows may inhibit particle transport
across the flow,
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