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Perpendicular perturbed field components
Suitable choice of coordinate system makes the stability analysis much simpler. These first few
slides provide a recap of the properties seen in exercise 3 for the field components and the
magnetic operator.

One can always write the equilibrium magnetic field in the ”Clebsch” form (see last lecture):

B = ∇β ×∇ψ (6.1)

where ψ is the poloidal flux, and we recall that in flux coordinates, ∇ψ = ψ
′∇r. Thus we see

that the field is perpendicular to the ψ direction, and to the β direction.

Consider now the magnetic field perturbations according to Eq. (3.3),

δB = ∇× (ξ ×B).

Now consider the radial component of δB:

δB
r ≡ δB ·∇r = ∇r ·∇× (ξ ×B).

Employing the vector identity ∇r · (∇×D) = ∇ · (∇r ×D) +D · (∇×∇r) and noting that
∇× (∇r) = 0 we have

δB
r

= ∇ · [(ξ ×B)×∇r] = ∇ · [B(∇r · ξ)− ξ(∇r ·B)]

Moreover, since ∇r ·B = 0 then

δB
r

= ∇ · [B(ξ ·∇r)] = (ξ ·∇r)∇ ·B +B ·∇(ξ ·∇r)

and since ∇ ·B = 0 then we finally obtain

δB
r

= B ·∇(ξ ·∇r) = B ·∇ξ
r
,with ξ

r ≡ ξ ·∇r
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The magnetic operator
The important operator B ·∇ is known as the Magnetic Operator. Note that we haven’t yet
employed the Clebsch field yet. We have only used the field identity ∇r ·B = 0. Assume the
Clebsch field, which together with using ∇β ·B = 0 we obtain the other component of the
perpendicular field

δB · ∇β = B ·∇(ξ ·∇β).

We note that the total perturbed perpendicular field strength is

δB
2
⊥ = (δB

r
)
2

+
(δB · ∇β)2

(∇β)2
.

δB
2
⊥ will vanish on the rational surface except through magnetic shear contributions in ∇β.

Let us now consider the magnetic operator. Writing

∇ = (∇ψ)
∂

∂ψ
+ (∇Θ)

∂

∂Θ
+ (∇φ)

∂

∂φ
(6.2)

where Θ is not necessarily the same as ω defined in lecture 1. Now, choose to apply the form
B = F∇φ + ∇φ×∇ψ, so that

B·∇ = F∇φ·
[
(∇ψ)

∂

∂ψ
+ (∇Θ)

∂

∂Θ
+ (∇φ)

∂

∂φ

]
+(∇φ×∇ψ)·

[
(∇ψ)

∂

∂ψ
+ (∇Θ)

∂

∂Θ
+ (∇φ)

∂

∂φ

]
.

Writing the Jacobian of the (ψ,Θ, φ) system as Jψ,Θ = (∇φ×∇ψ ·∇Θ)
−1

, and recalling

that ∇φ
2

= R
−2

then

B ·∇ =
F

R2

[
∂

∂φ
+

R2

FJψ,Θ

∂

∂Θ

]
.
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The magnetic operator
Now, what is R

2
/(FJψ,Θ)? From lecture 1, one finds the exact relation

ql(ψ, θ) ≡
dφ

dΘ
=
B ·∇φ

B ·∇Θ
=
FJψ,Θ
R2

,

so that

B ·∇ =
F

R2

[
∂

∂φ
+

1

ql

∂

∂Θ

]
=

1

Jψ,Θ

[
ql
∂

∂φ
+

∂

∂Θ

]
.

It will now be clear that it is advantageous to choose a straight field line system (with
convention Θ→ θ), for which (see chapter 2)

Jψ,θ(ψ, θ) =
q(ψ)R(ψ, θ)2

F (ψ)
and thus ql = q(ψ)

In this section we are looking at ballooning and interchange modes, which are driven by
pressure, and as such, depend crucially on toroidicity. It is reminded that in a toroidal system,
linear MHD modes do not have a single poloidal mode number. In general we have that,

ξ =
∞∑

m=−∞
ξ
(m)

(r) exp(inφ− imθ − iωt). (6.3)

For ballooning modes, the poloidal spectrum is in practice very large (we will come back to
this later).

The poloidal spectrum of the perturbation is minimised for a straight field line system, as the
magnetic operator has the simplest form. Unstable modes have weak field line bending

stabilisation. For example, |δBr|2 = 0 for B ·∇ξ
r

= 0, i.e.[
∂

∂φ
+

1

q(ψ)

∂

∂θ

]
ξ
r

= 0 which infers ξ
r

= ξ̂
r
(r) exp[inφ− inq(r)θ − iωt].
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The magnetic operator
In fact, as will be seen, treating the full high n ballooning problem yields (consideration of full
field line bending stabilisation, verses pressure drive),

ξ
r

= ξ̂
r
(r, θ) exp[inφ− inq(r)θ − iωt] (6.4)

where ξ̂
r
(r, θ) is a weak function of θ. Equations (6.3) and (6.4) will be reconciled with each

other later, and both representations include toroidicy and mode coupling.

Let us see what happens if we don’t choose a straight field line system. Choose e.g. the system
employed in lecture 2, so that Jψ,Θ → Jψ,ω , where Jψ,ω is defined in Eq. (2.11), and R
given by Eq. (1.24). It is thus clear that,

ql(r, ω) ≈ q(r)
{

1− (ε + ∆
′
) cosω +

∞∑
m=2

(
S
′
m − (m− 1)

Sm

r

)
cos(mω) + O(ε

2
)

}
,

and thus the magnetic operator will be,

B·∇ =
F (r)

R(r, ω)2

[
∂

∂φ
+

1

q(r)

{
1 + (ε + ∆

′
) cosω −

∞∑
m=2

(
S
′
m − (m− 1)

Sm

r

)
cos(mω) + O(ε

2
)

}
∂

∂ω

]
.

After developing the stability problem in a convenient way in straight field line coordinates, we
will have to transform equations into (ψ, ω, φ) coordinates because we will need equilibrium
toroidal effects to be included correctly (and it was necessary to expand the equilibrium in
(ψ, ω, φ) coordinates). After these considerations, we now commence the formal derivation of
infinite n ballooning modes.
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Eikonal representation for field aligned instabilities
As we have seen, the most unstable modes will tend to be aligned to the field lines m ≈ nq.
We require that our localised modes vary strongly only perpendicularly to the field lines (k⊥
large), while varying slowly, on the scale of the machine size, along the field lines (k‖ small).

We implement this ordering by means of an eikonal representation for ξ⊥ [Ref. Connor, Hastie
and Taylor, 1978], i.e. with separation of fast and slowly varying dependence:

ξ⊥(ψ, θ, φ)→ ξ⊥(ψ, θ, β) = ξ̂⊥(ψ, θ) exp(inβ), with B ·∇β(ψ, θ, φ) = 0

It is found that the most unstable localised pressure driven modes have large n (infinite n are
the most unstable in a static (non rotating) equilibrium). As a result, exp(inβ) is a rapidly
varying function across the field lines, in particular k⊥ = −i∇β.

Along the field lines ξ⊥ varies slowly: β will be exactly constant along the field lines, but there

will be a slow variation along the field lines through the θ variation contained in ξ̂⊥. In

particular, k‖ξ⊥ = exp(inβ)b · ∇ξ̂⊥ = exp(inβ)(F/qR
2
)∂ξ̂⊥/∂θ. For the straight field line

system already described, it is straightforward to show that

β = φ− q(ψ)θ

provides the correct Clebsch definition (Eq. (6.1)) of the field B = ∇β ×∇ψ so that it is
identical to B = F∇φ + ∇φ×∇ψ. See also the chapter on tearing modes and the helical
field! Thus, also, the requirement B ·∇β(ψ, θ, φ) = 0 is obvious.

We are now ready to consider the potential energy δW of the internal plasma region. Consider
just the perpendicular potential energy in the plasma

δW⊥ =

∫
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
(6.5)
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Pressure driven short wavelength instabilities
With the eikonal representation of the perturbed field,

δB⊥ = exp(inβ) ˆδB⊥ with ˆδB⊥ =
[
∇× (ξ̂⊥ ×B)

]
⊥

the energy becomes

δW⊥ =
1

2

∫
d
3
x

[
|δB⊥|

2
+ B

2
∣∣∣in∇β · ξ̂⊥ + ∇ · ξ̂⊥ + 2ξ̂⊥ · κ

∣∣∣2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥) −

J‖(ξ
∗
⊥ × b) · δB⊥

]
.

We note at this point something of concern: the toroidal wavenumber, n, still appears in the

field compression term B
2
∣∣∣in∇β · ξ̂⊥ + ∇ · ξ̂⊥ + 2ξ̂⊥ · κ

∣∣∣2, and with large n, this would lead

to a massive stabilising energy contribution (n
2
/2)

∫
d
3
xB

2|∇β · ξ⊥|
2
. In order to keep this

term finite, the perturbation must be of the form

ξ⊥ = ξ⊥0 +
ξ⊥1

n
, with ξ⊥0 =

X

B
b×∇β

where X(ψ, θ) is a scalar function (a stream function) which is independent of ξ⊥1. The term
of concern in∇β · ξ⊥ is now finite even for infinite n, since ξ⊥0 is perpendicular to ∇β.
Meanwhile, taking the infinite limit of n enables δB⊥ to be written in a simplified form
(independent of ξ⊥1):

δB⊥ = {∇× [(Xb×∇β)× b]}⊥
= {∇× (X∇β)}⊥ ≡ ∇× (X∇β)− b[b ·∇× (X∇β)]

= (b ·∇X)b×∇β.
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Pressure driven short wavelength instabilities
The J‖ term vanishes for infinite n because ξ

∗
⊥0 × b = (X

∗
/B)∇β, which is clearly

perpendicular to the recent definition of δB⊥ (and for infinite n clearly ξ⊥1 vanishes).
Consequently we obtain the energy

δW =
1

2

∫
d
3
x

[
1

B2
|B ·∇X|2(b×∇β)

2
+

B
2
∣∣∣i∇β · ξ̂⊥1 + ∇ · ξ̂⊥0 + 2ξ̂⊥0 · κ

∣∣∣2 − 2

B4
(B ×∇β ·∇P )(B ×∇β · κ)|X|2

]
.

Now, ξ⊥1 appears only in the stabilising field compression term, and so we are free to
minimise this term with respect to ξ⊥1. The term is minimised to zero with

∇β · ξ̂⊥1 = i(∇ · ξ̂⊥0 + 2ξ̂⊥0 · κ). Finally, we see some more simplifications: since ∇β is

perpendicular to B and B ·∇X = J−1
ψ,θ∂X/∂θ, we have,

δW = π

∫
dψ dθJψ,θ

[(
∇β

BJψ,θ

)2 ∣∣∣∣ ∂X
∂θ

∣∣∣∣2 − 2

(
B ×∇β ·∇P

B2

)(
B ×∇β · κ

B2

)
|X|2

]
.

(6.6)
Let us now address and simplify the second term in δW , the so called interchange term.
Employing the Clebsch field:

B ×∇β ·∇P

B2
=

[(∇β ×∇ψ)×∇β] ·∇P

(∇β ×∇ψ) · (∇β ×∇ψ)

=

[
(∇β)2∇ψ − (∇β ·∇ψ)∇β

]
·∇P

(∇β)2(∇ψ)2 − (∇β ·∇ψ)2

=
dP

dψ
by employing ∇P = ∇ψ

dP

dψ
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The weird curvature
Moreover, the following quantity is fondly known as the ‘weird’ (w) component of the
curvature:

κw =
B ×∇β · κ

B2

=
[(∇β ×∇ψ)×∇β] · κ

(∇β ×∇ψ) · (∇β ×∇ψ)

=

[
(∇β)2∇ψ − (∇β ·∇ψ)∇β

]
· κ

(∇β)2(∇ψ)2 − (∇β ·∇ψ)2
.

From force balance the curvature vector is (see exercise series 3):

κ ≡ (b ·∇)b =

(
1

B2

)
[∇− b(b ·∇)]

(
B2

2
+ P (ψ)

)
where b =

B

B
.

We do not need to worry about subtracting the parallel derivative in B
2

from ∇ because the
required operation on κ in B ×∇β · κ is perpendicular to B. So we can use for general flux
coordinate system (ψ,Θ, φ):

∇
(
B2

2
+ P

)
=

(
∇ψ

∂

∂ψ
+ ∇Θ

∂

∂Θ

)(
B2

2
+ P

)

which gives,

κw =
1

B2

 [(∇β)2(∇ψ)2 − (∇β ·∇ψ)2] ∂
∂ψ

+ [(∇β)2∇ψ ·∇Θ− (∇β ·∇ψ)(∇β ·∇Θ)] ∂
∂Θ

(∇β)2(∇ψ)2 − (∇β ·∇ψ)2

[B2

2
+ P

]
.

(6.7)
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Local potential energy δWψ
And therefore we have

κw =

(
1

B2

)[
∂

∂ψ
+

{
(∇β)2∇ψ ·∇Θ− (∇β ·∇ψ)(∇β ·∇Θ)

B2

}
∂

∂Θ

](
B2

2
+ P

)
. (6.8)

The first term in square brackets is the radial curvature, while the second term is small
correction proportional to the geodesic curvature, arising in Eq. (6.8) because of
non-orthogonality in θ and ψ (which is small but present for straight field line coordinates and
the analytic expanded equilibrium coordinates described in lecture 2). Substituting κw into
δW we finally have the compact expression:

δW = π

∫
dψ dθJψ,θ

[(
∇β

BJψ,θ

)2 ∣∣∣∣ ∂X
∂θ

∣∣∣∣2 − 2κw
dP

dψ
|X|2

]
. (6.9)

There are some important properties to note at this point. The expression for δW , and the
corresponding, forthcoming, Euler equation, can undergo simple redefinition of the poloidal

coordinate, since Jψ,θdθ and J−1
ψ,θ∂/∂θ is independent of the poloidal coordinate. Note that

when transforming to a new angle, quantities such as κw and β must be defined in terms of
this new angle (exercises!).

Moreover δW contains only one dependent variable X, and one independent variable θ. The
problem is one dimensional, in particular there are no radial derivatives. We can therefore
consider a potential energy functional on each flux surface separately:

δWψ =

∫
dΘJψ,Θ

[(
∇β

BJψ,Θ

)2 ∣∣∣∣ ∂X
∂Θ

∣∣∣∣2 − 2κw
dP

dψ
|X|2

]
. (6.10)

Limits of integration in the arbitrary angle Θ will be considered later, as there are
technicalities that will need to be properly discussed.
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Variation of δWψ
One can now minimize δWψ with respect to X in order to assess the stability threshold
(energy principle). Euler Lagrange equation for X defines the full poloidal dependence in X.

1

Jψ,Θ

∂

∂Θ

[(∇β

B

)2 1

Jψ,Θ

∂

∂Θ
X

]
+ 2κw

dP

dψ
X = 0, (6.11)

where again we note the independence of the definition of the poloidal angle Θ (but
remembering that β = β(θ) etc).

The problem can be solved only if the equilibrium quantities (B, κw etc) are known in terms
of a suitable poloidal angle. In lectures 1 and 2 we obtained an equilibrium expansion that
included toroidal and shaping effects analytically. The poloidal angle ω was neither a straight
field line variable, nor orthogonal. If we use that variable in Eq. (6.11), so that we solve,

1

Jψ,ω

∂

∂ω

[(∇β

B

)2 1

Jψ,ω

∂

∂ω
X

]
+ 2κw

dP

dψ
X = 0 (6.12)

we need a transformation between ω and straight field line angle θ, since e.g. β = φ− q(r)θ
must be obtained in terms of ω. For obtaining the transformation, we equate the volume
element

d
3
x = Jr,ωdr dω dφ = Jψ,ωdψ dω dφ = Jψ,θdψ dθ dφ,

with Jr,ω = ψ
′Jψ,ω giving

dθ = dω
Jψ,ω
Jψ,θ

and θ(ω) =

∫
ω
dω

Jω
Jψ,θψ′

.

Now the poloidal dependence in Jψ,θ is entirely contained in R
2
, so that

θ =

(
2π

/∫ 2π

0
dω
Jψω
R2

)∫ ω
0
dω
Jψ,ω
R2

.
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Transformation to equilibrium coordinates
From the results of lecture 2 (Eq. (2.11)), we have for the analytic equilibria variables (see also
exercise series 2):

θ(ω) = ω − ε(ε + ∆
′
) sinω + ε

∞∑
m=2

1

m

(
S
′
m − (m− 1)

Sm

r

)
sin(mω) + O(ε

2
),

This change of coordinates is used inside the weird curvature of Eq. (6.8), which we may define
as Θ→ ω:

κw =

(
1

B2

)[
∂

∂ψ
+

{
(∇β)2∇ψ ·∇ω − (∇β ·∇ψ)(∇β ·∇ω)

B2

}
∂

∂ω

](
B2

2
+ P

)
. (6.13)

Correct transformation needs to be made inside β = φ− q(ψ)θ(ω).

In the following calculation of the analytic ballooning equation we assume small pressure

(conventional analytic assumption β ∼ ε2), but pressure gradients are allowed to be large
(appropriate for H-mode pedestal, or internal transport barrier). Specifically,

α ≡ −
2q2R0

B2
0

dP

dr
∼ O(ε

0
), while

2P

B2
0

∼ O(ε
2
).

One then finds that
∆
′ ∼ ε, and r∆

′′
= α + O(ε

1
)

so that, when developing the analytic ballooning equation, ∆
′

terms are dropped from the final
expression, and r∆

′′
is replaced with α everywhere.

We drop shaping effects in what is to come, i.e. Sm = 0. Shaping effects do not appear in the
leading order ballooning equation, nor in the ballooning diagram for standard shaping ordering

Sm/r ∼ ε if s ∼ ε0 and r∆
′′ ∼ α ∼ ε0. But shaping effects do modify interchange modes for

Sm/r ∼ ε, s ∼ ε and r∆
′′ ∼ α ∼ ε.
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Transformation to equilibrium coordinates
Results required in the expansion of the ballooning equation (keeping toroidal effects,
neglecting shaping effects) are (exercises!)

∇β = ∇r
∂β

∂r
+ ∇ω

∂β

∂ω
+ ∇φ

∂β

∂φ
giving ∇β = ∇φ + a∇r + b∇ω

with
β ≡ φ− q(ψ) θ(ω) where θ(ω) = ω − (ε + ∆

′
) sinω. Thus:

a =
∂β

∂r
= q sinω

1

r
(ε + r∆

′′
)−

q

r
s[ω − (ε + ∆

′
) sinω] and b =

∂β

∂ω
= −q[1− (ε + ∆

′
) cosω],

with s = (r/q)dq/dr, giving,

(∇β)
2

= (∇φ)
2
+a

2
(∇r)

2
+b

2
(∇ω)

2
+2ab∇r·∇ω =

q2

r2

[
1 +

(
sω − r∆′′ sinω

)2
+ O(ε sinω, ε cosω)

]
.

(6.14)
In the definition of κw of Eq. (6.13) we require

(∇β)
2∇ψ·∇ω−(∇β·∇ψ)(∇β·∇ω) =

[
(∇φ)

2∇r ·∇ω + ab(∇r ·∇ω)
2 − ab(∇r)

2
(∇ω)

2
]
ψ
′
,

so that keeping only ε
0

and ε sinω terms (knowing we will multiply by ∂B
2
/∂ω ≈ 2B

2
0ε sinω

in κw , knowing that ε sin
2
ω

2
will provide a contribution for interchange modes):

(∇β)
2∇ψ·∇ω−(∇β·∇ψ)(∇β·∇ω) ≈ −ψ′ab(∇r)

2
(∇ω)

2
=
q2(ψ′)

r3

[
(r∆
′′

+ ε) sinω − sω + O(ε, ε cosω)
]

Another quantity that is required in κw is

κ ·∇r =
1

B2

∂

∂r

(
B2

2
+ P

)
≈

1

B2
0

dP

dr
+

R2

2R2
0

∂

∂r

[(
R0

R

)2
(

1 + 2F2 +
ε2

q2
(1 + 2∆

′
cosω)

)]
.
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The ballooning equation
In addition (see lecture 2),

dF2

dr
= −

1

B2
0

dP

dr
−

r

R2
0q

2
(2− s) giving κ ·∇r =

1

B2

∂

∂r

(
B2

2
+ P

)
= κRr + κrr

where we break these terms down respectively as toroidal (κRr) and poloidal (κrr) curvature
contributions projected in the direction of the minor radius κRr = κR ·∇r:

κRr ≈
R2

2

∂

∂r

(
1

R

)2

= −
1

R

∂R

∂r
≈ −

1

R0

(
cosω − ε cos

2
ω
)

and

κrr = −
ε

R0q2
(1− r∆′′ cosω).

Also required in the weird curvature is:

κ ·∇ω ≈
(

1

r2

)
1

2B2

∂B2

∂ω
≈

1

rR0

sinω

Combining with (∇β)
2∇ψ ·∇ω − (∇β ·∇ψ)(∇β ·∇ω), makes a crucial contribution to κw ,

noting that ε(cos
2
ω + sin

2
ω) = ε:

κw = −
1

ψ′R0

[
cosω − ε

{
1−

1

q2

}
+ sinω(sω − r∆′′ sinω) + O(ε sinω, ε cosω)

]
. (6.15)

By assuming the correct definition of κw given by Eq. (6.15), and using Eq. (6.14) for (∇β)
2

one now easily obtains (from Eq. (6.12)) the large aspect ratio tokamak ballooning equation

with circular cross section by also noting that ψ
′

= rB0/q:

∂

∂ω

[{
1 + (sω − α sinω)

2
} ∂

∂ω
X

]
+ α

[
cosω − ε

{
1−

1

q2

}
+ sinω(sω − α sinω)

]
X = 0.

(6.16)
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Notes

We note that in a cylinder (screw pinch approximation) we do not have the toroidal
curvature (κR), so that

κ ·∇r(cyl) = κrr(with ∆′′ = 0) = −
ε

R0q2
.

The consequence of having no toroidal curvature in a torus is that configuration be-
comes much more unstable. We will see that the Mercier criterion for unstable inter-

change modes in a torus DM > 1/4 with DM = −
ε

s2
α

[
1−

1

q2

]
is replaced with the

Suydam criterion for instability in a cylinder DS > 1/4 with DS = −
ε

s2
α

[
0−

1

q2

]



The ballooning representation
Let us consider the periodicity of X via considering exp(inβ) where β = φ− θq(ψ). It is clear
that

exp(inβ) = exp[inφ− inq(ψ)θ]

is not periodic in θ except on a rational surface where nq = m (with m integer). For example

exp[inβ(θ + 2π, φ)] = {cos[2πnq(ψ)]− i sin[2πnq(ψ)]} exp[inβ(θ, φ)].

The same lack of periodicity holds also for our analytic equilibrium coordinate ω. Since
θ(ω) = ω − (ε + ∆

′
) sinω, then θ(ω + 2π) = θ(ω) + 2π, and thus

exp[inβ(ω + 2π, φ)] = exp[−i2πnq(ψ)] exp[inβ(ω, φ)].

Connor, Hastie and Taylor realised that we can give up on X(Θ) being periodic in Θ (i.e. in
any angle e.g. θ or ω). They allowed the angle Θ to be a generalised coordinate, mapping out
the entire length of a field line, from minus infinity, to plus infinity. Thus the solution of Eq.
(6.11) is a variation of the modified local potential energy,

δWψ,ω ∝
∫ ∞
−∞

dωJψ,ω

[( ∇β

BJω

)2 ∣∣∣∣ ∂X
∂ω

∣∣∣∣2 − 2κw
dP

dψ
|X|2

]
. (6.17)

Convergence of

∫ ∞
−∞

dω|X|2 requires that X ∼ |ω|−1/2
, or faster, as ω → ±∞. This forms

the boundary condition for X, i.e. that the solution remains physical (finite energy). Stability
boundaries are formed by solution of ballooning equation Eq. (6.11), and substitution into Eq.
6.17), varying equilibrium parameters searching for δWψ = 0.
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Notes
A practical solution to the difficulty of non-periodicty, and a reconciliation of periodic solutions from
the ballooning represented solutions is obtained by considering the following:

1. The linear second order differential equation of Eq. (6.16) has in general two independent
solutions, one of which vanishes for ω → −∞, the other ω → +∞. Marginal stability
corresponds to special values of the equilibrium quantities for which the equation has a
solution that vanishes for ω → ±∞ simultaneously. This is required because the eigenmode
must have a finite energy content.

2. The solution ξQ to Eq. (6.16) with extended angle is known as a quasi-solution. It is

associated with X as follows:

ξQ =
X

B
b ×∇β.

As already shown, this eigenfunction is not periodic in ω, and hence it is not physical, but it is
nevertheless a solution of Eq. (6.16) in the extended space. Furthermore, the general MHD
force operator δF of Eq. (3.4), and the force in Eq. (6.16), is periodic. This means that,

ξQ(ω + 2πk) = exp[−ik2πnq(ψ)]ξQ(ω)

is also a solution of δF = 0 everywhere in the extended space.

3. The force operator is linear, which means that the following periodic sum satisfies δF = 0:

ξ(ψ, ω, φ) =
∞∑

k=−∞
ξQ(ω + 2πk).

According to observation 2, all terms in the sum satisfy the equation of motion at marginal stability
and point 3 (linearity) guarantees that the sum, if it exists, also satisfies this equation. Observation 1

states that the necessary boundary conditions for the existence of the sum, X ∼ |ω|−1/2
for ω → ±∞,

are satisfied in the case of marginal stability. Finally, according to point 3, the sum defines a periodic
solution of the marginal stability equation. We thus consider the sum the physical solution.

The solution ξ is a sum over many terms that have different values of the non-periodic function
exp[−ik2πnq(ψ)], which contains the radial dependence of ξ. Note that the individual quasi-modes
are not bounded in the radial direction since the exponent exp[−ik2πnq(ψ)] does not vanish anywhere.
Fortunately it has been shown (not proven here) that the sum ξ is radially localized at the flux surface
where we have solved Eq. (6.16)).



Ballooning structure

Consider the interchange contribution to the energy, i.e.

∫ ∞
−∞

dωJω
(
−2κw

dP

dψ
|X|2

)
.

The minimising solution for X takes a ballooning form. The main reason for this is that the
local shear is weaker on the outboard side than it is on the inboard side (see next few slides),
meaning that field line bending stabilisation is weaker on the outboard side, so the instability
tends to be concentrated there.

B
B

X

ω

Ballooning mode

Interchange mode ~ 1/ ω^(1/2)

In the ballooning representation there will be a long tail in ω (X ∼ |ω|−1/2
for ω → ±∞) that

is captured also by interchange modes, see later. Moving to physical periodic modes, we will
require a large spectrum of modes to develop the ballooning structure, i.e. a mode dominantly
on the outboard side. In fact there are an infinite number of significant harmonics for n→∞,
indicating that the ballooning mode is a true toroidal instability, and it is hopeless to attempt
truncation of the harmonics via an inverse aspect ratio expansion.
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Ballooning stability diagram
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Second region of ballooning stability

α

s

Ballooning stable

Ballooning unstable

Conventional pressure and q profiles chosen.
q>1, so Mercier stability everywhere

Analysis of infinite n ballooning modes provide
a necessary and sufficient condition for stability
of local (short wavelength) ideal internal MHD
instabilities.

The diagram was created by solving Eq. (6.11),
and substitution into Eq. 6.17), varying
equilibrium parameters α and s, searching for
δWψ = 0. The higher order Mercier term

−εα(1− 1/q
2
) is not very significant in for

ballooning diagram.

For the first stability boundary, shear is
stabilising because it increases field line bending

(see ∇β contribution to |δB⊥|
2
). While α

increases ballooning/interchange drive.

For many years tokamaks have tried to operate
in the second region if stability. It can be
expanded with extreme elongation and
triangularity (partly why spherical tokamaks are
successful). It can be achieved with super
H-mode operation. The reason for this effect is
due to local shear which will be explained next.



Effect of local magnetic shear on ballooning
It is clear that magnetic shear is stabilising. This is not surprising because, in order to
minimise magnetic field line bending stabilisation, instabilities tend to align themselves with
the equilibrium field on a given flux surface. The magnetic shear determines the rate at which
the mode and the equilibrium magnetic field become misaligned on neighbouring flux surfaces.

A feature that is missing from the large ω treatment of interchange modes is the role of
poloidally localised magnetic shear. These effects are taken care of in the general ballooning
equation of Eq. (6.16) via the α sinω term. In order to see the effect of local shear, we should
first examine the local q defined above in Eq. (1.17), and in the last lecture:

ql ≡
dφ

dω
≈ q(r)

{
1− (ε + ∆

′
) cosω

}
,

if circular (unshaped, Sm = 0) flux surfaces are assumed. Hence the square of the local shear

sl(r, ω)
2

=

(
r

ql

dql

dr

)2

= (s(r)− α(r) cosω + O(ε))
2

for ∆
′ ∼ ε and r∆

′′
= α + O(ε).

The stabilising effect of shear is reduced at ω = 0 as α is increased from a small positive value.
This ensures that ballooning modes bulge on the outboard side and are more unstable than
interchange modes at small to moderate α. This local shear effect, and its impact on magnetic
field line bending, is nullified (averages out) when taking the large ω assumption of interchange
modes. Ballooning modes tend to be unstable in the edge of a tokamak where q � 1, s ∼ 1 and
α ∼ 1 (interchange are stable for these parameters).

By further increase in α, the local minimum in s
2
l , and the minimum in field line bending

stabilisation, occurs at larger values of ω (outboard side becomes region of improved
curvature). As a result, very large values of α and small global shear s can yield the second
region of stability to the ballooning mode. In this parameter range, the ballooning mode has
no pressure driven trigger. Extreme shaping can extend the possibility of second region of
stability.
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Interchange modes

Stability to interchange modes is usually considered a necessary condition for ideal
MHD stability. They play a very important role in setting the stability boundary
in

I stellarators

I reverse field pinches

I tokamaks in q < 1 region

I tokamaks in the q > 1 region if impurities cause a reverse in the sign of the
pressure gradient.

Stability to interchange modes is concerned with the stability corresponding to the
large ω behaviour of X in the ballooning representation. The result will usually be
an underestimate of instability relative to solving the full ballooning problem. The
procedure for solving the interchange problem is to

1. Solve the ballooning equation for large ω.

2. Assume that the large ω solution is valid for all ω. This identifies the
eigenfunction everywhere.

3. Obtain the condition for marginal stability by imposing physical boundary
conditions
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Interchange modes
Simply write the ballooning equation (Eq. 6.16) in the form (note ε correction is crucial!):

d

dω

[
f
dX

dω

]
+ gX = 0

and we let
f = a + bω + cω

2
and g = d + eω

where a, b, c, d and e are periodic functions of ω

It is the secular dependence (long trend in ω) that needs to be captured in the large ω solution

of X. We also know that we require X ∼ ω−1/2
, or faster, for convergence. We write X as an

expansion in a large variable (reciprocal Taylor expansion):

X = ω
p
[
X0(ω) +

X1(ω)

ω
+
X2(ω)

ω2
+ O

(
X3

ω3

)]
where again, X0, X1 and X2 are 2π periodic (no secular dependence in ω). We must solve for
X0, X1 and X2 by substitution into the ballooning equation, and examination of coefficients
in the resulting power series. Substitution of X0, X1 and X2 into the ballooning equation then
yields the power index p.

The result is (exercise!)

X = ω
p
[1 + O(1/ω)] with p = −

1

2
±

√
1

4
−DM

where

DM =

〈
ê

c

〉
−
〈
ê

c

〉2

+

〈
1

c

〉(〈
êê

c

〉
+ 〈d〉 − 〈ê〉

)
, ê =

∫ ω
0
dω e, and 〈X〉 =

1

2π

∫ 2π

0
dωX
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Interchange modes
If well behaved solutions exist the system is ballooning unstable. We require that both of these
are well behaved solutions (physical). Note that if DM < 1/4, one of the solutions will give
rise to p > −1/2, and hence the energy will be infinite.

On the other hand, if DM > 1/4, then p is complex, and both solutions are well behaved:

ω
p

= ω
−1/2

ω
±i|DM−1/4|

.

This result is oscillatory in DM (and in r or ψ as we postulated earlier), since

ω
p

= ω
−1/2

ω
±i|DM−1/4|

= ω
−1/2

exp
[
ln
(
ω
±i|DM−1/4|

)]
= ω
−1/2

exp [±i|DM − 1/4| lnω] .

Substituting for the coefficients (see Eq. 6.16) a = 1 + α
2

sin
2
ω, b = −2αs sinω, c = s

2
,

d = α[cosω − ε[1− 1/q
2
)]− α sin

2
ω] and e = αs sinω one ends up with

DM =
α

s2
ε

(
1

q2
− 1

)
.

The condition for instability is DM > 1/4 or

αε

(
1

q2
− 1

)
>

1

4
s
2

which is the condition that pressure driven (average curvature driven) interchange can
overcome magnetic field line bending stabilisation under the ideal MHD model.
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Interchange modes and average curvature
It will be shown in the exercises that we obtain the same result (i.e. the same X = ω

p
) for the

following equation:

∂

∂ω

[
ω

2 ∂

∂ω
X

]
+DMX = 0 with DM = −

ε

s2
α

[
1−

1

q2

]
. (6.18)

This is the ballooning equation Eq. (6.16) with sω >> 1 and sinω → 0 and cosω → 0, i.e. Eq.
(6.18) represents the secular limit of Eq. (6.16).

In a torus, the net curvature is favourable (stabilising) if q > 1 and dP/dr < 0 (conventional
pressure gradient). This threshold changes with shaping.

In a cylinder DM → DS = −
ε

s2
α

[
0−

1

q2

]
, we lose effect of stabilising toroidal curvature.
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