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Lecture 6

Localised toroidal instabilities: ballooning
modes and interchange modes

J. P. Graves
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Perpendicular perturbed field components =PrL

Suitable choice of coordinate system makes the stability analysis much simpler. These first few
slides provide a recap of the properties seen in exercise 3 for the field components and the
magnetic operator.

One can always write the equilibrium magnetic field in the ”Clebsch” form (see last lecture):

B=VBXVy (6.1)

where 1) is the poloidal flux, and we recall that in flux coordinates, Vi = w,Vr. Thus we see
that the field is perpendicular to the 1 direction, and to the 3 direction.

Consider now the magnetic field perturbations according to Eq. (3.3),
B =V X (¢ x B).
Now consider the radial component of § B:
SB" =8B -Vr=Vr- -V x (£ x B).

Employing the vector identity Vr - (V x D) =V - (Vr x D) + D - (V x Vr) and noting that
V X (Vr) =0 we have

SB" =V - [(¢ Xx B)x Vr]| =V - [B(Vr- &) —&Vr- B))
Moreover, since Vr - B = 0 then

§B" =V - [B(£ -Vr)]=(£-Vr)V-B+B- V(¢ Vr)
and since V - B = 0 then we finally obtain

SB"=B-V(¢ -Vr)=B-Ve | withe =¢-Vr
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The magnetic operator =PrL

The important operator B - V is known as the Magnetic Operator. Note that we haven’t yet
employed the Clebsch field yet. We have only used the field identity Vr - B = 0. Assume the
Clebsch field, which together with using V8- B = 0 we obtain the other component of the
perpendicular field

8B-V3=B-V(&-Vp).

‘We note that the total perturbed perpendicular field strength is

§B-Vp)?
B2 = (sB™)? + (8B VA f)
(VB)
633_ will vanish on the rational surface except through magnetic shear contributions in Vj3.

Let us now consider the magnetic operator. Writing

vl eyl vl (6.2)
oY 00 O¢

where © is not necessarily the same as w defined in lecture 1. Now, choose to apply the form
B =FV¢+ V¢ X Vb, so that

BV = Fve (Vo) + (ve)L 4 (W)i]ﬂwwi)- {(vwi +vey Ly (V¢)i] :
Y 80 L o eIS) ¢

Writing the Jacobian of the (¢, ©, ¢) system as Jy,0 = (V¢ X Vi - V@)_l, and recalling
that V¢2 = R™2 then

F[o R 0
B V=—|—4——|.
R? |0¢ ' FJye 00
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The magnetic operator =PrL

Now, what is Rz/(F‘Jwye)? From lecture 1, one finds the exact relation

b B-Veé Flyoe
) —= — = ——
a.9=25 =5 ve R2

so that
B.v F o] n 1 9 1 [ o n 1s] :|
V=—|—4+—— = — g — + — | .
R? |09 q 00| Jpe Mos 00
It will now be clear that it is advantageous to choose a straight field line system (with
convention © — 0), for which (see chapter 2)

R(v,0)?
Typ,6(,0) = % and thus ¢q; = q(v)

In this section we are looking at ballooning and interchange modes, which are driven by
pressure, and as such, depend crucially on toroidicity. It is reminded that in a toroidal system,
linear MHD modes do not have a single poloidal mode number. In general we have that,

&= Z $<m) (r) exp(ing — im0 — iwt). (6.3)

m=—o0

For ballooning modes, the poloidal spectrum is in practice very large (we will come back to
this later).

The poloidal spectrum of the perturbation is minimised for a straight field line system, as the
magnetic operator has the simplest form. Unstable modes have weak field line bending
stabilisation. For example, |<SBT|2 =0 for B-V¢ =0, ie.

[% + ﬁ%} ¢" =0 which infers ¢" = £"(r) expling — ing(r)0 — iwt].
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The magnetic operator =PrL

In fact, as will be seen, treating the full high n ballooning problem yields (consideration of full
field line bending stabilisation, verses pressure drive),

&" = £"(r, 0) expling — ing(r)0 — iwt] (6.4)

where £7 (7, 0) is a weak function of 6. Equations (6.3) and (6.4) will be reconciled with each
other later, and both representations include toroidicy and mode coupling.

Let us see what happens if we don’t choose a straight field line system. Choose e.g. the system
employed in lecture 2, so that Jy @ — Jy,w, where Jy, , is defined in Eq. (2.11), and R
given by Eq. (1.24). It is thus clear that,

! > ! Sm
q(r,w) = q(r) {l —(e+ A")cosw + Z (Sm —(m — 1)T> cos(mw) +O(e2)},

m=2

and thus the magnetic operator will be,

-0 o, 1 et AYcosw— S5 (8 — (m -1 cos(m ENE
B<V_R(T7w)2 [% q(r){lJr( + A" cos > (sm ( H— )cos( w) + O( )} aw]'

m=2

After developing the stability problem in a convenient way in straight field line coordinates, we
will have to transform equations into (¢, w, ¢) coordinates because we will need equilibrium
toroidal effects to be included correctly (and it was necessary to expand the equilibrium in

(¢, w, ¢) coordinates). After these considerations, we now commence the formal derivation of
infinite n ballooning modes.
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Eikonal representation for field aligned instabilities P L

As we have seen, the most unstable modes will tend to be aligned to the field lines m &~ ngq.
We require that our localised modes vary strongly only perpendicularly to the field lines (k|
large), while varying slowly, on the scale of the machine size, along the field lines (kH small).
We implement this ordering by means of an eikonal representation for £ | [Ref. Connor, Hastie
and Taylor, 1978], i.e. with separation of fast and slowly varying dependence:

EL(¥,0,¢) > £, (¥,0,8) =&, (¥,0) exp(inB), with B - VB(¢,0,¢) =0

It is found that the most unstable localised pressure driven modes have large n (infinite n are
the most unstable in a static (non rotating) equilibrium). As a result, exp(ing) is a rapidly
varying function across the field lines, in particular k| = —iV}g.

Along the field lines £ | varies slowly: 8 will be exactly constant along the field lines, but there
will be a slow variation along the field lines through the 6 variation contained in éL' In
particular, k| €, = exp(inB)b - VéL = exp(inB)(F/qR2)BéL/894 For the straight field line
system alreac&y described, it is straightforward to show that

B=0¢é—q(¥)0
provides the correct Clebsch definition (Eq. (6.1)) of the field B = V3 X V4 so that it is
identical to B = FV ¢ + V¢ X V. See also the chapter on tearing modes and the helical

field! Thus, also, the requirement B - V3(v, 0, ¢) = 0 is obvious.

‘We are now ready to consider the potential energy 6W of the internal plasma region. Consider
just the perpendicular potential energy in the plasma

oW = [ [|6BL2 + B2 |V €1 4261 - wl® — 261 - VP)(s-€1) - ) (€] x b) - 5B ]
| (6.5)
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Pressure driven short wavelength instabilities =PrL

‘With the eikonal representation of the perturbed field,
8B, =exp(inB)6B, with 6B = [V x (&, x B)]L
the energy becomes
_ Lrs 2, p2, 5 5 N 2 .
Wy o= o d [6B |+ B”|inVB-&, +V - & +26, -w| —2(&§L -VP)(x-€]) —
T (€7 x b) - SBL] .
‘We note at this point something of concern: the toroidal wavenumber, n, still appears in the
- “ - 2
field compression term B2 ‘inVﬁ -€, +V € +26 - n| , and with large n, this would lead
to a massive stabilising energy contribution (n2/2) / >z BQ|VB -E) \24 In order to keep this

term finite, the perturbation must be of the form

3 . X
€. =& 0+, with &,0= EbXVB
n

where X (1, 0) is a scalar function (a stream function) which is independent of £ | ;. The term
of concern inV 3 - €| is now finite even for infinite n, since € |  is perpendicular to V3.
Meanwhile, taking the infinite limit of n enables § B | to be written in a simplified form
(independent of & 1):

6B | {V X [(Xbx V) x bl}
= {VX(XVB)}, =V X(XVB)—->bb-V x (XVg)]

(b-VX)bx V8.
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Pressure driven short wavelength instabilities =PrL

The J)| term vanishes for infinite n because &%, x b= (X"/B)V}, which is clearly
perpendicular to the recent definition of § B (and for infinite n clearly £ | | vanishes).
Consequently we obtain the energy

sWo = 1/d3x [L\B.vxﬁ(bx vB)2+
2 B2
o N N 2 2
B*|ivp &y, +V & o+2810 ~ 5i(BX V- VP)(Bx Vi w)X?|.

Now, £ 1 appears only in the stabilising field compression term, and so we are free to
minimise this term with respect to £ | ;. The term is minimised to zero with

va- éJ_l =i(V - éJ_O + QéJ_O - k). Finally, we see some more simplifications: since V3 is
perpendicular to B and B - VX = ]JIQ(')X/BO, we have,

2
W =m /dde‘]‘p,@ [(BZB )
. .0

Let us now address and simplify the second term in §W, the so called interchange term.
Employing the Clebsch field:

o0X
o0

2 BXxVB-VP\ /(BXVB -k
72( B2 )( B2 )‘X‘Q]

(6.6)

BxVB-VP  [(VBXVY)x Vs VP

B> (VB X V9) - (VB x V)
[(vB)2vy — (v v)vs] - vP

(VB2(V)? — (VB - V)2
dpP apP

= —— by employing VP = V¢ —
a0 y employing d)dw
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The weird curvature =P

Moreover, the following quantity is fondly known as the ‘weird’ (w) component of the
curvature:
B XVB-k
B2

(VB x V¢) X VB - r
(VB x VY) - (VB X V)
[(V8)?Vy — (VB V)VE|

(VB)2(V%)2 — (VB - Vu)2

Kw =

From force balance the curvature vector is (see exercise series 3):
(b-V)b (—1 ) [V -bb-V) —BQ + P(v) h b B
k= (b- = — . where = —.
B2 2 B

‘We do not need to worry about subtracting the parallel derivative in B? from V because the
required operation on k in B X V3 - k is perpendicular to B. So we can use for general flux
coordinate system (v, ©, ¢):

VB2 P*V6 V@a B P
5 +r)=( Vou ao) (5t

which gives,

B2 2

(6.7)

1 [[IB2(I9)® — (V8- V)Pl gy + [(VA)PVY - Ve — (V5 Vi) (VE VO)lgs [32
v (VB)2(V¥)2 — (VB - V)2

-

L

).
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Local potential energy dW, =PrL

And therefore we have

/1 a (VB)2Vy - VO — (VB - V) (VB-VO)) a B2
vo= () [%+{ ~ }ﬁ] <7+p), (6.5)

The first term in square brackets is the radial curvature, while the second term is small
correction proportional to the geodesic curvature, arising in Eq. (6.8) because of
non-orthogonality in 6 and ¢ (which is small but present for straight field line coordinates and
the analytic expanded equilibrium coordinates described in lecture 2). Substituting k., into
W we finally have the compact expression:

2
W :ﬁ/dwdejwyg [(%)
P,0

There are some important properties to note at this point. The expression for W, and the
corresponding, forthcoming, Euler equation, can undergo simple redefinition of the poloidal

X |2

96

dpP
— 2ke — | X2 . (6.9)
dy

coordinate, since Jw,9d6’ and ‘_7: ]()8/89 is independent of the poloidal coordinate. Note that
when transforming to a new angle, quantities such as k., and 8 must be defined in terms of
this new angle (exercises!).

Moreover 6W contains only one dependent variable X, and one independent variable 6. The
problem is one dimensional, in particular there are no radial derivatives. We can therefore
consider a potential energy functional on each flux surface separately:

. v 2
o o[ (2)

Limits of integration in the arbitrary angle © will be considered later, as there are
technicalities that will need to be properly discussed.

X |2

ER)

dP
— 2k, — | X2 . (6.10)
dy

139 /190



Variation of W, =P-L

One can now minimize 6 W,, with respect to X in order to assess the stability threshold
P
(energy principle). Euler Lagrange equation for X defines the full poloidal dependence in X.

1 a vAa\2 1 a dP
— (—) — X | 4+ 2kw —X =0, (6.11)
Typ,0 00 B Typ,0 00 dip

where again we note the independence of the definition of the poloidal angle © (but
remembering that 8 = B(0) etc).

The problem can be solved only if the equilibrium quantities (B, K, etc) are known in terms
of a suitable poloidal angle. In lectures 1 and 2 we obtained an equilibrium expansion that
included toroidal and shaping effects analytically. The poloidal angle w was neither a straight
field line variable, nor orthogonal. If we use that variable in Eq. (6.11), so that we solve,

1 15} vB\2 1 2] dpP
= (—) X | 42k —X =0 (6.12)
Ty, Ow B T, Ow dy

we need a transformation between w and straight field line angle 6, since e.g. 8 = ¢ — q(7)60
must be obtained in terms of w. For obtaining the transformation, we equate the volume
element

Bz = Trwdrdodd = Ty ,d dwd = Ty gdip dO d,
with Jpw = 9’ Ty o giving

Jw

7]11)"‘1 w —.
Ty,0¥’

Typ.,0

do = dw and 60(w) :/ d
w

Now the poloidal dependence in Jy ¢ is entirely contained in Rz, so that

"2
0:(27\'// ”dijw)/wdwmA
0 R2 0 R2
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Transformation to equilibrium coordinates =PrL

From the results of lecture 2 (Eq. (2.11)), we have for the analytic equilibria variables (see also
exercise series 2):

=w —e(e "Ysinw 4 ¢ S i I—(m— S—m sin(mw &2
0() = w — (e + A") +_mzzj2m(sm (m = )= ) sin(me) + O(=%),

This change of coordinates is used inside the weird curvature of Eq. (6.8), which we may define
as © — w:

2 2
o= () [ [T T} 0] (2

B2) | oy B2 ow 2
Correct transformation needs to be made inside 8 = ¢ — q(¢)0(w).

In the following calculation of the analytic ballooning equation we assume small pressure

(conventional analytic assumption 8 ~ 62), but pressure gradients are allowed to be large

(appropriate for H-mode pedestal, or internal transport barrier). Specifically,

_ 2¢?Rg dP
B3 dr

0 o 2P 2
= ~ O(e’), while — ~ O(€%).
B§
One then finds that
A~ e, and rA” = a + O(el)

so that, when developing the analytic ballooning equation, A’ terms are dropped from the final
expression, and rA"" is replaced with o everywhere.

‘We drop shaping effects in what is to come, i.e. Sy, = 0. Shaping effects do not appear in the
leading order ballooning equation, nor in the ballooning diagram for standard shaping ordering
Sm/r ~eif s~ ¥ and rA” ~ a ~ . But shaping effects do modify interchange modes for
Sm/r ~¢ s~eand rA” ~a ~e.
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Transformation to equilibrium coordinates =PrL

Results required in the expansion of the ballooning equation (keeping toroidal effects,
neglecting shaping effects) are (exercises!)

aB B aB
VB=Vr— +Vw— 4+ V¢p— giving VB =Ve¢+aVr+bdVw
or Ow O¢
with
B=¢—q(¥)0(w) where 0(w) =w — (e + A”)sinw. Thus:
15} 1 9
a= —B =gsinw—(e +7rA"") — gs[w —(e+ A')sinw] and b= —B = —q[l — (e + A') cos w],
or T T ow
with s = (r/q)dq/dr, giving,
q2 2
(Vﬂ)2 = (V¢)2+a2(Vr)2+b2(Vw)2+2aer<Vw == [1 + (sw — rA” sin w) + O(esinw, ecosw)] .
r

(6.14)
In the definition of k4, of Eq. (6.13) we require

(VB)2 VY- Vw— (VB V) (VB Vw) = [(v¢)2Vr SVw +ab(Vr - Vw)? — ab(Vr)z(Vw)z] W,

so that keeping only € and esinw terms (knowing we will multiply by 8B2/8w ~ 2336 sin w
in Kq, knowing that e sin? w? will provide a contribution for interchange modes):

2007
(Vﬁ)szwa(VBV'dl)(VﬁVw) ~ 7¢/ab(Vr)2(Vw)2 = % [(TA” + €)sinw — sw + O(e, € cos ¢

Another quantity that is required in Ky, is

v Lo B2+P - dP+—R2 0 (R0)2 14 2F, +62(1+2A' )
Kk - VUr——— — [ 2 ~ - - — — cos w .
B2 or \ 2 BZ dr ' 2RZor |\ R 2
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The ballooning equation =PrL

In addition (see lecture 2),

dFy 1 dP " (a_s) givi - 1 0 (B? p N
=——— - —s) giving K- Vr= — — | — = KRpr K
dr Bg dr qu2 B2 or 2 B TT

where we break these terms down respectively as toroidal (kpg,) and poloidal (k) curvature
contributions projected in the direction of the minor radius kg, = kg - Vr:

R2 0 /1\2 1 8R 1 5
KRr " —— (=) =——— = —(coswfecos w)
2 or \R R or R
and
€ "
Kppr = (1 —rA" cosw).

Rog?
Also required in the weird curvature is:

sin w

1 1 oB? 1
K,<sz( ) =~

r2) 2B2 8w rRg
Combining with (V,B)sz - Vw — (VB VY)(VB: Vw), makes a crucial contribution to ky,,
noting that e(c052w + sin? w) = e:

1
Koy = — {cosw —€ {1 — —} + sinw(sw — rA" sinw) 4+ O(esinw, € cos w)] . (6.15)
%’ Ro q2

By assuming the correct definition of k., given by Eq. (6.15), and using Eq. (6.14) for (VB)2

one now easily obtains (from Eq. (6.12)) the large aspect ratio tokamak ballooning equation
with circular cross section by also noting that 1/)/ =rBo/q:

0 [+ mm o) ] e o =i st x 0
—_— Sw — «sIn w —_— @ [COSW — € - —= Sinw(sw — «sin w = .
Ow Ow q2

(6.16)
143 /190



Notes

We note that in a cylinder (screw pinch approximation) we do not have the toroidal
curvature (kg), so that

€
Rog?’
The consequence of having no toroidal curvature in a torus is that configuration be-
comes much more unstable. We will see that the Mercier criterion for unstable inter-

K- Vr(eyl) = kpr(With A” = 0) = —

1
change modes in a torus Dy > 1/4 with Dy = — %a 1-— -~ is replaced with the
S q
1

Suydam criterion for instability in a cylinder Dg > 1/4 with Dg = —%a |:0 - —2}
s q



The ballooning representation =PrL

Let us consider the periodicity of X via considering exp(in3) where 8 = ¢ — 6q(v)). It is clear
that
exp(inB) = expling — ing()0]

is not periodic in 6 except on a rational surface where ng = m (with m integer). For example
exp[inB(6 + 27, ¢)] = {cos[27nq(v)] — isin[27wnqg(y)]} exp[inB(6, ¢)].

The same lack of periodicity holds also for our analytic equilibrium coordinate w. Since
0(w) = w — (e + A') sinw, then 0(w + 27) = 0(w) + 2, and thus

explinB(w + 27, ¢)] = exp[—i27nq(y)] exp[inB(w, $)].

Connor, Hastie and Taylor realised that we can give up on X (©) being periodic in © (i.e. in

any angle e.g. 0 or w). They allowed the angle © to be a generalised coordinate, mapping out
the entire length of a field line, from minus infinity, to plus infinity. Thus the solution of Eq.

(6.11) is a variation of the modified local potential energy,

o~ [ (22
v = e [\ B,

oo
Convergence of/ dw\Xl2 requires that X ~ |w|_1/2, or faster, as w — oo. This forms
—oo

0X |2

En

dpP
— 2k — | X2 . (6.17)
dy

the boundary condition for X, i.e. that the solution remains physical (finite energy). Stability
boundaries are formed by solution of ballooning equation Eq. (6.11), and substitution into Eq.
6.17), varying equilibrium parameters searching for 6Wy, = 0.
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Notes

A practical solution to the difficulty of non-periodicty, and a reconciliation of periodic solutions from
the ballooning represented solutions is obtained by considering the following:

1. The linear second order differential equation of Eq. (6.16) has in general two independent
solutions, one of which vanishes for w — —oo, the other w — +00. Marginal stability
corresponds to special values of the equilibrium quantities for which the equation has a
solution that vanishes for w — doo simultaneously. This is required because the eigenmode
must have a finite energy content.

2. The solution £¢ to Eq. (6.16) with extended angle is known as a quasi-solution. It is
associated with X as follows:

to— ~bx Vs
= — X .
@ B

As already shown, this eigenfunction is not periodic in w, and hence it is not physical, but it is
nevertheless a solution of Eq. (6.16) in the extended space. Furthermore, the general MHD
force operator 6 F of Eq. (3.4), and the force in Eq. (6.16), is periodic. This means that,

€q(w + 27k) = exp[—ik2mng(¥)]€q (w)

is also a solution of § F = 0 everywhere in the extended space.

3. The force operator is linear, which means that the following periodic sum satisfies §F = 0:

o0
W w,d) = > £q(w+2mk).

k=—oc

According to observation 2, all terms in the sum satisfy the equation of motion at marginal stability
and point 3 (linearity) guarantees that the sum, if it exists, also satisfies this equation. Observation 1

states that the necessary boundary conditions for the existence of the sum, X ~ \w\_l/Q for w — Foo,
are satisfied in the case of marginal stability. Finally, according to point 3, the sum defines a periodic
solution of the marginal stability equation. We thus consider the sum the physical solution.

The solution £ is a sum over many terms that have different values of the non-periodic function
exp[—ik27nq(v)], which contains the radial dependence of £. Note that the individual quasi-modes
are not bounded in the radial direction since the exponent exp[—ik2nwnqg(v)] does not vanish anywhere.
Fortunately it has been shown (not proven here) that the sum & is radially localized at the flux surface
where we have solved Eq. (6.16)).



=PrL

Ballooning structure

Consider the interchange contribution to the energy, i.e.

/de(Q dP|X2)
7ooww Kwﬁ | .

The minimising solution for X takes a ballooning form. The main reason for this is that the
local shear is weaker on the outboard side than it is on the inboard side (see next few slides),
meaning that field line bending stabilisation is weaker on the outboard side, so the instability

tends to be concentrated there.

B

X Ballooning mode
-—

Interchange mode ~ 1/ ®*(1/2)

P
(O]

In the ballooning representation there will be a long tail in w (X ~ |w|_1/2 for w — +o0) that
is captured also by interchange modes, see later. Moving to physical periodic modes, we will
require a large spectrum of modes to develop the ballooning structure, i.e. a mode dominantly
on the outboard side. In fact there are an infinite number of significant harmonics for n — oo,
indicating that the ballooning mode is a true toroidal instability, and it is hopeless to attempt
truncation of the harmonics via an inverse aspect ratio expansion.
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Ballooning stability diagram =PrL

Analysis of infinite n ballooning modes provide
a necessary and sufficient condition for stability
of local (short wavelength) ideal internal MHD

instabilities. Conventional pressure and q profiles chosen.
g>1, so Mercier stability everywhere

The diagram was created by solving Eq. (6.11),
and substitution into Eq. 6.17), varying 2.0}
equilibrium parameters o and s, searching for
6Wy, = 0. The higher order Mercier term

—ea(l — 1/q2) is not very significant in for
ballooning diagram.

Ballooning stable

For the first stability boundary, shear is 1.0
stabilising because it increases field line bending

(see VB contribution to |6BL\2). While o

increases ballooning/interchange drive.

Ballooning unstable|

For many years tokamaks have tried to operate
in the second region if stability. It can be
expanded with extreme elongation and 0 0.5
triangularity (partly why spherical tokamaks are Toa
successful). It can be achieved with super Second region of ballooning stability
H-mode operation. The reason for this effect is

due to local shear which will be explained next.
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Effect of local magnetic shear on ballooning =PrL

It is clear that magnetic shear is stabilising. This is not surprising because, in order to
minimise magnetic field line bending stabilisation, instabilities tend to align themselves with
the equilibrium field on a given flux surface. The magnetic shear determines the rate at which
the mode and the equilibrium magnetic field become misaligned on neighbouring flux surfaces.

A feature that is missing from the large w treatment of interchange modes is the role of
poloidally localised magnetic shear. These effects are taken care of in the general ballooning
equation of Eq. (6.16) via the asinw term. In order to see the effect of local shear, we should
first examine the local g defined above in Eq. (1.17), and in the last lecture:

q = % ~ q(r) {1 — (e-FA/)cosw}7

if circular (unshaped, Sy, = 0) flux surfaces are assumed. Hence the square of the local shear

2 r dq 2 2 ’ "
si(r,w)” = q— o = (s(r) —a(r)cosw 4+ O(€))® for A" ~e and rA" = a+ O(e).
1

The stabilising effect of shear is reduced at w = 0 as « is increased from a small positive value.
This ensures that ballooning modes bulge on the outboard side and are more unstable than
interchange modes at small to moderate «. This local shear effect, and its impact on magnetic
field line bending, is nullified (averages out) when taking the large w assumption of interchange
modes. Ballooning modes tend to be unstable in the edge of a tokamak where ¢ > 1, s ~ 1 and
« ~ 1 (interchange are stable for these parameters).

By further increase in «, the local minimum in sl2, and the minimum in field line bending
stabilisation, occurs at larger values of w (outboard side becomes region of improved
curvature). As a result, very large values of o and small global shear s can yield the second
region of stability to the ballooning mode. In this parameter range, the ballooning mode has
no pressure driven trigger. Extreme shaping can extend the possibility of second region of
stability.
147 /190



Interchange modes =PrL

Stability to interchange modes is usually considered a necessary condition for ideal
MHD stability. They play a very important role in setting the stability boundary
in

stellarators
reverse field pinches

tokamaks in ¢ < 1 region

vVVvyVyYyy

tokamaks in the ¢ > 1 region if impurities cause a reverse in the sign of the
pressure gradient.

Stability to interchange modes is concerned with the stability corresponding to the
large w behaviour of X in the ballooning representation. The result will usually be
an underestimate of instability relative to solving the full ballooning problem. The
procedure for solving the interchange problem is to
1. Solve the ballooning equation for large w.
2. Assume that the large w solution is valid for all w. This identifies the
eigenfunction everywhere.
3. Obtain the condition for marginal stability by imposing physical boundary
conditions
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Interchange modes =PrL

Simply write the ballooning equation (Eq. 6.16) in the form (note e correction is crucial!):
d [f dX] Tgx o
dw dw gx =
and we let
f:a+bw+cw2 and g =d + ew

where a, b, ¢, d and e are periodic functions of w

It is the secular dependence (long trend in w) that needs to be captured in the large w solution

of X. We also know that we require X ~ wil/z, or faster, for convergence. We write X as an

expansion in a large variable (reciprocal Taylor expansion):

where again, X, X; and X5 are 27 periodic (no secular dependence in w). We must solve for
Xo, X1 and X9 by substitution into the ballooning equation, and examination of coefficients
in the resulting power series. Substitution of X, X1 and X5 into the ballooning equation then

yields the power index p.

The result is (exercise!)
X =wP[14+0(1/w)] with p=—
where

o= () HD (D) r00) e [Fawe w2 [T
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Interchange modes =PrL

If well behaved solutions exist the system is ballooning unstable. We require that both of these
are well behaved solutions (physical). Note that if Dp; < 1/4, one of the solutions will give
rise to p > —1/2, and hence the energy will be infinite.

On the other hand, if Dy; > 1/4, then p is complex, and both solutions are well behaved:
P ,—1/2  FilDpp—1/4]

w

This result is oscillatory in Dj; (and in r or ¢ as we postulated earlier), since
WP = w /2 FUDM /A, —1/2 exp [ln (wiilDM71/4‘)] —w /2 exp [+i|Dyr — 1/4] Inw] .

Substituting for the coefficients (see Eq. 6.16) a = 1 + a? sin? w, b= —2assinw, c = 52,
d = alcosw — €[l — 1/q2)] — asin? w] and e = s sinw one ends up with

D @ ! 1
M= 8—26 q—z - .
The condition for instability is Dp; > 1/4 or
1 1
e (— - 1) > —s?
q? 4

which is the condition that pressure driven (average curvature driven) interchange can
overcome magnetic field line bending stabilisation under the ideal MHD model.
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Interchange modes and average curvature =PrL

It will be shown in the exercises that we obtain the same result (i.e. the same X = w?) for the
following equation:

9 [QBX]JrD X =0 with D ¢ [1 1} (6.18)
— W — = wi = ——a« - — . .
Ow Ow M M 2 q2

This is the ballooning equation Eq. (6.16) with sw >> 1 and sinw — 0 and cosw — 0, i.e. Eq.
(6.18) represents the secular limit of Eq. (6.16).

In a torus, the net curvature is favourable (stabilising) if ¢ > 1 and dP/dr < 0 (conventional
pressure gradient). This threshold changes with shaping.

€ 1
In a cylinder Dy; — Dg = - {O - —2], we lose effect of stabilising toroidal curvature.
s q
Cylinder Torus ¢ <1 Torus ¢ > 1

“‘ “ -

\ KRr KRr KRr KRr

\ . 4

N\ Kpp

Iim-‘/ \

K >

\ T:/ K 3

“‘I / | <K'Rr> < R7"> \ <H‘RT>
- - -

T Y,  Korp 4 \& Kpp

Curvature inwards Outward average toroidal curvature Average toroidal curvature (kg,) outward.

2
(destabilising) (krr) = 55 Jo dw Ky Weak cylindrical curvature s,
But net average curvature Net average curvature outward (stabilising)
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