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Lecture 5

Linear and non-linear tearing Modes

J. P. Graves
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Ideal Modes (basis of resistive instabilities) =PrL

Ideal interchange modes and

Ideal interchange mode Ideal m=1 internal kink mode. Stable ideal mode (current sheet) m = 1 internal kink modes are
mostly driven by pressure
5 5 5 gradients. Note that the flux
81, and hence the radial

magnetic field, is zero on the
rational surface, since from
L >c Eq. (3.31):
im B, n 1
5By = o ( ) 138

Ln > an T oaan Ro \m ¢
2 m 2 o, 2 o
or the ideal limit of Eq. (4.23):
£ S £
s(r) BOT(" - )sru
r)y=—|(—— r
Ro \m a(r))"°
B
St S St S(x) =~ 07”251156(1)
/\ Ryp m
S > £

The ideal current sheet mode
shown would be stable
without resistivity. So,
without resistivity, the mode
isn’t an instability. Since 56 is
singular on the rational, the
flux and radial field can be
non-zero.
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Resistive instabilities

Resistive interchange mode Resistive m=1 internal kink mode

$ $

Tearingmode £

$
— X

in * o ain i
2 ™ 2 ™ 2 m
% > >
-
‘/";:;»M
Sy S Sy

Known as an even mode
Almost even in £"

Almost odd in 3
Constant-psi doesn't apply
0Y(x =0) #0) (but small) A’ ~ 1
SA" ~ 1

m = 1 resistive kink is a
special case.

Constant-psi doesn't apply
d1p(z = 0) # 0) (but small)

(g

Known as an odd mode
Almost odd in £"
Constant-psi applies
3b(z = 0) £ 0) (large)
A ~ 8% r2 <1

=PrL

The resistive interchange mode is
known as an even mode, or twisting
mode because of the nearly evenness
£"(x). The flux §3(z) is nearly odd
in z. Note 8¢ (z = 0) is non-zero (due
to resistive correction in Eq. (4.23)),
so there is some reconnection, but
8¢ (x = 0) is very small, and varies
fast (changes sign) near x, so
constant-psi approximation doesn’t
hold. Resistive m = 1 internal kink
has some similar features to resistive
interchange modes for equilibria
stable to ideal m = 1.

The tearing mode is the resistive
extension of the ideal current sheet
mode. It can be unstable, i.e. it can
be an instability, and it is primarily
driven by current (so order 2
problem!). It is known as an odd
mode, or tearing mode because of
oddness of £"(z). Note §¢(x = 0) is
large, and 84 (x) varies quite weakly
with respect to & around = = 0, so
the constant-psi approximation holds.

Resistive interchange in a torus are
stable in circular tokamaks for

m/n > 1 (see interchange modes
later). We choose to investigate
tearing modes in region of plasma
where ¢ > 1. 106 / 190



Inner resistive layer calculation =PrL

We can define A’ in the layer directly from Eq.(4.23), noting that radial derivatives in 61 and
¢" dominate derivatives with respect to the angular coordinates in the resonance region (e.g.

v2 (6 /r) = 71825111/31" ) so that Fourier analysing (keeping m harmonic only):

25y v ~7Bo [ n 1
dr? n[w ©% \m am )]

We now apply the constant-psi approximation (it is the only signiﬁcant place it is used in this

calculation). Applying Eq. (4.29), which states that 61,0 /6 K (50) /60 we may replace 8
with ¢ (rs) on the RHS of the above equation, while allowing variation of 50

; (% a q(lr)>] G-1

where g(rs) = m/n. We now expand around the rational surface so that

d2sp(r)
dr?2 B

Y T r
; |:51/)(7‘s) —&o(r) R

r—rg r dq

n 1 n

— — — &~ —s(rg)z with = =

m q m Ts q dr

Thus, changing the variable to z (so that d26'¢1/dr2 = r;2d25'¢)/d12), and integrating with
respect to z in —X < x < X we have clearly:

sy’ 17X 1 1 déy
_r = - = derg—
[w(rs)],x 59(rs) [rs dz ]_x / e
(5.2)

which is A’ in the layer in the limit X — oo according to Eq. (4.28). It now remains to obtain
fg(m) in the layer and this is done by solving Eq. (4.22) in the layer region, where, of course,
inertia must be included (the LHS of Eq. (4.22)). We will be able to verify the asymptotic
properties of the above as we increase X (exercises).

- ;Z(—(z)) (%2) %smm] :
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Inner resistive layer calculation =PrL

Due to the large radial derivatives in 1 and {g in the inertial region, we keep only the terms
in Eq. (4.22) with largest order derivatives. Keep also (for the moment) the §¢J4 term, and
apply constant-psi approximation to that term. Therefore, in the layer we have,

2 2 2
d“§,. R 1\ d“é Rg dJ,
e r3 Ero — 22002 (—n — 7> kd + réw(rs)—o =9 (5.3)
wp dr2 Bg m q dr? Bgy dr

We now substitute Eq. (5.1) for 51", and expand once again around the rational surface

d2£6 0% —2 2 Ro n r?’y .rsBg n Ro dJg
=—— m°—— 4 —s(rg)z Sp(rs) — & —— —s(r w]+§ rg) — ——
o~ ” ok BRI [swtro) - & 220 Zatra)e] + () 2
Now, let, 2 n2p22 1/4
z =xd with d= A s
ny
) d2ey d?B, 28 (r R
to give ( 520 _ z2§5> < & By ) __Ew(rs) sy(re) sy 2O
dz winmRorss d Bo~yrs
This equation is written in terms of normalised variable y(z):
d?y(=z Rond rsBg ns o(z
y(z) 22y(z) = —z — J(;)Oin with y(z) = — ons [ &) . (5.4)
dz2 Boyr2 Rg md \ d¢(rs)

The inhomogeneity on the RHS of the differential equation comprises the sum of odd and even
contributions in z. As a consequence, the solution y(z) comprises the corresponding sum in
odd and even contributions in z. It is clear that the even component of y(z) vanishes in the
integral of Eq. (5.2), when integrated with respect to z across the rational surface, so for this
reason, we are permitted to drop the even term proportional to J;, and thus we solve
dzy/dz2 = —2(1 — zy).
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Inner resistive layer calculation =P

Equation (5.2) can be written in terms of y and z as follows:

sy | g 2
— = dz(1 — yz) where TR = —.
S(ra) |y drs Jox n
Moreover, it is convenient to define d in terms of the ratio of the resistive time and the Alfvén
time:
TR _ P . 8 .
S = — =TRwA which is the Lundquist number, S ~ 10” or larger in large tokamaks
TA

Giving dt = n2SZSwA/w. It can be shown that a measure of the layer width § normalised to
the singular radius rg is
8 1 ~ 1/4
—==-=|— . 5.5
|:u)A n2s2 S:| (5-5)

It will be verified in the exercises that § is indeed the layer width by showing that y(z) agrees
with the ideal inertialess expectation for y(z) ~ 1/z for |z| = |r — r5|/6 > 1, but for |z| < 1
the effect of resistivity (tearing) on y will be evident.

From dzy/dz2 = —2(1 — zy) it is seen that
sy’ |X 1R (X yrr (X 1d%y
—_— = dz(1l —yz) = — dz — ——.
5y _x drs J—Xx drs J—Xx z dz2

Integrating by parts, and noting that the boundary term is zero because the dy/dz is even in

z, yields
5¢/ X
8

X 1d
- 7ﬂ/ dz— Y. (5.6)
drg J—X 22 dz

—-x

-

L
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Inner resistive layer calculation =PrL

Rutherford and Furth, 1971, showed that

2 1 exp(—22u/2)
y= 7/ i (5.7)
2 Jo (1 —p2)t/
is the odd solution of Eq. (5.4), i.e. it is a solution of
d2y
— = —2z(1 — 2y
) ( )
which can easily be verified by substitution. Differentiating Eq. (5.7), we have
dy 1 r1 2 exp(—z2p/2)
— == dp(l — pz®) ——m——ms—7=-.
dz 2/ #{ K=" (1 — p2)l/4
and substituting this into Eq. (5.6) yields,
sy |X VTR (X /1d (1 — pz?) exp(—22p/2) 5.5)
- =— z . .
S|y drs J-x o M a2 (1 — p2)t/4

The exercises will show that the above saturates with increasing X when X is about 5, i.e.
within a few layer widths. It is also shown that the layer width is very small, so that matching
with the outer region is reliable. In particular, it will be shown that & A’ <« 1 which is required
for the constant-psi approximation. Hence it is safe to take X — oo for the above integration
limits. Changing the order of integration we have from Egs. (4.28) and (5.8):

A/=—'yTRi/ld7u/oo dz (i—p,) exp(—2z2p/2).
rs Jo 2(1 —p2)t/4 /o 22
The inner integral is just —2@. Hence,
A= ’YTRi /1 dui(%m)l/2 = ’YTRi <72WF(3/4)>
rs Jo (1 —p2)t/4 rs \ I'(1/4)
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Growth rate of linear tearing mode =PrL

On substituting the definition of é and using also the definition of S, we have the inner A as
defined by Eq. (4.28):
;o <2wr<3/4>> (y/wa)®/ 1S3/t 2D /)

T(1/4) ez Y T

2.12. (5.9)

Now for the crucial part. The asymptotes at z — oo for logarithmic derivatives of 7 in the
layer are matched with the asymptotes of the logarithmic derivatives of §¢(ideal) in the outer
region, as defined by Eq. (4.30), which is

K Sip(ideal)’ |75 T

= lim
sr—0 §¢(ideal)

rs—0T

One can then obtain the growth rate by solving Eq. (4.24) for 6v in the ideal region,
calculating the logarithmic derivatives on each side of rg, and substituting into N Matching
this outer A’ with the inner A’ of Eq. (5.9), i.e. A" = A" and rearranging for the growth rate,

we have ;
4/5
~ r(1/4)rs A’ _

LI % S 3/5(,”5)2/5‘ (5.10)

wA 27w (3/4)
Thus, instability requires that A > 0, and this condition in turn is governed by the
global current profile. For the case shown in the figure on slide 99, we have TSA/ = 4.25058,
i.e. the mode is unstable. Taking S = 108, this gives v/wp ~ 10_5, which is a slow growth
rate compared to ideal growth rates (typically v/w4 ~ 1072 - 1073)A
There are very important non-linear extensions to this description of linear tearing
instabilities. As will be seen, A’ remains a fundamental parameter for non-linear tearing
modes. Non-linear tearing modes are often manifested experimentally as neoclassical tearing
modes (NTMs). These modes are at saturated amplitude (not growing), the amplitude elevated
by bootstrap current.
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The helical field =P-L

Consider the parallel wave-number (k:H = —ib -V,
see exercises)

k)

1
= 2R (nq(r) —m)

9
0
‘We know that a rational surface occurs where - ) ®¢0~\
kH =0, i.e. at the location q(r)<as
X

q(rs) = gqs = m/n.

—

angular dependence ~ exp(imy) where

n 1
X=—¢—0=—¢—86.

We assume that the perturbations have the usual
m qs

It turns out that the coordinate x is orthogonal to

the magnetic field lines on the rational surface, and

near orthogonal close to the rational.

Interpretation is made easier by assuming straight

field line coordinates for which g(r) = d¢/df so that a(r>3s
a field line is described by

-

¢ = q0 (+ constant) o]

This can be compared with the x coordinate in ¢ - 6
space, which is constant for

¢ = qs0 (+ constant)
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The helical field =P-L

Our goal now is to consider the helical field BX = rB - Vx, and the helical flux ¥ linking this
helical field, i.e. BX = 8¥/dr (note that a true flux would have an extra factor Rg). For a
description of magnetic islands we need to clearly distinguish the equilibrium field (and flux)
from the total field (and flux). So, we use notation:

B =DBo+B1, BX=B}+Bf, ¥=3y+7T;.

Keep in mind that magnetic field lines lie on surfaces of constant flux, including on this helical
total flux ¥ = ¥y 4+ ¥

Consider now perturbed fields in these coordinates. Since V - B; = 0, and since perturbed
By, is small (it is a finite beta effect - see exercises), and since 0/0l k|| (again small) then:

10 . 10BY
V-By,1 = ——(rBy)+ — =~ 0
r or r Ox
Thus, in terms of a flux variable ¥ we have:
. 1 0¥ ov
B =--2"1 and BY =21 (5.11)
r Ox or

So that we can plot field line surfaces and island structures, we adopt real variables. Choose BI

to be odd in x (so that ¥ even in x). Hence, since n¢ — m6 = myx then B] = BI sin(mx) and

ro
¥, = — B cos(mx). (5.12)
m
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The helical field =P-L

Consider now the equilibrium helical flux W associated with the helical equilibrium field B()f.
We first note that the equilibrium field Bg = F(¢)V¢ + V¢ X V1 can equivalently be written
in Clebsch form:

Bg = VB x Vg, with B =¢ — gb.

Hence the contravariant helical equilibrium field written in terms of 6 and ¢ is
x q(r)
By =7Bo - Vx=1rV($—q0) X V(¢/qs —0) - Vipg =7 —=—1) VO x V- Vip.
qs
Meanwhile the contravariant covariant equilibrium poloidal field is

B =rB.V6=rV¢x Vi - V6.

Hence,

BY = B{ (q”) - 1) ~ B%(ro)s(rs)a,

qs

where we recognise the ‘layer’ variable, z = (r — r5)/rs and the magnetic shear s. The
equilibrium helical flux ¥g, from the definition BX = ¥ /ar = r;IB\P/Bm, which applies to
perturbed and equilibrium quantities near the rational surface, is:

1
Ty =rs /dz Bg)( = /dz Bg(rs)s(rs)z = EBSS(TS)’I‘SSEZ

where we note that Bg otherwise depends on x through higher order (in €) correction ~ 1/R.
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Magnetic islands =PrL

We therefore have the total helical flux:
-~ . 1o 2 T A
¥ =Tg(z)+ ¥y(z,x,t) with Ty = EBO (rs)rssa®, Wy = —Bj(x,t)cos(mx).
m

Recall that field lines lie on flux surfaces. To solve for the trajectory on the field line in
coordinates (x, x) we thus consider the total flux ¥ a constant. Hence, we obtain the field line
trajectory assuming weak variation of ¥y in = (constant-psi):

2 reBT(t
2o 2 |g_TrsBi®

cos(mx 5.13
= (m) |+ (5.13)

all (on the RHS) evaluated at rs. This marks out the island structure. Sufficiently far from the
rational, specifically for ¥ > T‘SB;/m we have wobbling unbroken field lines (ideal MHD).

Close to the rational surface, for which ¥ < TSB;/m the field lines are broken, to reveal island
loops.

For ¥ = rSBI/m we are on the separatrix of the island. Thus the full island width (see
exercises) is
B{®) )‘/ :

6
msBg

w(t) = 4rg ( (5.14)

We see that the island is larger for small poloidal field, and reduced magnetic shear (again
small shear invokes weakness in the plasma configuration - this time for resistive MHD
instabilities. Although small shear reduces growth rates too).

Also small m leads to larger magnetic islands. It is generally found that modes with small
mode numbers are the most degrading (poor transport properties due to rapid parallel motion
‘across’ island structure).
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Magnetic islands =PrL

X

o
-

Magnetic island chain assuming poloidal mode number m=1

The lines indicate field line trajectories in the (z, x) coordinates, and on each line the total ¥
is constant.

Since the equilibrium radial field is zero, each of the lines above has non-zero BI. Thus, it is
seen the BI # 0 even at the equilibrium rational surface. This topological change is possible
only under the resistive MHD model. Realistic ideal MHD instabilities have B] (z = 0) = 0,
but it isn’t necessarily zero under resistive MHD:

o imBg [ n
6B (ideal) = —— ( —

1 - - i1mBg n 1
— 7) &y and J§Bg(res) = (— - =
m q

) o — EvzéBg(res)
Ro bl

Rg m q
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Magnetic islands: topology change via reconnecti@P - L
— T

Resistivity allows field lines to slip through the fluid, allowing new field line topology to be
created with time. This would not be possible if the field lines were frozen into the fluid (as for
ideal MHD). The sketch here indicates clearly how a magnetic island might develop in the
laboratory plasma. Consider the horizontal direction to be radial direction in tokamak plasma,
and the reconnection takes place on the vertical line where the rational flux surface lies. The
new topology requires a finite magnetic field on this surface which points in the horizontal
direction, that is a radial perturbed field on the rational, which is only allowed in the resistive
MHD model. Without resistivity we will just have wobbling field lines with the wobble in the

radial direction vanishing as we approach the rational surface. 117 /190



Magnetic islands =PrL

XTOR island. (a) with bootstrap, (b) w/o bootstrap. Kleiner, Graves, Ph.D. thesis (EPFL)

XTOR initial value code solved the resistive MHD equations nonlinearly. Poincaré plots over
the poloidal cross section enables us to see constant ¥ surfaces. The core mode is in fact a
non-resonant internal kink mode (no island). The large outer island is an n = 1, m = 2 mode
associated with gs = 2. Other shorter wavelength modes are visible too. Note in this plot x is
mapped out in 6 (since we plot on constant ¢), and the z variable would be z = (r — rg) /7,
with rs taken to be the minor radius at the island o-point or x-point.
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Non-linear tearing modes =PrL

Notice that the XTOR islands shown were non-linearly saturated, meaning that they were not
growing. We do not yet have an evolution equation for the non-linear stage of the island
development.

In the following non-linear treatment we do not assume linear growth, i.e. B1 does not grow
as exp(vt), so explicit time derivatives are retained in the equations. Begin with Faraday’s law
OB
ot

= -V x E;

now substitute Ohms law Ej + w1 X Bo = njy Ohm °

0B
ot

==V X (131,0hm — ¥1 X Bo),

where j; Qpp, is the perturbed MHD Ohmic current. Finally we employ Ampere’s law
V X B1 = j1, but we write the total current as the sum of Ohmic (MHD) current and
perturbed currents associated with external sources (or non-Ohmic currents), e.g. from
cyclotron heating or the bootstrap current. So substituting

jl,Ohm =J1 _jl,non»Ohm =V x B _jl,non»Ohm we have:
9B,
ot

= =9 x [n(V % B1 =31 non-Ohm) — %1 X Bo] - (5.15)

Now a key simplification - we ignore the inertia associated with the convective term involving
the fluid velocity wi. The plasma inertia, and associated displacement £ = 'y_lu; was crucial
for establishing the linear resistive problem in the layer. But, in the non-linear regime, the
plasma inertia contribution is weak compared to that of the diffusion of the magnetic field.
Again assuming large radial derivatives we have on taking the radial component of Eq. (5.15):

BT 92BT .
o =n a2 Vr -V X [njl,non—Ohm] . (5.16)
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Essential non-linear tearing modes =PrL

First let us consider the essential case were there is no current from external sources. So,

taking Eq. (5.16) with j; pon . Ohm = 0 and using ¥; = —irB] /m assuming strong radial
derivatives in BI we have,
oWy 82w, (5.17)
o o2 ’
Integrating in radius across the island (assuming n varies weakly) we have
rstw/2  9Wy AW, |TsTw/2
/ dr L = n(r) St
re—w/2 ot Or lrg—w/2

In order to make some analytic progress we assume that the radial variation of ¥; is weak over
w. This is of course the constant-psi approximation:
d¥q(rs) oWy |Tstw/2
w——"r =

' n(rs) o

rs—w/2

‘We now use the result from the linear derivation of the island width w. In particular, from Eq.
(5.14) we can make a relation between the time evolution of Wy (t) and w(t):

2
Vi (rs,t) = Cw(t)
where C' is a constant. This easily yields (exercises)

dw  n(rs) 1 d¥ rstw/2

dt 2 W, dr

re—w/2

The right hand side is the A’ in the layer, but it is dependent on w, i.e. it is essentially A:; in
Eq. (7.19) with 6 = w/2. We then obtain the Rutherford equation

dw r 1 d¥y |Tstw/2
A0 108) 7y with A (w) = 2Y1
dt 2 Wy dr

rs—w/2
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Essential non-linear tearing modes =PrL

In this non-linear treatment we match at the
island width instead of matching the

. . 2 3
asymptotes (which is what we did for the =3 y=2 =3
linear treatment). q 9.7 (q/qg )
2.5
Hence A’ in the layer must be matched with
A’ in the ideal MHD external region 2
evaluated at periphery of the island. Hence
we obtain, 1.5
| r
rstw/2 lL . 5,
A’(w):id% ° 0 0.z 0.4 0.6 0.8 1
vy dr rs—w/2
2

from calculating the ¥y (r) via solving Eq. 7
(4.24) (noting 61 = ¥q), i.e. 1.5

d awv R, rqm¥y dJ 1
r— (7‘ 1)+(—0> u7¢—m2\111=0.

dr dr Bg/ ng—m dr

0.5 1
Hence the evolution equation for w(t) is | v/a
g

1

dw
dt

1 d¥y |rstw/2

= DA (w) with A (w) = .
2 U1 dr lpy o

A saturated island occurs for:
dw/dt = 0, and this in turn requires A (w) = 0.
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Tearing mode steady state island width =P

Figure shows the evolution of w(t) according to:

dw
fw_n A (w)
dt 2

where A’ > 0 during the linear phase. The mode amplitude saturates because the external
solution exhibits the property A’(w) = 0 for sufficiently large w.

dw

A (w) v steady state solution

Linear A’ value

0 w ﬁ 0 g w

From the solution to w(t) and the mode number we can obtain Bj(t) via Eq. (5.14).
Knowledge of m and equilibrium reconstruction is also required (for poloidal equilibrium field,
and magnetic shear).

-

L
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Neoclassical Tearing modes

JET pulse 80869 exhibits local flattening of
the temperature profile due to the presence of
magnetic islands.

» The width of the flat regions
corresponds approximately to the
island width (degree of flattening in
fact depends on helical angle, see
details next). So, the ECE diagnostic
provides a useful measurement of island
location and the helically averaged
island width (potentially in real time).

» Temperature and density gradients
cannot be sustained across the island
because heat and particles travel
rapidly along the magnetic field lines
(parallel transport). Consider the field
line trajectory in = — x coordinates.

» This local flattening of the pressure
profile (P(r) = n(r)T(r)) locally
nullifies the equilibrium bootstrap
current. We will see that this affect
destabilises tearing modes. The effect
can be included in the evolution
equation for w, and it is seen that we
obtain larger islands. These are called
neoclassical tearing modes (NTMs).

T (kev)

=PrL

. KK3:56.63,

F T T T T
F ) without islands
E F— T(HRTS)
[ TU(kKk3)
;ﬁg 1/1 mode
3/2 mod
E 1 Il Il

2.0 25 3.0 35

N I NPT ST T P

4.0
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Neoclassical Tearing modes =PrL

The bootstrap current is derived from neoclassical transport. Hence it is due to toroidicity
(trapped particles) and it depends on collisionality regime. Here we set,

dP /2
e
dr BO

iBs ® jBsegy, Wwith jpg = —

This is the bootstrap current that we would expect before the onset of a tearing mode, i.e. at
the initial equilibrium:

Jo,non—Ohm = JIBS>
But, the transport of particles and heat along the closed field lines (closed in « — x) forces the
pressure inside the islands to vanish. Hence the bootstrap current will vanish locally too.
Mathematically therefore there exists a perturbed current that cancels the initial equilibrium
bootstrap current within the island. This current of course depends on the angle x (local
island width fluctuates). At the rational surface:

J1,non—Ohm = J1,non—0Ohm c0s(mXx) = —jps cos(mx)ey
The perturbed evolution equation for the radial component of perturbed magnetic field,
including non-Ohmic current is Eq. (5.16). Using as before B] = B] sin(mx) we have
. 24
dBT — 8° BT
ot or2

sin(mx) sin(mx) + [V X (jl,nonfohmed»] . e'r')

Use: [V X (j1,non—0Ohmeg)] - er & —(m/r)ey - 1 non—Ohm sin(mx) = (m/r)jps sin(mx) to
finally give (using ¥ o< ’V‘BI) an evolution equation for the perturbed helical flux:

ow,  [o?w
at | or2

L +st] (5.18)
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Neoclassical Tearing modes and seeding =PrL

The exercises lay out the procedure for obtaining the following modified-Rutherford-equation.
Here we include the effect of bootstrap, but for simplicity neglect other effects known in the
literature (e.g. GGJ high pressure corrections, polarisation current etc):

167 dP 16¢!/2p

(a"(w) + As(w)),  Apsw) =ips(rs) -- —

)
ngw dr s(Bg)Qw ”
s

dt 2

Notice that A/BS(w) is positive (hence destabilising) for all w if P’ < 0. The non-linear
derivation isn’t valid in the limit w — 0 where A/BS diverges (recall neglect of inertia etc). In

the literature, AIBS(w) is killed in the following ad-hoc way for small w via a constant w.. We
may add effect of toroidal current drive j.q = jcqeq, stabilising if jed(rs) < 0, destabilising if
Jed(rs) > 0 (realtime NTM control experiments exploit this if island position can be tracked):

dw _ n(rs) ’ ’ ’ . ’ . ler w

= (M) Ak )+ ALw), with M) =ix T | L
dw . i .
e solution with large seeding

Bs(w)
0 w ﬁ /_\\ w
Al(w) Wseed

-

Linear A’ value w = 0 is solution without seeding

v,

This is known as the modified Rutherford equation. Tokamak equilibrium are usually
designed with g-profiles such that A’(0) < 0 (ideal stable). The destabilising effect of
bootstrap requires, according to this equation, a seed island for establishing an NTM (e.g.

from a sawtooth crash).
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Driven tearing modes =PrL

§ }3 PO TN e JET 92082:
l,ﬂ .
E _‘ Graves, Challis,
E 40 PRFW P . o
£ ol Py in A PMAAAA Frigioni, Mantsinen
2 98 e
& = Da:stuyﬂr‘/‘vw"
Eq 80 4
e Neutmns n=1 mode
+ JET Hybrid DT preparation 1 g - ’wm‘\‘ triggered
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dw
0 N (w9) + A ()
. , dut
Linear A'(w = 0,7) value dt 4+ solution with large infernal drive

(infernal mode coupled) and bootstrap current

Apg(w)

solution with large infernal drive
but NO bootstrap current

In addition to seeding there are other processes for creating tearing modes. Such
as toroidal coupling with other MHD modes that can drive tearing modes linearly,
forcing linear A’ > 0. This route can establish NTMs during non-linear stage as
well [Kleiner, Graves, EPFL thesis].
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These simulations show that the non-linear XTOR code confirms that saturated
tearing modes and NTMs can be driven by toroidal coupling with infernal modes.
The code recovers the driven Rutherford equations proposed. There are many
important physics processes that could be taken into account in future work such
as shear flows.
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