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Linear and non-linear tearing Modes
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Ideal Modes (basis of resistive instabilities)
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Ideal interchange modes and
m = 1 internal kink modes are
mostly driven by pressure
gradients. Note that the flux
δψ, and hence the radial
magnetic field, is zero on the
rational surface, since from
Eq. (3.31):

δB
r
0 =

imB0

R0

(
n

m
−

1

q

)
ξ
r
0

or the ideal limit of Eq. (4.23):

δψ(r) =
B0r

R0

(
n

m
−

1

q(r)

)
ξ
r
0(r)

δψ(x) ≈
B0r1

R0

n

m
s1x ξ

r
0(x)

The ideal current sheet mode
shown would be stable
without resistivity. So,
without resistivity, the mode
isn’t an instability. Since ξ

r
0 is

singular on the rational, the
flux and radial field can be
non-zero.



Resistive instabilities
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The resistive interchange mode is
known as an even mode, or twisting
mode because of the nearly evenness
ξ
r
(x). The flux δψ(x) is nearly odd

in x. Note δψ(x = 0) is non-zero (due
to resistive correction in Eq. (4.23)),
so there is some reconnection, but
δψ(x = 0) is very small, and varies
fast (changes sign) near x, so
constant-psi approximation doesn’t
hold. Resistive m = 1 internal kink
has some similar features to resistive
interchange modes for equilibria
stable to ideal m = 1.

The tearing mode is the resistive
extension of the ideal current sheet
mode. It can be unstable, i.e. it can
be an instability, and it is primarily

driven by current (so order ε
2

problem!). It is known as an odd
mode, or tearing mode because of
oddness of ξ

r
(x). Note δψ(x = 0) is

large, and δψ(x) varies quite weakly
with respect to x around x = 0, so
the constant-psi approximation holds.

Resistive interchange in a torus are
stable in circular tokamaks for
m/n > 1 (see interchange modes
later). We choose to investigate
tearing modes in region of plasma
where q > 1.



Inner resistive layer calculation
We can define ∆

′
in the layer directly from Eq.(4.23), noting that radial derivatives in δψ and

ξ
r

dominate derivatives with respect to the angular coordinates in the resonance region (e.g.

∇2
(δψ/r) ≈ r−1

∂
2
δψ/∂r

2
) so that Fourier analysing (keeping m harmonic only):

d2δψ

dr2
=
γ

η

[
δψ − ξr0

rB0

R0

(
n

m
−

1

q(r)

)]
.

We now apply the constant-psi approximation (it is the only significant place it is used in this

calculation). Applying Eq. (4.29), which states that δψ
′′
/δψ � (ξ

r
0)
′′
/ξ
r
0 we may replace δψ

with δψ(rs) on the RHS of the above equation, while allowing variation of ξ
r
0 :

d2δψ(r)

dr2
=
γ

η

[
δψ(rs)− ξr0(r)

rB0

R0

(
n

m
−

1

q(r)

)]
(5.1)

where q(rs) = m/n. We now expand around the rational surface so that

n

m
−

1

q
≈

n

m
s(rs)x with x =

r − rs
rs

and s =
r

q

dq

dr
.

Thus, changing the variable to x (so that d
2
δψ/dr

2
= r
−2
s d

2
δψ/dx

2
), and integrating with

respect to x in −X ≤ x ≤ X we have clearly:

[
δψ′

δψ(rs)

]X
−X

=
1

δψ(rs)

[
1

rs

d δψ

dx

]X
−X

=

∫ X
−X

dx rs
γ

η

[
1−

ξr0(x)

δψ(rs)

(
rB0

R0

)
n

m
s(rs)x

]
,

(5.2)

which is ∆
′

in the layer in the limit X →∞ according to Eq. (4.28). It now remains to obtain
ξ
r
0(x) in the layer and this is done by solving Eq. (4.22) in the layer region, where, of course,

inertia must be included (the LHS of Eq. (4.22)). We will be able to verify the asymptotic
properties of the above as we increase X (exercises).
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Inner resistive layer calculation
Due to the large radial derivatives in δψ and ξ

r
0 in the inertial region, we keep only the terms

in Eq. (4.22) with largest order derivatives. Keep also (for the moment) the δψJφ term, and
apply constant-psi approximation to that term. Therefore, in the layer we have,

(
γ

ωA

)2

r
3 d

2ξr0

dr2
= −m2 R0

B0

{
r
2
(
n

m
−

1

q

)
d2δψ

dr2
+ rδψ(rs)

R0

B0

dJφ

dr

}
(5.3)

We now substitute Eq. (5.1) for δψ
′′

, and expand once again around the rational surface

d2ξr0

dx2
= −

(
γ

ωA

)−2

m
2 R0

rsB0

{
n

m
s(rs)x

r2sγ

η

[
δψ(rs)− ξr0

rsB0

R0

n

m
s(rs)x

]
+ δψ(rs)

R0

B0

dJφ

dx

}

Now, let,

z = xd with d =

(
ω2
An

2r2ss
2

ηγ

)1/4

to give

(
d2ξr0

dz2
− z2

ξ
r
0

)(
d2B0ηγ

ω2
A
nmR0rss

)
= −

zδψ(rs)

d
− δψ(rs)J

′
φ

R0η

B0γr2s
.

This equation is written in terms of normalised variable y(z):

d2y(z)

dz2
− z2

y(z) = −z − J′φ
R0ηd

B0γr2s
with y(z) =

rsB0

R0

ns

md

(
ξr0(z)

δψ(rs)

)
. (5.4)

The inhomogeneity on the RHS of the differential equation comprises the sum of odd and even
contributions in z. As a consequence, the solution y(z) comprises the corresponding sum in
odd and even contributions in z. It is clear that the even component of y(z) vanishes in the
integral of Eq. (5.2), when integrated with respect to z across the rational surface, so for this

reason, we are permitted to drop the even term proportional to J
′
φ, and thus we solve

d
2
y/dz

2
= −z(1− zy).
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Inner resistive layer calculation
Equation (5.2) can be written in terms of y and z as follows:

δψ′

δψ(rs)

∣∣∣∣∣
X

−X
=
γτR

drs

∫ X
−X

dz(1− yz) where τR =
r2s

η
.

Moreover, it is convenient to define d in terms of the ratio of the resistive time and the Alfvén
time:

S =
τR

τA
≡ τRωA which is the Lundquist number, S ∼ 10

8
or larger in large tokamaks

Giving d
4

= n
2
s
2
SωA/γ. It can be shown that a measure of the layer width δ normalised to

the singular radius rs is

δ

rs
=

1

d
=

[
γ

ωAn
2s2S

]1/4

. (5.5)

It will be verified in the exercises that δ is indeed the layer width by showing that y(z) agrees
with the ideal inertialess expectation for y(z) ∼ 1/z for |z| = |r − rs|/δ > 1, but for |z| < 1
the effect of resistivity (tearing) on y will be evident.

From d
2
y/dz

2
= −z(1− zy) it is seen that

δψ′

δψ

∣∣∣∣∣
X

−X
=
γτR

drs

∫ X
−X

dz(1− yz) = −
γτR

drs

∫ X
−X

dz
1

z

d2y

dz2
.

Integrating by parts, and noting that the boundary term is zero because the dy/dz is even in
z, yields

δψ′

δψ

∣∣∣∣∣
X

−X
= −

γτR

drs

∫ X
−X

dz
1

z2

dy

dz
. (5.6)
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Inner resistive layer calculation
Rutherford and Furth, 1971, showed that

y =
z

2

∫ 1

0
dµ

exp(−z2µ/2)

(1− µ2)1/4
(5.7)

is the odd solution of Eq. (5.4), i.e. it is a solution of

d2y

dz2
= −z(1− zy)

which can easily be verified by substitution. Differentiating Eq. (5.7), we have

dy

dz
=

1

2

∫ 1

0
dµ(1− µz2

)
exp(−z2µ/2)

(1− µ2)1/4
.

and substituting this into Eq. (5.6) yields,

δψ′

δψ

∣∣∣∣∣
X

−X
= −

γτR

drs

∫ X
−X

dz

∫ 1

0
dµ

(1− µz2)

2z2

exp(−z2µ/2)

(1− µ2)1/4
. (5.8)

The exercises will show that the above saturates with increasing X when X is about 5, i.e.
within a few layer widths. It is also shown that the layer width is very small, so that matching
with the outer region is reliable. In particular, it will be shown that δ∆

′ � 1 which is required
for the constant-psi approximation. Hence it is safe to take X →∞ for the above integration
limits. Changing the order of integration we have from Eqs. (4.28) and (5.8):

∆
′

= −γτR
δ

rs

∫ 1

0

dµ

2(1− µ2)1/4

∫ ∞
−∞

dz

(
1

z2
− µ

)
exp(−z2

µ/2).

The inner integral is just −2
√

2πµ. Hence,

∆
′

= γτR
δ

rs

∫ 1

0
dµ

(2πµ)1/2

(1− µ2)1/4
= γτR

δ

rs

(
2πΓ(3/4)

Γ(1/4)

)
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Growth rate of linear tearing mode
On substituting the definition of δ and using also the definition of S, we have the inner ∆

′
as

defined by Eq. (4.28):

∆
′

=

(
2πΓ(3/4)

Γ(1/4)

)
(γ/ωA)5/4S3/4

rs(ns)1/2
, with

2πΓ(3/4)

Γ(1/4)
≈ 2.12. (5.9)

Now for the crucial part. The asymptotes at z → ±∞ for logarithmic derivatives of δψ in the
layer are matched with the asymptotes of the logarithmic derivatives of δψ(ideal) in the outer
region, as defined by Eq. (4.30), which is

∆
′

= lim
δr→0

δψ(ideal)′

δψ(ideal)

∣∣∣∣∣
rs+δr

rs−δr

One can then obtain the growth rate by solving Eq. (4.24) for δψ in the ideal region,

calculating the logarithmic derivatives on each side of rs, and substituting into ∆
′
. Matching

this outer ∆
′

with the inner ∆
′

of Eq. (5.9), i.e. ∆
′

= ∆
′

and rearranging for the growth rate,
we have

γ

ωA
=

[
Γ(1/4)rs∆′

2πΓ(3/4)

]4/5

S
−3/5

(ns)
2/5

. (5.10)

Thus, instability requires that ∆
′
> 0, and this condition in turn is governed by the

global current profile. For the case shown in the figure on slide 99, we have rs∆
′

= 4.25058,

i.e. the mode is unstable. Taking S = 10
8
, this gives γ/ωA ∼ 10

−5
, which is a slow growth

rate compared to ideal growth rates (typically γ/ωA ∼ 10
−2 − 10

−3
).

There are very important non-linear extensions to this description of linear tearing
instabilities. As will be seen, ∆

′
remains a fundamental parameter for non-linear tearing

modes. Non-linear tearing modes are often manifested experimentally as neoclassical tearing
modes (NTMs). These modes are at saturated amplitude (not growing), the amplitude elevated
by bootstrap current.
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The helical field
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Consider the parallel wave-number (k‖ = −ib ·∇,

see exercises)

k‖ =
1

q(r)R0

(nq(r)−m)

We know that a rational surface occurs where
k‖ = 0, i.e. at the location

q(rs) ≡ qs = m/n.

We assume that the perturbations have the usual
angular dependence ∼ exp(imχ) where

χ =
n

m
φ− θ =

1

qs
φ− θ.

It turns out that the coordinate χ is orthogonal to
the magnetic field lines on the rational surface, and
near orthogonal close to the rational.
Interpretation is made easier by assuming straight
field line coordinates for which q(r) = dφ/dθ so that
a field line is described by

φ = qθ (+ constant)

This can be compared with the χ coordinate in φ - θ
space, which is constant for

φ = qsθ (+ constant)

Ф

θ

Ф

θ

Ф

θq(r)<qs

q(r)=qs

q(r)>qs χ

χ  

χ  



The helical field
Our goal now is to consider the helical field B

χ
= rB ·∇χ, and the helical flux Ψ linking this

helical field, i.e. B
χ

= ∂Ψ/∂r (note that a true flux would have an extra factor R0). For a
description of magnetic islands we need to clearly distinguish the equilibrium field (and flux)
from the total field (and flux). So, we use notation:

B = B0 +B1, B
χ

= B
χ
0 + B

χ
1 , Ψ = Ψ0 + Ψ1.

Keep in mind that magnetic field lines lie on surfaces of constant flux, including on this helical
total flux Ψ = Ψ0 + Ψ1

Consider now perturbed fields in these coordinates. Since ∇ ·B1 = 0, and since perturbed
B1,‖ is small (it is a finite beta effect - see exercises), and since ∂/∂l ∝ k‖ (again small) then:

∇ ·B1,⊥ ≈
1

r

∂

∂r
(rB

r
1 ) +

1

r

∂B
χ
1

∂χ
≈ 0

Thus, in terms of a flux variable Ψ we have:

B
r
1 = −

1

r

∂Ψ1

∂χ
and B

χ
1 =

∂Ψ1

∂r
(5.11)

So that we can plot field line surfaces and island structures, we adopt real variables. Choose B
r
1

to be odd in χ (so that Ψ even in χ). Hence, since nφ−mθ = mχ then B
r
1 = B̂

r
1 sin(mχ) and

Ψ1 =
r

m
B̂
r
1 cos(mχ). (5.12)
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The helical field

Consider now the equilibrium helical flux Ψ0 associated with the helical equilibrium field B
χ
0 .

We first note that the equilibrium field B0 = F (ψ)∇φ+ ∇φ×∇ψ can equivalently be written
in Clebsch form:

B0 = ∇β ×∇ψ0, with β = φ− qθ.

Hence the contravariant helical equilibrium field written in terms of θ and φ is

B
χ
0 = rB0 ·∇χ = r∇(φ− qθ)×∇(φ/qs − θ) ·∇ψ0 = r

(
q(r)

qs
− 1

)
∇θ ×∇φ ·∇ψ0.

Meanwhile the contravariant covariant equilibrium poloidal field is

B
θ
0 = r ~B ·∇θ = r∇φ×∇ψ0 ·∇θ.

Hence,

B
χ
0 = B

θ
0

(
q(r)

qs
− 1

)
≈ Bθ(rs)s(rs)x,

where we recognise the ‘layer’ variable, x = (r − rs)/rs and the magnetic shear s. The

equilibrium helical flux Ψ0, from the definition B
χ

= ∂Ψ/∂r = r
−1
s ∂Ψ/∂x, which applies to

perturbed and equilibrium quantities near the rational surface, is:

Ψ0 = rs

∫
dxB

χ
0 =

∫
dxB

θ
0 (rs)s(rs)x =

1

2
B
θ
0s(rs)rsx

2

where we note that B
θ
0 otherwise depends on x through higher order (in ε) correction ∼ 1/R.
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Magnetic islands
We therefore have the total helical flux:

Ψ = Ψ0(x) + Ψ1(x, χ, t) with Ψ0 =
1

2
B
θ
0 (rs)rs s x

2
, Ψ1 =

r

m
B̂
r
1 (x, t) cos(mχ).

Recall that field lines lie on flux surfaces. To solve for the trajectory on the field line in
coordinates (x, χ) we thus consider the total flux Ψ a constant. Hence, we obtain the field line
trajectory assuming weak variation of Ψ1 in x (constant-psi):

x
2

=
2

rssB
θ
0

[
Ψ−

rsB̂
r
1 (t)

m
cos(mχ)

]
, (5.13)

all (on the RHS) evaluated at rs. This marks out the island structure. Sufficiently far from the
rational, specifically for Ψ > rsB̂

r
1/m we have wobbling unbroken field lines (ideal MHD).

Close to the rational surface, for which Ψ < rsB̂
r
1/m the field lines are broken, to reveal island

loops.

For Ψ = rsB̂
r
1/m we are on the separatrix of the island. Thus the full island width (see

exercises) is

w(t) = 4rs

(
B̂r1 (t)

msBθ0

)1/2

. (5.14)

We see that the island is larger for small poloidal field, and reduced magnetic shear (again
small shear invokes weakness in the plasma configuration - this time for resistive MHD
instabilities. Although small shear reduces growth rates too).

Also small m leads to larger magnetic islands. It is generally found that modes with small
mode numbers are the most degrading (poor transport properties due to rapid parallel motion
‘across’ island structure).
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Magnetic islands

-6 -4 -2 2 4 6

-2

-1

1

2

wx-point

o-point

χ

x

Magnetic island chain assuming poloidal mode number m=1
The lines indicate field line trajectories in the (x, χ) coordinates, and on each line the total Ψ
is constant.

Since the equilibrium radial field is zero, each of the lines above has non-zero B
r
1 . Thus, it is

seen the B
r
1 6= 0 even at the equilibrium rational surface. This topological change is possible

only under the resistive MHD model. Realistic ideal MHD instabilities have B
r
1 (x = 0) = 0,

but it isn’t necessarily zero under resistive MHD:

δB
r
0 (ideal) =

imB0

R0

(
n

m
−

1

q

)
ξ
r
0 and δB

r
0 (res) =

imB0

R0

(
n

m
−

1

q

)
ξ
r
0 −

η

γ
∇2

δB
r
0 (res)
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Magnetic islands: topology change via reconnection

Resistivity allows field lines to slip through the fluid, allowing new field line topology to be
created with time. This would not be possible if the field lines were frozen into the fluid (as for
ideal MHD). The sketch here indicates clearly how a magnetic island might develop in the
laboratory plasma. Consider the horizontal direction to be radial direction in tokamak plasma,
and the reconnection takes place on the vertical line where the rational flux surface lies. The
new topology requires a finite magnetic field on this surface which points in the horizontal
direction, that is a radial perturbed field on the rational, which is only allowed in the resistive
MHD model. Without resistivity we will just have wobbling field lines with the wobble in the
radial direction vanishing as we approach the rational surface.
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Magnetic islands

XTOR initial value code solved the resistive MHD equations nonlinearly. Poincaré plots over
the poloidal cross section enables us to see constant Ψ surfaces. The core mode is in fact a
non-resonant internal kink mode (no island). The large outer island is an n = 1, m = 2 mode
associated with qs = 2. Other shorter wavelength modes are visible too. Note in this plot χ is
mapped out in θ (since we plot on constant φ), and the x variable would be x = (r − rs)/rs,
with rs taken to be the minor radius at the island o-point or x-point.
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Non-linear tearing modes
Notice that the XTOR islands shown were non-linearly saturated, meaning that they were not
growing. We do not yet have an evolution equation for the non-linear stage of the island
development.

In the following non-linear treatment we do not assume linear growth, i.e. B1 does not grow
as exp(γt), so explicit time derivatives are retained in the equations. Begin with Faraday’s law

∂B1

∂t
= −∇×E1

now substitute Ohms law E1 + u1 ×B0 = ηj1,Ohm :

∂B1

∂t
= −∇× (ηj1,Ohm − u1 ×B0),

where j1,Ohm is the perturbed MHD Ohmic current. Finally we employ Ampère’s law

∇×B1 = j1, but we write the total current as the sum of Ohmic (MHD) current and
perturbed currents associated with external sources (or non-Ohmic currents), e.g. from
cyclotron heating or the bootstrap current. So substituting
j1,Ohm = j1 − j1,non-Ohm = ∇×B1 − j1,non-Ohm we have:

∂B1

∂t
= −∇×

[
η
(
∇×B1 − j1,non-Ohm

)
− u1 ×B0

]
. (5.15)

Now a key simplification - we ignore the inertia associated with the convective term involving

the fluid velocity u1. The plasma inertia, and associated displacement ξ
r

= γ
−1
u
r
1 was crucial

for establishing the linear resistive problem in the layer. But, in the non-linear regime, the
plasma inertia contribution is weak compared to that of the diffusion of the magnetic field.
Again assuming large radial derivatives we have on taking the radial component of Eq. (5.15):

∂Br1

∂t
= η

∂2Br1

∂r2
−∇r ·∇×

[
ηj1,non-Ohm

]
. (5.16)

119 / 190



Essential non-linear tearing modes
First let us consider the essential case were there is no current from external sources. So,
taking Eq. (5.16) with j1,non-Ohm = 0 and using Ψ1 = −irBr1/m assuming strong radial

derivatives in B
r
1 we have,

∂Ψ1

∂t
= η

∂2Ψ1

∂r2
. (5.17)

Integrating in radius across the island (assuming η varies weakly) we have∫ rs+w/2

rs−w/2
dr
∂Ψ1

∂t
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2

rs−w/2

In order to make some analytic progress we assume that the radial variation of Ψ1 is weak over
w. This is of course the constant-psi approximation:

w
dΨ1(rs)

dt
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2

rs−w/2
.

We now use the result from the linear derivation of the island width w. In particular, from Eq.
(5.14) we can make a relation between the time evolution of Ψ1(t) and w(t):

Ψ1(rs, t) = Cw(t)
2

where C is a constant. This easily yields (exercises)

dw

dt
=
η(rs)

2

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2

rs−w/2
.

The right hand side is the ∆
′

in the layer, but it is dependent on w, i.e. it is essentially ∆
′
δ in

Eq. (7.19) with δ = w/2. We then obtain the Rutherford equation

dw

dt
=
η(rs)

2
∆
′
(w) with ∆

′
(w) =

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2

rs−w/2
.
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Essential non-linear tearing modes
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In this non-linear treatment we match at the
island width instead of matching the
asymptotes (which is what we did for the
linear treatment).

Hence ∆
′

in the layer must be matched with
∆
′

in the ideal MHD external region
evaluated at periphery of the island. Hence
we obtain,

∆
′
(w) =

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2

rs−w/2

from calculating the Ψ1(r) via solving Eq.
(4.24) (noting δψ ≡ Ψ1), i.e.

r
d

dr

(
r
dΨ1

dr

)
+

(
R0

B0

)
rqmΨ1

nq −m
dJφ

dr
−m2

Ψ1 = 0.

Hence the evolution equation for w(t) is

dw

dt
=
η

2
∆
′
(w) with ∆

′
(w) =

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2

rs−w/2
.

A saturated island occurs for:

dw/dt = 0, and this in turn requires ∆
′
(w) = 0.



Tearing mode steady state island width
Figure shows the evolution of w(t) according to:

dw

dt
=
η

2
∆
′
(w)

where ∆
′
> 0 during the linear phase. The mode amplitude saturates because the external

solution exhibits the property ∆
′
(w) = 0 for sufficiently large w.

From the solution to w(t) and the mode number we can obtain B
r
1 (t) via Eq. (5.14).

Knowledge of m and equilibrium reconstruction is also required (for poloidal equilibrium field,
and magnetic shear).
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Neoclassical Tearing modes
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1/1 mode

3/2 mode

without islands

JET pulse 80869 exhibits local flattening of
the temperature profile due to the presence of
magnetic islands.

I The width of the flat regions
corresponds approximately to the
island width (degree of flattening in
fact depends on helical angle, see
details next). So, the ECE diagnostic
provides a useful measurement of island
location and the helically averaged
island width (potentially in real time).

I Temperature and density gradients
cannot be sustained across the island
because heat and particles travel
rapidly along the magnetic field lines
(parallel transport). Consider the field
line trajectory in x− χ coordinates.

I This local flattening of the pressure
profile (P (r) = n(r)T (r)) locally
nullifies the equilibrium bootstrap
current. We will see that this affect
destabilises tearing modes. The effect
can be included in the evolution
equation for w, and it is seen that we
obtain larger islands. These are called
neoclassical tearing modes (NTMs).



Neoclassical Tearing modes
The bootstrap current is derived from neoclassical transport. Hence it is due to toroidicity
(trapped particles) and it depends on collisionality regime. Here we set,

jBS ≈ jBSeφ, with jBS = −
dP

dr

ε1/2

Bθ0

.

This is the bootstrap current that we would expect before the onset of a tearing mode, i.e. at
the initial equilibrium:

j0,non−Ohm = jBS ,

But, the transport of particles and heat along the closed field lines (closed in x− χ) forces the
pressure inside the islands to vanish. Hence the bootstrap current will vanish locally too.
Mathematically therefore there exists a perturbed current that cancels the initial equilibrium
bootstrap current within the island. This current of course depends on the angle χ (local
island width fluctuates). At the rational surface:

j1,non−Ohm ≡ ĵ1,non−Ohm cos(mχ) = −jBS cos(mχ)eφ

The perturbed evolution equation for the radial component of perturbed magnetic field,
including non-Ohmic current is Eq. (5.16). Using as before B

r
1 = B̂

r
1 sin(mχ) we have

sin(mχ)
∂B̂r1

∂t
= η

(
∂2B̂r1

∂r2
sin(mχ) + [∇× (j1,non−Ohmeφ)] · er

)

Use: [∇× (j1,non−Ohmeφ)] · er ≈ −(m/r)eφ · ĵ1,non−Ohm sin(mχ) = (m/r)jBS sin(mχ) to

finally give (using Ψ1 ∝ rB̂
r
1 ) an evolution equation for the perturbed helical flux:

∂Ψ1

∂t
= η

[
∂2Ψ1

∂r2
+ jBS

]
(5.18)
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Neoclassical Tearing modes and seeding
The exercises lay out the procedure for obtaining the following modified-Rutherford-equation.
Here we include the effect of bootstrap, but for simplicity neglect other effects known in the
literature (e.g. GGJ high pressure corrections, polarisation current etc):

dw

dt
=
η(rs)

2

(
∆
′
(w) + ∆

′
BS(w)

)
, ∆

′
BS(w) = jBS(rs)

16rs

sBθ0w
= −

dP

dr

16ε1/2r

s(Bθ0 )2w

∣∣∣∣∣
rs

.

Notice that ∆
′
BS(w) is positive (hence destabilising) for all w if P

′
< 0. The non-linear

derivation isn’t valid in the limit w → 0 where ∆
′
BS diverges (recall neglect of inertia etc). In

the literature, ∆
′
BS(w) is killed in the following ad-hoc way for small w via a constant wc. We

may add effect of toroidal current drive jcd = jcdeφ, stabilising if jcd(rs) < 0, destabilising if
jcd(rs) > 0 (realtime NTM control experiments exploit this if island position can be tracked):

dw

dt
=
η(rs)

2

(
∆
′
(w) + ∆

′
BS(w) + ∆

′
cd(w)

)
, with ∆

′
X (w) = jX

16r

sBθ0

(
w

w2
c + w2

)∣∣∣∣∣
rs

.

This is known as the modified Rutherford equation. Tokamak equilibrium are usually
designed with q-profiles such that ∆

′
(0) < 0 (ideal stable). The destabilising effect of

bootstrap requires, according to this equation, a seed island for establishing an NTM (e.g.
from a sawtooth crash).
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JET 92082:
Graves, Challis,
Frigioni, Mantsinen

• JET Hybrid DT prepara�on
• Sawteeth avoided.  High performance

• Non-resonant n=2,m=2 LLM drives 
n=2,m=3 tearing mode

• These modes are intolerable in JET 
because they enhance tungsten 
accumula�on.  Different from e.g. DIII-D 
which builds scenarios based on saturated 
tearing modes

• Tearing mode grows to large amplitude 
over 1ms.  Much faster than standard 
resis�ve �mescales

n=1 mode 
triggered 
then dies

n=2, m=2 
ideal mode 
triggered, 
drives n=2, 
m=3 NTM, 
and causes 
which 
performance



Driven tearing modes

In addition to seeding there are other processes for creating tearing modes. Such
as toroidal coupling with other MHD modes that can drive tearing modes linearly,
forcing linear ∆′ > 0. This route can establish NTMs during non-linear stage as
well [Kleiner, Graves, EPFL thesis].
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Driven tearing modes

These simulations show that the non-linear XTOR code confirms that saturated
tearing modes and NTMs can be driven by toroidal coupling with infernal modes.
The code recovers the driven Rutherford equations proposed. There are many
important physics processes that could be taken into account in future work such
as shear flows.
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