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External kink modes and inertia treatment
for ideal and resistive problems
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Linear MHD equations =PrL

Now that we have learned that ideal internal modes are stable to order 62, we need to look
more carefully at the vacuum-plasma interface, and the vacuum region itself. We will see that,
under certain conditions, modes that extend up to and beyond the plasma edge can be
unstable.

To treat external modes, we have to consider the plasma surface terms in the second term of

Eq. (3.33) 27(232 ) . ) . ) ,
e G T P e R e IR

as well as the vacuum term, defined in Eq. (3.16) given by
1 ~ 12
Wy = 7/ s ‘6B| )
2Jv

Equation (3.33) is a valid representation of §Wp to order 2. Moreover, the minimisation of
the plasma region remains valid, so that Eq. (3.34) holds for the displacement. Indeed,
variation of §Wp with respect to 56 is necessarily a variation of just the first term of Eq.
(3.33), since the second term of Eq. (3.33) is simply proportional to the square of the
displacement at the plasma edge, 56((1). Notice that the current that drives external kink

modes, visible in §Wp (last term in Eq. (3.20)) is visible (involving d/dr('r2/q)) in the second
line of the equation above Eq. (3.33), which becomes the drive in the boundary terms in the
second line of Eq. (3.33)

It remains to obtain §Wy, by solving for the vacuum perturbed fields, subject to boundary
conditions of Eq. (3.17) matching the internal minimised solution obtained from Eq. (3.34).
Clearly, in the vacuum region there is no plasma, so the displacement is zero beyond the
vacuum-plasma interface. Our goal is to obtain §Wy, in terms of a common perturbed quantity
appearing in §Wp. This could be the displacement at the plasma edge a, or a magnetic field
component at a. We will choose £((a).
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External Kink Modes - Vacuum Region =PrL

Let us begin by looking at the perturbed parallel field in the plasma region. It can be shown
that (Eq. (3.18) and exercise series 3):

53“:‘775(v-g+2g¢.n).

We note that (V - &€, + 2€ | - k) has been minimised to zero, and moreover, P/B2 ~ €2, and
near the edge, the pressure is vanishingly small. Hence, 6BH = 0 at this order in the plasma
region, and thus, due to the boundary condition of Eq. (3.17), remains zero in the vacuum
region to relevant order. Since 6B|| ~ 6B® (see also exercise week 3 for explicit calculation of

(in))7 we are left once again with §B” and 6B in |5B\2.

The analysis is simplified by defining a perturbed poloidal flux §v¢ for which

85
sp? = 2% (4.1)
or

see the similar definition of the equilibrium poloidal flux of Eq. (1.10)). Applying 6B =0
h lar defi f th lib loidal fl f Appl V .-é6B
we have to leading order

1 a( 5B") + 195B° o

——(r - =

r or r 00

and upon applying Eq. (4.1) this becomes

10 10 (06

7—(r<$BT) = - (J)

r or r 060 or
and thus, since /80 = —im, then in the vacuum:

. S . 2 dsw\ 2
6B" = imTw giving |6B|2 = |6B°|2 + |6B"|? = %w? + (i) . (4.2)
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External Kink Modes - Vacuum Region =PrL

In our flux coordinates, we note that the boundary condition of Eq. (3.17) enforces the
matching of §B” on either side of the interface (flux label 7 is normal to all magnetic surfaces
in the plasma, including at the edge). So equating at » = a the vacuum description (Eq. (4.2))
of §B" with that of the plasma description (Eq. (3.31)):

Bg [ n 1
Spa = 20 (— - —) ata (4.3)
Ro \m da
Let us now consider ¥V X § B = 0 (no currents in the vacuum), which in the ¢ direction gives
19 P 196B"
——(réB7) — — =0
r Or r 00

So, that, §v satisfies Laplace equation on a circular disk:

1d ( dw) m? v =0 (4.4)
——(r - =0, .
rdr dr r2
which has solution
S = ar™ 4 Br- M. (4.5)

Now substituting the BC at r = a given by Eq. (4.3), and the BC §¢, =0 at r =b (B =0
at b as defined in Eq. (3.17)), eventually gives (see exercises):

Returning to §Wy,, and inserting Eq. (4.2), and integrating by parts (see exercises):

b 2 1d s sy |b
sWy = 2n2Ro {/a drr [%wz - v — (r?)] + (rw?) a}.
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External Kink Modes =P-L

The first term is zero due to Laplace’s equation (Eq. (4.4)), and inserting Eq. (4.5) into the
second term we have the stabilising vacuum effect:

14 (a/b)27n
1— (a/b)2m

212 B2 . n 1\2
sWy = ——%mxa’¢f (a)? (7 - 7) . with A=
Ro m  ga

which, combining with Eq. (3.33) gives the total potential energy including the internal
plasma, the plasma-vacuum interface, and the vacuum terms:

272BZ [ ra dep \ 2 R ol fm 1\2
SW = To{/o drr [(r?) +(m —1) (EO) :| (;—;)

o 2] 2 n 1 n 1\2
+a’pa) | — | ——=— ) +A+mN)(— - — . (4.6)
qa \M da m da
No-wall limit b/a — oo (A — 1 destabilising) and no-vacuum limit b/a — 1 (A — 1 stabilising).

The mode is determined by the minimised §W in the plasma region, i.e. by Eq (3.34), which
can be written in the convenient form
2 d2el del 2s(r)

2 ™
— - | = -1 = 0. 4.
dr? " dr 3 1 — na(r) (m )0 0 @D

The procedure is to insert the solution of Eq. (4.7) back into Eq. (4.6), and then determine the
magnitude of the corresponding first term in §W, which is a measure of field line bending
stabilisation integrated over the plasma volume. We will therefore determine whether this
gross field line bending stabilisation, together with stabilising surface and vacuum terms, is
sufficient to compensate the effects resulting from the destabilising surface terms in §W. It is
clear that the surface contribution (the second term in Eq. (4.6) can be destabilising for

ga < m/n, i.e. it can be unstable when the rational ¢ = m/n is not inside the plasma region.
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External Kink Modes =P-L

We will see that, strongest instability occurs when g, is close to, but less than
m/n. Vacuum effects are in the no-wall limit. Instability is stronger if global
magnetic field line bending is weak, which is determined by ga/go =1+ v in
Wesson diagram. These comments essentially explain Wesson’s famous external
kink stability diagram.

Mode numbers (,"1’ )

1111121323m 2 34567
8765 47 3857 (2 3 45678 ﬁm

J profiles
444 ¢

8765 4 3 2‘

q,~1.8
We investigate the red dot (unstable), and the blue dot (stable). Figure from Wesson, Tokamaks
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External kink stability with different equilibria =P L

‘We see that Wesson’s diagram is in terms of

(1) mode numbers m and n

(2) Edge value of safety factor qq

(3) Degree of peaking of the current profile (v or g4 /q0)-

(4) The ratio b/a, noting that the most unstable situation is the no-wall limit b/a — oo, and
the stable definite case is the vacuum-free case a = b (perfectly conducting wall on the plasma

edge).

Let us examine the most obvious and unstable (except for m = n = 1 external kink requiring
ga < 1) which is m = 2 and n 1. As we have mentioned, instability requires g, < m/n
Choose qgq 1.8. Choose b/a = 2. Finally, examine, numerically, two cases from the stability

diagram v = 1.2 (unstable) and v = 3 (stable). Wesson’s current profile iso of the form
J = Jp[l — (T/a)2]y, which, from Eq. (3.32) is

2Bo /(7 20(1 +v)(r/a)?
q=r"— d7'rJ¢ = o1’
Ro / Jo 1—[1—(r/a)?]+v
where g9 = q(r = 0) = 2Bg/(RpJp) and it is seen that

2
q—a:1+u and qzwA
90 1—[1=(r/a)?]t+
We then insert the chosen values for v, g4, m, n and b/a and solve for the most unstable mode
in the plasma region (solve Eq. 4.7). Then substitute the solution for &,.0(r)/&,0(a) into 6W
(Eq. 4.6) and evaluate the stabilising plasma contribution §W (plasma), and the destabilising
external contributions 5W(ezternul). These contributions are the first and send lines of:

.~ ReW 1 qa a (N, (e (80N (1)
W = ereEE ~a e O [{Tdr<§g(a)>}+(m 1)<gg<a>”(m 2)

2 n 1 n 1\2
() reem(E-2)
da \M da m da
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External kink stability with different equilibria =P L

For v = 3, the enhanced global magnetic shear (gq/q0)
leads to enhanced field line bending stabilisation

1.8 [6B, |2.
1.6 ST
a0 1.4 v =1.2: we have §W (plasma) = 0.0447 and
1.2 W (external) = —0.0516461. Hence W < 0.
l A
0.8 v = 3: we have §W (plasma) = 0.059671 and
0.6 §W (external) = —0.0516461. Hence §W > 0.

0 0.2 0.4 0.6 0.8 1
It is straightforward to evaluate the perturbed radial

magnetic field in both regions

0.
=
< 0. m £ ()
= 0. n— —- for r < a

o §B" Rg q(r) &g(yz) .

: —— = =\ _ (b

Bogro(a) (n—ﬁ) 7(1’ = (T)m for a < r < b.
qa a — (2 -
()" -
. 0.25 0
% 0.2 = -0.05
& G
= 0-15 ;é -0.1 s
© 0.1 = vl
E 0.05 n:h-0.15
(=3 . Q v=3
=}
-0.2
0.2 0.4 0.6 0.8 1
r/a 0.250.50.75 1 1.251.51.75

rla
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External kink stability with different equilibria =P L

See exercises for how the growth rate can be approximated from the §W variational approach
developed here .

0.01

sw, o  Sabe sy

-0.01 Unstable

-0.02

-0.03

-0.04

-0.0577 2 3 4 5 6
Ga/0
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Introduction to Inertia and Resistivity =PrL

Magnetic shear usually effectively stabilises internal modes at order §Wy5. But the m = 1 mode
is an exception (see internal terms in §Ws).

It has been mentioned that in the region where magnetic field line bending is nullified, the
ideal Euler equation for the plasma displacement, i.e. Eq. (3.34), is singular. More physics is
needed in the region of ¢ = m/n in order to resolve the details of singularity.

The extra physics considered here comes in two forms: plasma inertia and resistivity. We note
that inertia can be small, indeed vanishing small if sufficiently close to stability boundary

recall that 6K = —(w?/2 2432 measures inertia), and moreover, resistive timescales
,

(defined in a few pages) are slow compared to ideal timescales. Nevertheless, in the region of
the rational surface, inertia and resistivity provide crucial corrections.

Inertia in the absence of resistivity is sufficient to resolve the singularity. But, as evident from
the derivation of the energy principle, ideal inertia alone does not affect the threshold for
instability. For the case of the m = n = 1 internal kink mode, which we know can be
ideal-unstable, the addition of inertia enables removal of the singularity at ¢ = 1, and for the
ideal growth rate to be established.

The problem of finite inertia and resistivity is difficult. However, the problem becomes
analytically tractable if the inertia and resistivity is treated carefully in the region where it has
an impact, i.e. in a narrow region, known as the layer region around ¢ = m/n. The local
solution is then matched using a layer variable to the outer region where inertialess ideal
MHD applies. The ideal MHD problem is generally quite easy to solve, while resistive problems
are more delicate.
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Inertia and ideal MHD =P-L

We start by defining the inertia §K = 7(w2/2) /p|§\2d31. For simplicity, we define the

perpendicular inertia, defined in Eq. (3.26) so that we can eventually recover the perpendicular
momentum equation of Eq. (1.8). We can bring in the effect of parallel inertia in an ad-hoc
way later (exercises). Thus we have to the required order

2
_ v 3 2 0,2
oK1 == [dap (€717 +1¢°1) |

(where p = m;n; is the mass density) and then substitute Eq. (3.28), i.e. £g9 = (i/m)90&r0/OT
so that |§9\2 = (l/mz)(d\rgro\/dr)2, giving to lowest order,

a 1 2
51, = —2x?? [ pare [\groﬁ (14 25 ) + 2HSBLGEENT gy

Defining the Alfvén toroidal frequency

BQ 1/2
wa = A Gith vy = |20 (4.8)
Ro P

then, 6 K| can be added to the first line of Eq. (3.33) for the €2 contribution to §W. to give
the compact expression (dropping modulus notation) for internal modes

2 232 a der 2 1\ 2 1 2
6KL+5W2:u/ drr ’V‘E +(m271) (56)2 (177> + — . .
Ro Jo dr m  q m2 \wa
(4.9)
‘We use henceforth the notation for the total energy,

SH = 6K + W.
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Inertia and ideal MHD: m =1 =P-L

The m = 1 mode is internal so we set a Dirichlet BC at » = a. The minimisation problem has
already been seen to order 62, and at that order we can neglect inertia, so that the associated

energy is:
272B2 ra del \ 2 1\2
5H2:70/ drr 7‘@ (n—f)
Ro 0 dr q

The solution to this, is a global (G), or outer, solution valid everywhere except very close
to the rational surface, where inertia is important. It satisfies the Dirichlet BC at » = a:

€Go(r) = EH(r — 1)

where H(r — r1) is the Heaviside step function such that H(r — r1) = 1 for r < r; and

H(r —r1) =0 for 7 > r1, where g(r1) = 1/n, as seen from the Euler equation of Eq. (3.34).
Notice if we substitute this solution back into § Hy we obtain § Ho = 0, so we are forced to go
to the next order. The field line bending contribution now becomes order 54, still depending on
the lowest order eigenfunction, but at this order the effects of inertia are important. We write,

SHy = K41 (£0) + 6WrLB(£0) + 8Wac (£Gos €615 EG2)

where,

. . 2r2B2 ra der\ 2 1\2 2
K41 (€]) +SWrLp(§)) = — 2 / arr <T 50) [(n_ 7) - ( . ) }
Ro 0 dr q wA

and 5W4G(§GO, Eclv §G2) are the rcmammg order ¢* potential energy contributions that are
not sensitive to inertia corrections in EO These are global, or outer contributions. We

note that near the rational surface r = r1 (where g(r1) = 1/n), we have that 50 — EGO ~ € 50,
so the leading order displacement must be corrected locally.
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Inertia: ideal m = 1 internal kink problem =PrL

The global (outer) energy at order ¢* can be minimised independently of the other terms
because 550 is already fully defined (and 581, 552 can be obtained by variation of §Wgy
independently of inertia corrections). The result is Eq. (3.35), i.e.

. 1y . R
oW = (1 - ﬁ) sws + ol

‘We now examine the inertia and field line bending contributions. To do this, we consider a
layer variable z = (r — r1)/r1. The layer variable should be compared with the width § over
which the inertia is important. In particular, we have that,

5 5
£0/€Go ~ 1 for — — <z < — (4.10)
T1 T1
LlIm €p(@) = EGo(r=0) = ¢ (4.11)
— — 00
5/r1
Jim o &5(z) = €Go(r=a) =0 (4.12)
5/"‘1 — 00

‘We recall that,

) X 272B2 ra der\ 2 1\ 2 2
6K4L<sa>+5WFLB<55):’TTO°/O drr (r%) {(n—;) +<£) ]

Due to Egs. (4.10) - (4.12) above, and the Heaviside step solution for 560, the integrand is
significant only in the narrow region —§/r1 < z < §/r1. We can therefore write all variables in
terms of z, expand the integrand around & = 0, and we are also free to take the limits of
integration as Foo. In these inner layer contributions we use the Taylor expansion (leading
order term only) n — 1/q(r) = nsyz, with s1 = (r/q)dg/dr at « = 0, describing the strongly
spatially varying field line bending contribution. This gives:
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Inertia: ideal internal kink problem =PrL

co 2 der 2
6Kyl +6Wprp = zszOBSefn2s§/ da |:x2 + (L> } <ﬂ> ) (4.13)
o

— nsjwa dx

Taking variations of this we obtain,

2 T
= GEs) )] - w
dx nsjwa dx

des c
dmo = m (4.15)

nsjw A

giving by integration

The constant of integration is obtained by integrating the above and using the boundary
conditions Eq. (4.10) - (4.12) as follows:

oo d§6 oo C
/ dr — :/ dz ———
—oo dz —oo z2 + ( o )

nsjw

—1
€5 (z = 00) — €5 (x = —o0) = 7C <L>

nsiwA
~ —1
_EO =7C (*) .
nsiwA
So that,
—_ der — ]
0:7570 v , and thus &:75—0 il 5 - (4.16)
kL nsiwap dx ™ nsiwa ) 2 4 (ﬁ)
S1wWA
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Inertia: ideal internal kink problem =PrL

Substituting Eq. (4.16) into Eq. (4.13) yields

2 2 272 Y i dx 22 =2
§K4) +3WpLp = 4RoBjein 5150( ) / 5 5 = 27RoBgeins £ ——
nsiw w
e = + (7sioz) A
(4.17)
‘We therefore obtain the dispersion, from §H4 = 0:
Yo 2 T 1
— = —€ 1—- — 5W4 + 6W4 . (4.18)
wA nsi n?
272 4

where §W = 272 RoBi€ae; sW

As mentioned earlier, it is seen that the relation

2 . 6Wmin
K(Emin)’

(where &,,,;y, is obtained from minimising 6W alone) completely breaks down for resonant
instabilities. The minimisation of §W alone correctly recovers the stability threshold, but any
information regarding 72 has to be obtained through variation of the total energy § K + §W.
This has been done above.

Furthermore, if one wishes to include the effect of the parallel displacement, as required for the

full ideal MHD model, one simply replaces v with v4/1 + 2qg in all the above dispersion
relation (see exercises). Kinetic corrections create a strong modification to the Glasser -
Greene - Johnson inertial enhancement. Graves, Hastie and Hopcraft were the first to do this
[PPCF 2000], the inertial enhancement turns out to be identical to the collisonless zonal flow
factor (1 + 1.6q2671/2), such that ~ is replaced with (1 + 16671/2)1/2 in the above
dispersion relation.
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Ideal layer width o =PrL

To leading order, the perpendicular
eigenfunction is incompressible also in the

singular layer (V- &, = 0), such that 3
= poloidal
7 del a2
6= (&5+r—0) 5
m dr 2,
%
The figure plots & and fg with v/wa = 0.025, “o
r1 = 0.3 and s; = 0.35 all radial lengths are
normalised to the plasma edge radius. Also 0 01 02 03 04 05 06
plotted is a linear expansion of the radial r/a
eigenfunction around 71, i.e.
2 delta
. dgn 1 r—7r1\ nsiwa 2
&fit) = (r—r)=22| =-—(——)—= 1=n
dr |, 2 T1 Ty
= 15
2125
A characterisation of the width can be identified g ’ |
from the above linear fit, i.e. &
%0. 7
mriy 3 05
- 2nsiwa 0.2

0.260.28 03 0.320°
r/a
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Inertia and resistivity =PrL

Before considering the addition of plasma resistivity, let us first consider the variation of the
energy defined by Eq. (4.9). Taking wy to be constant, or at least slowly varying with r
compared to the other radially dependent terms in Eq. (4.9), we have,

% [T?’djf {(% - é>2 + ﬁ <ﬁ>2H +a-m [(% - %)2 + # (i)z} rep =0,

(4.19)

which generalises Eq. (3.34) in order to account for perpendicular inertia.

The above compact expression conforms to the momentum equation, and normal-mode
equation, subject to the ideal MHD model and in particular ideal Ohm’s law. If we wish to
include resistivity, it is convenient to re-arrange Eq. (4.19) to:

2rd d 1\2 1\2
<i> [0+ o5 -m®)] = —m? {2 [P (2= 2) 4 rgga—m?) (2 - )7}
wp dr dr m q m q
(4.20)
This equation is clearly in the form

0%¢/0t> = p Y (T x B4+ J x 6B — V5P)

where, at this order, § P does not enter. The RHS of Eq. (4.20) has been written in terms of
the fluid displacement through the use of ideal Ohms law. We can remove the restriction of
Ohms law simply by inverting its employment, and writing the RHS of Eq. (4.20) in terms of
§B" via Eq. (3.31)
im B n 1 .
5By = 0 (7_7)53,.
Ro m.q
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Inertia and resistivity =PrL

Giving
2 ™
N\ |4 (3% TN
() [ (258 o] -

R 1 d d , .. Rg dJ,
—im=2 {r (3 - 7) (7 [r—(r&Bg)} - m2535> + TZJBgiJ} (4.21)
B, m q dr dr Bg dr

where it has been convenient to use Eq. (3.32)) in order to write Eq. (4.21) in terms of

dJg/dr.

The power of Eq. (4.21) is evident; it is an eigenvalue equation that obeys the equation of
motion at lowest order in € and § B, but is not subject to the assumption of ideal Ohm’s law.
i.e. we can now attempt to model the affect of resistivity on internal modes. Nevertheless, in
order to examine resistive modes, we require an equation relating £¢” to § B”, this time subject
to resistive Ohm’s law. A suitable equation is obtained by taking the curl of linearised Ohm’s
law 6 E + du X B = nJ and applying Ampere’s law on the right hand side,

o6B
77+Vx(6uJ_><B):nV><(VxéB).

Employing V X (du; X B) =6u, (V-B)—B(V :-6u )+ (B-V)éu, — (du, - V)B, and

noting that ¥V - B = 0 and, from Eq. (3.27) or (3.28) the leading order displacement, or
velocity conforms to V - du | = 0, then choosing the radial component, and employing

V x (V x86B) =V (V -86B) — V26B then

v6B" + B - Véu" ~ —nv2sB"
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Inertia and resistivity =PrL

Now employing the definition of perturbed flux, given in Eq. (4.2), and the identities given in
that section of these notes, it is straightforward to show that

2
¥ d (34
(&) [& (2] =] -

,mQ%Z {(% — %) (rd% [r%éw] - m26'¢)> +row e Ro d;"’} with.22)

G- () - 20 ()]

Equations (4.22) and (4.23) form a complete eigenvalue equation for v that is quite rich in
physics, at least if analytical solutions are sought. Fortunately, there is a means of making
progress. Inertia, on the left hand side of Eq. (4.22) is only important very close to the
rational surface, i.e where ¢ & m/n. Assuming that growth rates are small, such that

y/wa ~ 52, then it is clear from Eqgs. (4.22) and (4.23) that the inertia needs to be considered
only when |¢g — m/n| ~ €2 or less. In the outer region, where this is not the case, one simply
solves Eq. (4.22) with the left hand side equal to zero,

d déap R rqméip dJ,
r— (7‘ : >+(—O) Tamow 29 m2sy = 0. (4.24)
dr dr Bog/ ng—m dr

This equation is identical to Eq. (4.20) with LHS set to zero (setting inertia to zero in the ideal
equation), or Eq. (3.34), or Eq. (4.7) for the displacement £, which can be solved for the flux
via £ = (Ro/(Bor)) (n/m — 1/(1)71 61 which is Eq. (4.23) in the ideal limit (appropriate for
outer equations). In Eq. (4.24) for the flux, it is directly seen that ignoring the inertia in the
region of the rational surface leads to an un-physical singularity, thus confirming that both Eq.
(3.34) and Eq. (4.24) are only valid in the outer region.
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Outer region

Equation (4.24) is solved for a particular m, n and
Jg(r) etc from the inner boundary r = 0, with
BC’s 6¢(r = 0) = 0 and 8¢’ (r = 0) = Cq, and
separately from an outer boundary, e.g. r = a
with BC’s §9(r = a) = 0 and 64’ (r = a) = Ca. In
the first case, dv is solved from r = 0 up to just
within the rational surface rg — §r, while in the
second case, 1) is solved from r = a up to just on
the other side of the rational surface rg + §r. We
are permitted to assume an infinitely thin inner
region, so that C7 and Cg are chosen such that

S (rs — 6r) = 6¢(rs + ér). But the two outer
solutions approach rg differently, such that

59’ (rs — 6r) # 8¢’ (rs + 6r). The role of the inner
region is to resolve this singularity, matching the
outer region smoothly over a resistive layer
width 6. Thus we define

51[’/ rs+8r
sv |

Al = 5r — 0 (4.25)

R

for the outer region. As will be seen, this is
matched to the corresponding quantity evaluated
in the inner region were we account for resistivity
and inertia.

=PrL

9,73, v=2(q,/9,=3)

m=2, n=1
61//1
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Constant-psi approximation and asymptotic mat&ﬁgl:l_

The region close to the singular surface is often known as the inner region or layer
region. In the layer region, m — ng vanishes abruptly at the singular surface. The
resistive layer width over which resistivity and inertia is important is about 2.

Resistive interchange and m = 1 resistive internal kink modes have the
property that in the resistive layer 561’ /61 ~ r5/8 > 1.

But tearing modes, for which & is almost odd parity with respect to layer
variable x = (r — rs)/rs have the property,

7"56'[:[1,
g0

That dv varies very weakly across the layer will be exploited in the layer analysis
to follow, in particular we will adopt the constant-psi approximation for tearing
modes. Despite the weak variation in 01, the second derivative across the layer
will not be insignificant. It is approximately,
i A, oY/ (x =0) — o' (x = =6

GAy 0 (e=08) = 6¥/(z = —0)

20 o(x =0)
For matching of the inner region with the outer region we must calculate the
asymptotic values of the appropriate variables through the inertial-resistive layer.
Hence, in the layer region we evaluate,
1
A'=—" | lim &'(X)— lim &'(X)]|. (4.28)
dY(x =0) [X—o0 X——o0 100 / 190
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Constant-psi approximation and asymptotic mat&ﬁgl:l_

While 8 varies slowly for tearing modes, the displacement always varies fast over the layer
region, hence we expect (¢") ~ £7/6, and (£7)"" ~ (¢")’ /6, and hence
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Thus, from Egs. (4.27) and (4.28)
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Tearing modes conforming to the constant-psi approximation require that §¢ varies in
the layer much more weakly than ¢”. This can now be seen to require that

SA" <« 1. (4.29)

We note that by taking ér — 0 in Eq. (4.25) for the calculation of A’ in the outer region we
evaluate the appropriate variables asymptotically in the ideal outer region, in preparation for
matching with the inner region. Hence, for the outer region:

5"[’/ rs+dor

"= ——— 1lim [6¢ 5r) — 8¢ (rs — 6r)] = lim ——
6w(rs)6r1§0[¢(”+ ) = 8¢ (rs — &r)] = lim s N
-

s (4.30)
where as mentioned earlier, §¢ is obtained from the solution of Eq. (4.24) with appropriate
boundary conditions applied. This outer calculation of A’ will be matched to the inner layer
A of Eq. (4.28). This is required because the inner layer calculation provides a relationship
between the growth rate and A’ but in the layer the value of A’ is an unknown (it must be
matched from the determinable solution of the outer equations). Typically found that

rsA’ ~ 1, so that Eq. (4.29) is met for §/rs < 1.
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Current driven tearing modes =PrL

Recall that ideal internal modes are stable at order €. Pressure gradient effects and toroidal
effects are absent at order 52, so only the drive from current gradient exists. We found that
external kink modes could be driven unstable with a certain choice of current profile, or
g-profile. This domain of instability for a given equilibrium current profile can be extended by
inclusion or resistive effects.
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This case is stable to Ideal External Kink modes (even m=3,n=1 mode).
We can investigate stability of Internal Resistive Tearing Mode (n=1, m=2).1t is UNSTABLE .
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