
Lecture 4

External kink modes and inertia treatment

for ideal and resistive problems

J. P. Graves

79 / 190



Content of this lecture

4. External kink modes and inertia treatment for ideal and resistive
problems

External kink modes
Introduction to inertia and resistivity
Inertia and ideal MHD
Inertia layer variable for singular layer expansion
Growth rate for ideal internal kink mode
Intuitive development of resistive equations
Constant-psi approximation and asymptotic matching
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Linear MHD equations
Now that we have learned that ideal internal modes are stable to order ε

2
, we need to look

more carefully at the vacuum-plasma interface, and the vacuum region itself. We will see that,
under certain conditions, modes that extend up to and beyond the plasma edge can be
unstable.

To treat external modes, we have to consider the plasma surface terms in the second term of
Eq. (3.33)
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as well as the vacuum term, defined in Eq. (3.16) given by

δWV =
1

2

∫
V
d
3
x
∣∣∣δ̂B∣∣∣2 .

Equation (3.33) is a valid representation of δWP to order ε
2
. Moreover, the minimisation of

the plasma region remains valid, so that Eq. (3.34) holds for the displacement. Indeed,
variation of δWP with respect to ξ

r
0 is necessarily a variation of just the first term of Eq.

(3.33), since the second term of Eq. (3.33) is simply proportional to the square of the
displacement at the plasma edge, ξ

r
0(a). Notice that the current that drives external kink

modes, visible in δWP (last term in Eq. (3.20)) is visible (involving d/dr(r
2
/q)) in the second

line of the equation above Eq. (3.33), which becomes the drive in the boundary terms in the
second line of Eq. (3.33)

It remains to obtain δWV by solving for the vacuum perturbed fields, subject to boundary
conditions of Eq. (3.17) matching the internal minimised solution obtained from Eq. (3.34).
Clearly, in the vacuum region there is no plasma, so the displacement is zero beyond the
vacuum-plasma interface. Our goal is to obtain δWV in terms of a common perturbed quantity
appearing in δWP . This could be the displacement at the plasma edge a, or a magnetic field
component at a. We will choose ξ

r
0(a).
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External Kink Modes - Vacuum Region
Let us begin by looking at the perturbed parallel field in the plasma region. It can be shown
that (Eq. (3.18) and exercise series 3):

δB‖ =
ξ⊥ ·∇P

B
− B(∇ · ξ⊥ + 2ξ⊥ · κ).

We note that (∇ · ξ⊥ + 2ξ⊥ · κ) has been minimised to zero, and moreover, P/B
2 ∼ ε2, and

near the edge, the pressure is vanishingly small. Hence, δB‖ = 0 at this order in the plasma

region, and thus, due to the boundary condition of Eq. (3.17), remains zero in the vacuum

region to relevant order. Since δB‖ ≈ δB
φ

(see also exercise week 3 for explicit calculation of

δB
φ

), we are left once again with δB
r

and δB
θ

in |δB|2.

The analysis is simplified by defining a perturbed poloidal flux δψ for which

δB
θ

=
∂δψ

∂r
(4.1)

(see the similar definition of the equilibrium poloidal flux of Eq. (1.10)). Applying ∇ · δ̂B = 0
we have to leading order
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and upon applying Eq. (4.1) this becomes
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and thus, since ∂/∂θ = −im, then in the vacuum:
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r
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giving |δB|2 = |δBθ|2 + |δBr|2 =
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2
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. (4.2)
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External Kink Modes - Vacuum Region
In our flux coordinates, we note that the boundary condition of Eq. (3.17) enforces the
matching of δB

r
on either side of the interface (flux label r is normal to all magnetic surfaces

in the plasma, including at the edge). So equating at r = a the vacuum description (Eq. (4.2))
of δB

r
with that of the plasma description (Eq. (3.31)):

δψa =
B0

R0

(
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m
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qa

)
a ξa (4.3)

Let us now consider ∇× δ̂B = 0 (no currents in the vacuum), which in the φ direction gives

1
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)−
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∂ δBr
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= 0

So, that, δψ satisfies Laplace equation on a circular disk:

1

r
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)
−
m2

r2
δψ = 0, (4.4)

which has solution
δψ = αr

m
+ βr

−m
. (4.5)

Now substituting the BC at r = a given by Eq. (4.3), and the BC δψb = 0 at r = b (δB
r

= 0
at b as defined in Eq. (3.17)), eventually gives (see exercises):
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Returning to δWV , and inserting Eq. (4.2), and integrating by parts (see exercises):
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}
.
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External Kink Modes
The first term is zero due to Laplace’s equation (Eq. (4.4)), and inserting Eq. (4.5) into the
second term we have the stabilising vacuum effect:
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which, combining with Eq. (3.33) gives the total potential energy including the internal
plasma, the plasma-vacuum interface, and the vacuum terms:
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No-wall limit b/a→∞ (λ→ 1 destabilising) and no-vacuum limit b/a→ 1 (λ→ 1 stabilising).

The mode is determined by the minimised δW in the plasma region, i.e. by Eq (3.34), which
can be written in the convenient form

r
2 d

2ξr0

dr2
+ r

dξr0

dr

3−
2s(r)

1− nq(r)
m

− (m
2 − 1)ξ

r
0 = 0. (4.7)

The procedure is to insert the solution of Eq. (4.7) back into Eq. (4.6), and then determine the
magnitude of the corresponding first term in δW , which is a measure of field line bending
stabilisation integrated over the plasma volume. We will therefore determine whether this
gross field line bending stabilisation, together with stabilising surface and vacuum terms, is
sufficient to compensate the effects resulting from the destabilising surface terms in δW . It is
clear that the surface contribution (the second term in Eq. (4.6) can be destabilising for
qa < m/n, i.e. it can be unstable when the rational q = m/n is not inside the plasma region.
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External Kink Modes

We will see that, strongest instability occurs when qa is close to, but less than
m/n. Vacuum effects are in the no-wall limit. Instability is stronger if global
magnetic field line bending is weak, which is determined by qa/q0 = 1 + ν in
Wesson diagram. These comments essentially explain Wesson’s famous external
kink stability diagram.
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External kink stability with different equilibria
We see that Wesson’s diagram is in terms of
(1) mode numbers m and n
(2) Edge value of safety factor qa
(3) Degree of peaking of the current profile (ν or qa/q0).
(4) The ratio b/a, noting that the most unstable situation is the no-wall limit b/a→∞, and
the stable definite case is the vacuum-free case a = b (perfectly conducting wall on the plasma
edge).

Let us examine the most obvious and unstable (except for m = n = 1 external kink requiring
qa < 1) which is m = 2 and n = 1. As we have mentioned, instability requires qa < m/n
Choose qa = 1.8. Choose b/a = 2. Finally, examine, numerically, two cases from the stability
diagram ν = 1.2 (unstable) and ν = 3 (stable). Wesson’s current profile iso of the form

J = J0[1− (r/a)
2
]
ν

, which, from Eq. (3.32) is

q = r
2 B0

R0

/∫ r
0
dr rJφ =
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1− [1− (r/a)2]1+ν
,

where q0 = q(r = 0) = 2B0/(R0J0) and it is seen that

qa

q0
= 1 + ν and q =

qa(r/a)2

1− [1− (r/a)2]1+ν
.

We then insert the chosen values for ν, qa, m, n and b/a and solve for the most unstable mode
in the plasma region (solve Eq. 4.7). Then substitute the solution for ξr0(r)/ξr0(a) into δW

(Eq. 4.6) and evaluate the stabilising plasma contribution ˆδW (plasma), and the destabilising

external contributions ˆδW (external). These contributions are the first and send lines of:

ˆδW =
R0δW
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External kink stability with different equilibria
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For ν = 3, the enhanced global magnetic shear (qa/q0)
leads to enhanced field line bending stabilisation

|δB⊥|
2
.

ν = 1.2: we have ˆδW (plasma) = 0.0447 and
ˆδW (external) = −0.0516461. Hence δW < 0.

ν = 3: we have ˆδW (plasma) = 0.059671 and
ˆδW (external) = −0.0516461. Hence δW > 0.

It is straightforward to evaluate the perturbed radial
magnetic field in both regions
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External kink stability with different equilibria

See exercises for how the growth rate can be approximated from the δW variational approach
developed here .
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Introduction to Inertia and Resistivity

Magnetic shear usually effectively stabilises internal modes at order δW2. But the m = 1 mode
is an exception (see internal terms in δW2).

It has been mentioned that in the region where magnetic field line bending is nullified, the
ideal Euler equation for the plasma displacement, i.e. Eq. (3.34), is singular. More physics is
needed in the region of q = m/n in order to resolve the details of singularity.

The extra physics considered here comes in two forms: plasma inertia and resistivity. We note
that inertia can be small, indeed vanishing small if sufficiently close to stability boundary

(recall that δK = −(ω
2
/2)

∫
|ξ|2d3

x measures inertia), and moreover, resistive timescales

(defined in a few pages) are slow compared to ideal timescales. Nevertheless, in the region of
the rational surface, inertia and resistivity provide crucial corrections.

Inertia in the absence of resistivity is sufficient to resolve the singularity. But, as evident from
the derivation of the energy principle, ideal inertia alone does not affect the threshold for
instability. For the case of the m = n = 1 internal kink mode, which we know can be
ideal-unstable, the addition of inertia enables removal of the singularity at q = 1, and for the
ideal growth rate to be established.

The problem of finite inertia and resistivity is difficult. However, the problem becomes
analytically tractable if the inertia and resistivity is treated carefully in the region where it has
an impact, i.e. in a narrow region, known as the layer region around q = m/n. The local
solution is then matched using a layer variable to the outer region where inertialess ideal
MHD applies. The ideal MHD problem is generally quite easy to solve, while resistive problems
are more delicate.
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Inertia and ideal MHD
We start by defining the inertia δK = −(ω

2
/2)

∫
ρ|ξ|2d3

x. For simplicity, we define the

perpendicular inertia, defined in Eq. (3.26) so that we can eventually recover the perpendicular
momentum equation of Eq. (1.8). We can bring in the effect of parallel inertia in an ad-hoc
way later (exercises). Thus we have to the required order

δK⊥ = −
ω2

2

∫
d
3
x ρ
(
|ξr|2 + |ξθ|2

)
,

(where ρ = mini is the mass density) and then substitute Eq. (3.28), i.e. ξθ0 = (i/m)∂ξr0/∂r

so that |ξθ|
2

= (1/m
2
)(d|rξr0|/dr)

2
, giving to lowest order,

δK⊥ = −2π
2
ω

2
∫ a
0
ρdr r

[
|ξr0|

2
(

1 +
1

m2

)
+

2r|ξr0 ||(ξ
r
0)′|

m2
+

r2

m2
|(ξr0)

′|2
]
.

Defining the Alfvén toroidal frequency

ωA =
vA

R0

with vA =

(
B2

0

ρ

)1/2

(4.8)

then, δK⊥ can be added to the first line of Eq. (3.33) for the ε
2

contribution to δW . to give
the compact expression (dropping modulus notation) for internal modes

δK⊥ + δW2 =
2π2B2

0

R0

∫ a
0
dr r

[(
r
dξr0
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)2

+
(
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2 − 1
) (
ξ
r
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)2] [( n
m
−

1

q

)2

+
1

m2

(
γ

ωA

)2]
.

(4.9)
We use henceforth the notation for the total energy,

δH = δK⊥ + δW.
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Inertia and ideal MHD: m = 1
The m = 1 mode is internal so we set a Dirichlet BC at r = a. The minimisation problem has

already been seen to order ε
2
, and at that order we can neglect inertia, so that the associated

energy is:

δH2 =
2π2B2

0

R0

∫ a
0
dr r

[(
r
dξrG0

dr

)2](
n−

1

q

)2

The solution to this, is a global (G), or outer, solution valid everywhere except very close
to the rational surface, where inertia is important. It satisfies the Dirichlet BC at r = a:

ξ
r
G0(r) = ξ0H(r − r1)

where H(r − r1) is the Heaviside step function such that H(r − r1) = 1 for r < r1 and
H(r − r1) = 0 for r > r1, where q(r1) = 1/n, as seen from the Euler equation of Eq. (3.34).
Notice if we substitute this solution back into δH2 we obtain δH2 = 0, so we are forced to go

to the next order. The field line bending contribution now becomes order ε
4
, still depending on

the lowest order eigenfunction, but at this order the effects of inertia are important. We write,

δH4 = δK4⊥(ξ
r
0) + δWFLB(ξ

r
0) + δW4G(ξ

r
G0, ξ

r
G1, ξ

r
G2)

where,

δK4⊥(ξ
r
0) + δWFLB(ξ

r
0) =

2π2B2
0
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∫ a
0
dr r

(
r
dξr0
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)2 [(
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1

q

)2
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(
γ

ωA

)2]

and δW4G(ξ
r
G0, ξ

r
G1, ξ

r
G2) are the remaining order ε

4
potential energy contributions that are

not sensitive to inertia corrections in ξ
r
0 . These are global, or outer contributions. We

note that near the rational surface r = r1 (where q(r1) = 1/n), we have that ξ
r
0 − ξ

r
G0 ∼ ε

0
ξ0,

so the leading order displacement must be corrected locally.
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Inertia: ideal m = 1 internal kink problem
The global (outer) energy at order ε

4
can be minimised independently of the other terms

because ξ
r
G0 is already fully defined (and ξ

r
G1, ξ

r
G2 can be obtained by variation of δWG4

independently of inertia corrections). The result is Eq. (3.35), i.e.

ˆδW4G =

(
1−

1

n2

)
ˆδW
C
4 + ˆδW

T
4 .

We now examine the inertia and field line bending contributions. To do this, we consider a
layer variable x = (r − r1)/r1. The layer variable should be compared with the width δ over
which the inertia is important. In particular, we have that,

ξ
r
0/ξ

r
G0 ∼ 1 for −

δ

r1
< x <

δ

r1
(4.10)

lim
x

δ/r1
→−∞

ξ
r
0(x) = ξ

r
G0(r = 0) = ξ0 (4.11)

lim
x

δ/r1
→∞

ξ
r
0(x) = ξ

r
G0(r = a) = 0 (4.12)

We recall that,

δK4⊥(ξ
r
0) + δWFLB(ξ

r
0) =

2π2B2
0

R0

∫ a
0
dr r

(
r
dξr0

dr

)2 [(
n−

1

q

)2

+

(
γ

ωA

)2]
.

Due to Eqs. (4.10) - (4.12) above, and the Heaviside step solution for ξ
r
G0, the integrand is

significant only in the narrow region −δ/r1 < x < δ/r1. We can therefore write all variables in
terms of x, expand the integrand around x = 0, and we are also free to take the limits of
integration as ±∞. In these inner layer contributions we use the Taylor expansion (leading
order term only) n− 1/q(r) = ns1x, with s1 = (r/q)dq/dr at x = 0, describing the strongly
spatially varying field line bending contribution. This gives:
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Inertia: ideal internal kink problem

δK4⊥ + δWFLB = 2π
2
R0B

2
0ε

2
1n

2
s
2
1

∫ ∞
−∞

dx

[
x

2
+

(
γ

ns1ωA

)2](
dξr0
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)2

. (4.13)

Taking variations of this we obtain,

d

dx

[{(
γ

ns1ωA

)2

+ x
2

}(
dξr0

dx

)]
= 0, (4.14)

giving by integration
dξr0

dx
=

C

x2 +
(

γ
ns1ωA

)2
. (4.15)

The constant of integration is obtained by integrating the above and using the boundary
conditions Eq. (4.10) - (4.12) as follows:∫ ∞

−∞
dx

dξr0

dx
=

∫ ∞
−∞

dx
C

x2 +
(

γ
ns1ωA

)2

ξ
r
0(x→∞)− ξr0(x→ −∞) = πC

(
γ

ns1ωA

)−1

−ξ0 = πC

(
γ

ns1ωA

)−1

.

So that,

C = −
ξ0

π

(
γ

ns1ωA

)
, and thus

dξr0

dx
= −

ξ0

π

(
γ

ns1ωA

)
1

x2 +
(

γ
ns1ωA

)2
. (4.16)
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Inertia: ideal internal kink problem
Substituting Eq. (4.16) into Eq. (4.13) yields

δK4⊥+δWFLB = 4R0B
2
0ε

2
1n

2
s
2
1ξ

2
0

(
γ

ns1ωA

)2 ∫ ∞
0

dx

x2 +
(

γ
ns1ωA

)2
= 2πR0B

2
0ε

2
1ns1ξ

2
0

γ

ωA
.

(4.17)
We therefore obtain the dispersion, from δH4 = 0:

γ

ωA
= −ε21

π

ns1

[(
1−

1

n2

)
ˆδW
C
4 +

1

n2
ˆδW
T
4

]
. (4.18)

where δW = 2π
2
R0B

2
0ξ

2
0ε

4
1

ˆδW

As mentioned earlier, it is seen that the relation

γ
2 ≈ −

δWmin

K(ξmin)
,

(where ξmin is obtained from minimising δW alone) completely breaks down for resonant
instabilities. The minimisation of δW alone correctly recovers the stability threshold, but any

information regarding γ
2

has to be obtained through variation of the total energy δK + δW .
This has been done above.

Furthermore, if one wishes to include the effect of the parallel displacement, as required for the

full ideal MHD model, one simply replaces γ with γ
√

1 + 2q2s in all the above dispersion

relation (see exercises). Kinetic corrections create a strong modification to the Glasser -
Greene - Johnson inertial enhancement. Graves, Hastie and Hopcraft were the first to do this
[PPCF 2000], the inertial enhancement turns out to be identical to the collisonless zonal flow

factor (1 + 1.6q
2
ε
−1/2

), such that γ is replaced with γ(1 + 1.6ε
−1/2

)
1/2

in the above
dispersion relation.
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Ideal layer width δ
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To leading order, the perpendicular
eigenfunction is incompressible also in the
singular layer (∇ · ξ⊥ = 0), such that

ξθ0 = −
i

m

(
ξr0 + r

dξr0
dr

)

The figure plots ξr0 and ξθ0 with γ/ωA = 0.025,
r1 = 0.3 and s1 = 0.35 all radial lengths are
normalised to the plasma edge radius. Also
plotted is a linear expansion of the radial
eigenfunction around r1, i.e.

ξr0(fit) = (r − r1)
dξr0
dr

∣∣∣∣
r1

=
1

2
−
(
r − r1
r1

)
ns1ωA

πγ

A characterisation of the width can be identified
from the above linear fit, i.e.

δ =
πr1γ

2ns1ωA
.



Inertia and resistivity
Before considering the addition of plasma resistivity, let us first consider the variation of the
energy defined by Eq. (4.9). Taking ωA to be constant, or at least slowly varying with r
compared to the other radially dependent terms in Eq. (4.9), we have,

d

dr

[
r
3 dξ

r
0

dr

{(
n

m
−

1

q

)2

+
1

m2

(
γ

ωA

)2}]
+ (1−m2

)

[(
n

m
−

1

q

)2

+
1

m2

(
γ

ωA

)2]
rξ
r
0 = 0,

(4.19)
which generalises Eq. (3.34) in order to account for perpendicular inertia.

The above compact expression conforms to the momentum equation, and normal-mode
equation, subject to the ideal MHD model and in particular ideal Ohm’s law. If we wish to
include resistivity, it is convenient to re-arrange Eq. (4.19) to:

(
γ

ωA

)2 [
d

dr
(r

3
(ξ
r
0)
′
) + rξ

r
0(1−m2

)

]
= −m2

{
d

dr

[
r
3
(ξ
r
0)
′
(
n

m
−

1

q

)2]
+ rξ

r
0(1−m2

)

(
n

m
−

1

q

)2}
.

(4.20)
This equation is clearly in the form

∂
2
ξ/∂t

2
= ρ
−1

(δJ ×B + J × δB −∇δP )

where, at this order, δP does not enter. The RHS of Eq. (4.20) has been written in terms of
the fluid displacement through the use of ideal Ohms law. We can remove the restriction of
Ohms law simply by inverting its employment, and writing the RHS of Eq. (4.20) in terms of
δB

r
via Eq. (3.31)

δB
r
0 =

imB0

R0

(
n

m
−

1

q

)
ξ
r
0 .
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Inertia and resistivity
Giving

(
γ

ωA

)2 [
d

dr

(
r
3 dξ

r
0

dr

)
+ rξ

r
0(1−m2

)

]
=

−im
R0

B0

{
r

(
n

m
−

1

q

)(
d

dr

[
r
d

dr
(r δB

r
0 )

]
−m2

δB
r
0

)
+ r

2
δB

r
0

R0

B0

dJφ

dr

}
(4.21)

where it has been convenient to use Eq. (3.32)) in order to write Eq. (4.21) in terms of
dJφ/dr.

The power of Eq. (4.21) is evident; it is an eigenvalue equation that obeys the equation of
motion at lowest order in ξ and δB, but is not subject to the assumption of ideal Ohm’s law.
i.e. we can now attempt to model the affect of resistivity on internal modes. Nevertheless, in
order to examine resistive modes, we require an equation relating ξ

r
to δB

r
, this time subject

to resistive Ohm’s law. A suitable equation is obtained by taking the curl of linearised Ohm’s
law δE + δu×B = ηJ and applying Ampère’s law on the right hand side,

−
∂δB

∂t
+ ∇× (δu⊥ ×B) = η∇× (∇× δB).

Employing ∇× (δu⊥ ×B) = δu⊥(∇ ·B)−B(∇ · δu⊥) + (B ·∇)δu⊥ − (δu⊥ ·∇)B, and
noting that ∇ ·B = 0 and, from Eq. (3.27) or (3.28) the leading order displacement, or
velocity conforms to ∇ · δu⊥ = 0, then choosing the radial component, and employing

∇× (∇× δB) ≡ ∇(∇ · δB)−∇2
δB then

γδB
r

+B ·∇δu
r ≈ −η∇2

δB
r
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Inertia and resistivity
Now employing the definition of perturbed flux, given in Eq. (4.2), and the identities given in
that section of these notes, it is straightforward to show that

(
γ

ωA

)2 [
d

dr

(
r
3 dξ

r
0

dr

)
+ rξ

r
0(1−m2

)

]
=

−m2 R0

B0

{(
n

m
−

1

q

)(
r
d

dr

[
r
d

dr
δψ

]
−m2

δψ

)
+ rδψ

R0

B0

dJφ

dr

}
with(4.22)

ξ
r
0 =

R0

B0r

(
n

m
−

1

q

)−1 [
δψ −

rη

γ
∇2

(
δψ

r

)]
, (4.23)

Equations (4.22) and (4.23) form a complete eigenvalue equation for δψ that is quite rich in
physics, at least if analytical solutions are sought. Fortunately, there is a means of making
progress. Inertia, on the left hand side of Eq. (4.22) is only important very close to the
rational surface, i.e where q ≈ m/n. Assuming that growth rates are small, such that

γ/ωA ∼ ε
2
, then it is clear from Eqs. (4.22) and (4.23) that the inertia needs to be considered

only when |q −m/n| ∼ ε2 or less. In the outer region, where this is not the case, one simply
solves Eq. (4.22) with the left hand side equal to zero,

r
d

dr

(
r
dδψ

dr

)
+

(
R0

B0

)
rqmδψ

nq −m
dJφ

dr
−m2

δψ = 0. (4.24)

This equation is identical to Eq. (4.20) with LHS set to zero (setting inertia to zero in the ideal
equation), or Eq. (3.34), or Eq. (4.7) for the displacement ξ

r
0 , which can be solved for the flux

via ξ
r
0 = (R0/(B0r)) (n/m− 1/q)

−1
δψ which is Eq. (4.23) in the ideal limit (appropriate for

outer equations). In Eq. (4.24) for the flux, it is directly seen that ignoring the inertia in the
region of the rational surface leads to an un-physical singularity, thus confirming that both Eq.
(3.34) and Eq. (4.24) are only valid in the outer region.
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Outer region
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Equation (4.24) is solved for a particular m, n and
Jφ(r) etc from the inner boundary r = 0, with

BC’s δψ(r = 0) = 0 and δψ
′
(r = 0) = C1, and

separately from an outer boundary, e.g. r = a
with BC’s δψ(r = a) = 0 and δψ

′
(r = a) = C2. In

the first case, δψ is solved from r = 0 up to just
within the rational surface rs − δr, while in the
second case, δψ is solved from r = a up to just on
the other side of the rational surface rs + δr. We
are permitted to assume an infinitely thin inner
region, so that C1 and C2 are chosen such that
δψ(rs − δr) = δψ(rs + δr). But the two outer
solutions approach rs differently, such that
δψ
′
(rs − δr) 6= δψ

′
(rs + δr). The role of the inner

region is to resolve this singularity, matching the
outer region smoothly over a resistive layer
width δ. Thus we define

∆
′

=
δψ′

δψ

∣∣∣∣∣
rs+δr

rs−δr
δr → 0 (4.25)

for the outer region. As will be seen, this is
matched to the corresponding quantity evaluated
in the inner region were we account for resistivity
and inertia.
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Constant-psi approximation and asymptotic matching

The region close to the singular surface is often known as the inner region or layer
region. In the layer region, m− nq vanishes abruptly at the singular surface. The
resistive layer width over which resistivity and inertia is important is about 2δ.

Resistive interchange and m = 1 resistive internal kink modes have the
property that in the resistive layer rsδψ

′/δψ ∼ rs/δ � 1.

But tearing modes, for which ξr0 is almost odd parity with respect to layer
variable x = (r − rs)/rs have the property,

rsδψ′

δψ
∼ 1. (4.26)

That δψ varies very weakly across the layer will be exploited in the layer analysis
to follow, in particular we will adopt the constant-psi approximation for tearing
modes. Despite the weak variation in δψ, the second derivative across the layer
will not be insignificant. It is approximately,

δψ′′ ≈
δψ∆′δ

2δ
with ∆′δ =

δψ′(x = δ)− δψ′(x = −δ)
δψ(x = 0)

(4.27)

For matching of the inner region with the outer region we must calculate the
asymptotic values of the appropriate variables through the inertial-resistive layer.
Hence, in the layer region we evaluate,

∆′ =
1

δψ(x = 0)

[
lim
X→∞

δψ′(X)− lim
X→−∞

δψ′(X)

]
. (4.28)
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Constant-psi approximation and asymptotic matching
While δψ varies slowly for tearing modes, the displacement always varies fast over the layer
region, hence we expect (ξ

r
)
′ ∼ ξr/δ, and (ξ

r
)
′′ ∼ (ξ

r
)
′
/δ, and hence

r2s(ξr)′′

ξr
∼
r2s

δ2
.

Thus, from Eqs. (4.27) and (4.28)

r2sδψ
′′

δψ
∼ δ∆

′ r
2
s(ξr)′′

ξr
.

Tearing modes conforming to the constant-psi approximation require that δψ varies in
the layer much more weakly than ξ

r
. This can now be seen to require that

δ∆
′ � 1. (4.29)

We note that by taking δr → 0 in Eq. (4.25) for the calculation of ∆
′

in the outer region we
evaluate the appropriate variables asymptotically in the ideal outer region, in preparation for
matching with the inner region. Hence, for the outer region:

∆
′

=
1

δψ(rs)
lim
δr→0

[δψ
′
(rs + δr)− δψ′(rs − δr)] = lim

δr→0

δψ′

δψ

∣∣∣∣∣
rs+δr

rs−δr
, (4.30)

where as mentioned earlier, δψ is obtained from the solution of Eq. (4.24) with appropriate

boundary conditions applied. This outer calculation of ∆
′

will be matched to the inner layer
∆
′

of Eq. (4.28). This is required because the inner layer calculation provides a relationship

between the growth rate and ∆
′
, but in the layer the value of ∆

′
is an unknown (it must be

matched from the determinable solution of the outer equations). Typically found that

rs∆
′ ∼ 1, so that Eq. (4.29) is met for δ/rs � 1.
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Current driven tearing modes
Recall that ideal internal modes are stable at order ε

2
. Pressure gradient effects and toroidal

effects are absent at order ε
2
, so only the drive from current gradient exists. We found that

external kink modes could be driven unstable with a certain choice of current profile, or
q-profile. This domain of instability for a given equilibrium current profile can be extended by
inclusion or resistive effects.
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ν=2

qa=3

ν=

qa=
This case is stable to Ideal External Kink modes (even m=3, n=1 mode). 
We can investigate stability of Internal Resistive Tearing Mode (n=1, m=2). It is UNSTABLE .




