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Linear MHD equations
Allow all the MHD variables (electromagnetic fields and fluid variables) to comprise the sum of
an equilibrium component and a perturbation which is small in comparison:

Q→ Q + δQ.

For example, employing the normal mode approach, the perturbations acquire the form
δQ(x, t) = δQ(x) exp(−iωt), representing disturbances that have always existed and do not
require initial conditions.

In MHD it is usually assumed that the equilibrium velocity u is negligible. This approximation
is valid providing the centrifugal forces associated with a circulating fluid is small. It is
convenient to define the perturbed fluid velocity in terms of the fluid displacement ξ such that

δu =
∂ξ

∂t
.

Here we have used the fact that there is no initial displacement at t = 0. Let us start by
assuming the standard ideal MHD momentum equation, and then linearise in perturbations:

ρ
∂2ξ

∂t2
= δF , (3.1)

where
δF = δJ ×B + J × δB −∇δP.

Again, we have assumed that the equilibrium u is zero (i.e. no equilibrium plasma flows or
momenta). The perturbed pressure can be written in terms of the fluid displacement as follows,

δP = −γP∇ · ξ − ξ ·∇P. (3.2)
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Linear force operator
This was obtained by taking the adiabatic equation of state (d/dt)(Pρ

−γ
) = 0 and linearising

to give:
∂δP

∂t
+
∂ξ

∂t
·∇P =

Pγ

ρ

(
∂δρ

∂t
+
∂ξ

∂t
·∇ρ

)
,

which must be combined with an equation for the rate of change of the perturbed mass density,
i.e. the mass density equation dρ/dt + ρ∇ · u = 0, so that ∂δρ/∂t + ∇ · (ρ∂ξ/∂t) = 0 , to give
the result (by integration).

We see that the perturbed pressure contains the adiabatic effect of −ξ ·∇P which is caused by
the displacement of the fluid orientated in the direction of the equilibrium pressure gradient.
The equilibrium pressure gradient is perpendicular to the equilibrium field lines, hence
−ξ ·∇P = −ξ⊥ ·∇P . Meanwhile, −γP∇ · ξ is the effect of compressibility, and the effect
necessarily involves ξ‖. Incompressibility requires dδρ/dt = 0 which in turn requires

∇ · δu = ∇ · ξ = 0.

The linearised magnetic field δB can be calculated by combining Faraday’s Law with Ohm’s
law, which integrates to give

δB = ∇× (ξ ×B), (3.3)

and consequently, from Amperes law, the perturbed current is

δJ = ∇× δB = ∇× [∇× (ξ ×B)]

thus giving the linearised perturbed force

δF (ξ) = ∇(γP∇ · ξ+ ξ ·∇P ) + [(∇×∇× (ξ×B))×B + (∇×B)× (∇× (ξ ×B))]. (3.4)

56 / 190



Approaches for solving MHD equations

The equation of motion Eq. (3.1) and Eq. (3.4) is now entirely in terms of the fluid
displacement vector ξ and the equilibrium magnetic field. There are at least four
ways of deploying Eq. (3.1) and Eq. (3.4) in order to analyse MHD stability, and
these are listed in order of their complexity (from most difficult to least difficult)

1. The Initial Value Problem

2. The Normal Mode Method

3. Variation of the total Energy

4. Energy Principle

The Initial Value Problem

Equations (3.1) and (3.4) are solved as an initial value problem. The complexity
of the MHD force operator usually means that this approach must be tackled
computationally. Whilst it yields a detailed description of the evolution of a
perturbation, it is often the case that this information is in excess of what is
required to characterise an instability. Hence the method lacks the overall power
of the other techniques. Nevertheless an advantage is that nothing is assumed
about the form of the time dependence of the perturbations (i.e. not necessarily
normal modes), so that the method provides a framework consistent with a
non-linear treatment.
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Conservation of energy
Before the normal mode, variational energy, and energy principle methods are considered, it is
useful to demonstrate that linear MHD perturbations conform to the conservation of energy.
The proof requires the definition of important and compact energy related quantities.

First, apply

∫
d
3
x ξ̇
∗· to the RHS and LHS of Eq. (3.1), where the volume integral is over all

the plasma volume so that ∫
d
3
x ρ ξ̇

∗ · ξ̈ =

∫
d
3
x ξ̇
∗ · δF (ξ), (3.5)

and since ∂/∂t(ξ̇
∗ · ξ̇) = ξ̇

∗ · ξ̈ + ξ̈
∗ · ξ̇ = 2ξ̇

∗ · ξ̈, then,

1

2

∂

∂t

(∫
d
3
x ρ

∣∣∣ξ̇∣∣∣2) =

∫
d
3
x ξ̇
∗ · δF (ξ). (3.6)

This is almost in the form of an energy conservation equation. A little bit more work is
required for this. Now,

1

2

∂

∂t

[∫
d
3
xξ
∗ · δF (ξ)

]
=

1

2

∫
d
3
x ξ̇
∗ · δF (ξ) +

1

2

∫
dx

3
ξ
∗ · δF (ξ̇)

where we used ˙δF (ξ) = δF (ξ̇) A VERY IMPORTANT PROPERTY IS NOW REQUIRED. We
will not prove it (see Freidberg for details). We require the self adjointness property∫

d
3
x ξ1 · δF (ξ2) =

∫
d
3
x ξ2 · δF (ξ1), (3.7)

Now, since δF (ξ) is linear in ξ, and since the time dependence in δF resides entirely in ξ then
˙δF (ξ) = δF (ξ̇). Thus together with the self-adjointness property we have,

1

2

∫
dx

3
ξ
∗·δF (ξ̇) =

1

2

∫
dx

3
ξ̇·δF (ξ

∗
) and therefore

∫
d
3
x ξ̇
∗·δF (ξ) =

1

2

∂

∂t

[∫
d
3
x ξ
∗ · δF (ξ)

]
.
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Normal mode method
Therefore, Eq. (3.6) can be written as the following energy conservation equation:

∂

∂t
[δK + δW ] = 0 (3.8)

where

δK =
1

2

∫
d
3
x ρ

∣∣∣ξ̇∣∣∣2 and δW = −
1

2

∫
d
3
x ξ
∗ · δF (ξ). (3.9)

Here, δK is the kinetic energy, and δW is the potential energy. One then clearly has

δK + δW = constant.

Conservation of Energy
For the study of spontaneously occurring instabilities, one assumes that the perturbations are
normal modes of the form

ξ ∼ exp(−iωt) (and therefore ξ
∗ ∼ exp(iωt)).

With the normal mode method one then solves (from Eq. (3.1))

− ω2
ρξ = δF (ξ), (3.10)

for the eigenvalue ω and each component of the eigenvector, where δF is given by (3.4).
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Normal mode method
In general, the eigenvalues can only be found by obtaining the solutions of three coupled
partial differential equations. Nevertheless, if the system contains a degree of symmetry (slab,
cylinder, axisymmetric torus) the complexity is reduced.

Before embarking on applications, another very important property is required. Substituting
the normal mode assumption into Eq. (3.5) one obtains

iω
3
∫
d
3
x ρ |ξ|2 = iω

∫
d
3
x ξ
∗ · δF (ξ)

and this directly ensures that for normal modes, the constant in the energy conservation
equation (Eq. 3.8) is zero

δK + δW = 0 (3.11)

so that

ω
2

=
δW

K
with K =

1

2

∫
d
3
x ρ |ξ|2 (3.12)

where
δK = −ω2

K

It is therefore clear that ω
2

is real. Normal modes therefore conform to either:

1. Two stationary modes, with one growing and the other decaying (i.e. ω
2
< 0), so that

ξ ∼ exp(±i|ω|t)
2. Two modes neither growing or decaying but both propagate with equal speeds and in the

opposite sense (i.e. ω
2
> 0), so that ξ ∼ exp(±|ω|t)

Thus, ω = 0 marks the transition between purely growing (or decaying) modes, and purely
propagating modes. Finally we note that Eqs. (3.11) and (3.12) are very important for the
variational energy method and energy principle method, as we will see later.
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Energy method for analysing stability

There are an infinite number of oscillations, or modes that conform to Eq. (3.11) or
equivalently Eq. (3.12). Conceptually, it is clear that we are primarily interested in the most
unstable modes, thus giving the largest growth rates. In the following, we will show that the
maxima or minima of

δW

K
,

with respect to variation over ξ, conforms to the equation of motion (i.e. the normal mode

equation Eq. (3.10)), and moreover, since ω
2

= δW/K, the minima (or maxima in −ω2
)

clearly identifies the most unstable mode.
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We start by perturbing the
”eigenvector” and ”eigenvalue”:

ω
2 → ω

2
+δω

2
, ξ→ ξ+δξ, ξ

∗ → ξ
∗
+δξ
∗
,

so that Eq. (3.12) becomes

ω
2
+δω

2
=
δW (ξ∗, ξ) + δW (δξ∗, ξ) + δW (ξ∗, δξ) + δW (δξ∗, δξ)

K(ξ∗, ξ) +K(δξ∗, ξ) +K(ξ∗, δξ) +K(δξ∗, δξ)



Energy method for analysing stability

There are an infinite number of oscillations, or modes that conform to Eq. (3.11) or
equivalently Eq. (3.12). Conceptually, it is clear that we are primarily interested in the most
unstable modes, thus giving the largest growth rates. In the following, we will show that the
maxima or minima of

δW

K
,

with respect to variation over ξ, conforms to the equation of motion (i.e. the normal mode

equation Eq. (3.10)), and moreover, since ω
2

= δW/K, the minima (or maxima in −ω2
)

clearly identifies the most unstable mode.
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-ω2 -ω2>0: ξ ~ exp(|ω| t)

-ω2<0: ξ ~ exp(i|ω| t)

ξ

-(ω2+δω2)

ξ+δξ

ξmin

ξmin0

We start by perturbing the
”eigenvector” and ”eigenvalue”:

ω
2 → ω

2
+δω

2
, ξ→ ξ+δξ, ξ

∗ → ξ
∗
+δξ
∗
,

We note that we want to find the
extrema of the above wrt ξ, which

clearly requires δω
2

= 0.

ω
2

=
δW (ξ∗, ξ) + δW (δξ∗, ξ) + δW (ξ∗, δξ) + δW (δξ∗, δξ)

K(ξ∗, ξ) +K(δξ∗, ξ) +K(ξ∗, δξ) +K(δξ∗, δξ)

∣∣∣∣∣
δξ→0,ξ→ξmin



Energy method for analysing stability

Retaining δω
2

for now, and Taylor expanding the denominator, we have

ω
2
+δω

2
=
δW (ξ∗, ξ) + δW (δξ∗, ξ) + δW (ξ∗, δξ) + δW (δξ∗, δξ)

K(ξ∗, ξ)

[
1−

K(δξ∗, ξ)

K(ξ∗, ξ)
−
K(ξ∗, δξ)

K(ξ∗, ξ)
− O(

K(δ2)

K
)

]

Continuing by linearising in small δ we have

ω
2

+ δω
2

=
δW (ξ∗, ξ)

K(ξ∗, ξ)
+
δW (δξ∗, ξ) + δW (ξ∗, δξ)

K(ξ∗, ξ)
−
δW (ξ∗, ξ)

K(ξ∗, ξ)

[
K(δξ∗, ξ)

K(ξ∗, ξ)
+
K(ξ∗, δξ)

K(ξ∗, ξ)

]

Now substituting ω
2

= δW (ξ
∗
, ξ)/K(ξ

∗
, ξ) we have,

δω
2
K(ξ
∗
, ξ) = δW (δξ

∗
, ξ) + δW (ξ

∗
, δξ)− ω2 (

K(δξ
∗
, ξ) +K(ξ

∗
, δξ)

)
.

or, since δK = −ω2
K,

−
δω2

ω2
δK(ξ

∗
, ξ) = δW (δξ

∗
, ξ) + δW (ξ

∗
, δξ) + δK(δξ

∗
, ξ) + δK(ξ

∗
, δξ). (3.13)

Thus, the extremum in ω
2
, for which δω

2
= 0, conforms to an extremum (or stationary point)

of
δK(ω

2
, ξ
∗
, ξ) + δW (ξ

∗
, ξ)

over variation with respect to ξ for constant ω. We now have to demonstrate that the
stationary point of δK + δW conforms to the normal mode equation.
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Energy method for analysing stability

Examining Eq. (3.13) we have:

0 =

∫
d
3
x
{
δξ
∗ · δF (ξ) + ξ

∗ · δF (δξ) + ω
2
ρδξ
∗ · ξ + ω

2
ρξ
∗ · δξ

}
.

Now, applying the self adjoint property of Eq. (3.7),

∫
d
3
x ξ
∗ · δF (δξ) =

∫
d
3
x δξ · δF (ξ

∗
)

we have

0 =

∫
d
3
x
{
δξ
∗ ·
[
ω

2
ρξ + δF (ξ)

]
+ δξ ·

[
ω

2
ρξ
∗

+ δF (ξ
∗
)
]}
,

Because δξ
∗

is arbitrary, it means that the stationary point of δK + δW over a variation wrt ξ

for constant ω
2
, reproduces the equation of motion ω

2
ρξ + δF (ξ) = 0.

In much of the remaining parts of this course, we will obtain the linear growth rate by
minimisation of δK + δW via the Euler-Lagrange equations. Typically, much of the
minimisation will be done algebraically, leaving the total energy to be minimised in terms of
only the radial component of the displacement,

δK + δW =

∫ edge

0
dr I(ω

2
, r, ξr, ξ

′
r)

for some I to be identified, and ξ
′
r = dξr/dr. The extremum of δK + δW with respect to

variation over ξr for constant ω
2

is given by the Euler-Lagrange equation:

∂I

∂ξr
−

d

dr

{
∂I

∂ξ′r

}
= 0. (3.14)
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Energy principle
The primary interest is to know simply whether a particular equilibrium is linearly unstable to
a particular type of instability, or not. The exact eigenvalue and eigenvector might be surplus
to requirements. If this is the case, the energy principle is the most efficient way to proceed
with stability (or instability) analysis. From Eq. (3.12), and noting that K(ξ, ξ

∗
) is positive

definite, we have

sign{ω2} = sign{δW}

where we note that the RHS depends only on ξ, and is independent of ω
2
. One can then

analyse whether an equilibrium has the ‘potential’ to be unstable by applying all physically
allowable trial functions in δW to see if any of them generate sign{δW} = −1, i.e. instability.
Mathematically this is equivalent to finding the minimum of δW over variation in ξ, and to see
if this minimum δW is negative.

We note that the extremum of δW does not in general conform to the normal mode equation,
since the inertia δK has been neglected. Nevertheless, close to marginal stability, it might be
expected that the ξmin, which satisfies δW (ξmin) = δWmin, could be employed to give

ω
2 ≈

δWmin

K(ξmin)
?

However, the above relation completely breaks down for some modes, such as the internal kink
mode. This apparent anomaly remains true even as we approach the stability boundary, for

which ω
2 → 0. For the internal kink mode, we will see that minimisation of the total energy

reveals K ∝ 1/ω, so that ω ∝ δW .

The minimisation of δW does correctly recover the stability threshold (which will
identify conditions for instability such as threshold pressure gradient - this is the

concept of the Energy Principle), but any information regarding ω
2

has to be obtained
through variation of the total energy δK + δW .
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Convenient form for δW
First, insert Eq. (3.4), using Eq. (3.3) into Eq. (3.9) and integrate by parts (use divergence
theorem) to give,

δW =
1

2

∫
P
d
3
x
{
|δB|2 − ξ∗ · [J × δB + ∇(ξ · ∇P )] + γP |∇ · ξ|2

}
−

1

2

∫
dS (n·ξ∗) (γP∇ · ξ −B · δB)

where n is a vector pointing normal to the plasma surface S, and dS is a surface element,
covering the plasma-vacuum interface. Here subscript P denotes integration over the plasma
volume.

It can be shown that only the perpendicular component of ξ
∗
, i.e. ξ

∗
⊥, survives in

ξ
∗ · [J × δB + ∇(ξ · ∇P )] on integration (see Eqs. (4.24) - (4.27) of White ”Theory of

Toroidally Confined Plasmas, 2nd Edition”). Further simplifications are made by integration
by parts. The surface integral can be converted to a volume integral over the vacuum region
(denoted V ), to obtain

δW = δWP + δWV

where δWP =
1

2

∫
P
d
3
x
{
|δB|2 − ξ∗⊥ · (J × δB) + (ξ⊥ · ∇P )∇ · ξ∗⊥ + γP |∇ · ξ|2

}
, (3.15)

and δWV =
1

2

∫
V
d
3
x
∣∣∣δ̂B∣∣∣2 (3.16)

where δ̂B is the perturbed magnetic field in the vacuum region, which is coupled to plasma
displacement by solving ∇ · δ̂B = ∇× δ̂B = 0, subject to the conditions (n is normal to a
conducting wall),

n · δ̂B|b = 0 and n · δ̂B|a = n ·∇× (ξ⊥ ×B)|a (3.17)

where b is the conducting wall ‘radius’ (surface position) and a is the ‘radius’ (surface
position) of the plasma-vacuum interface, so that a < b.
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Convenient form for δW
This nearly completes the derivation of the intuitive form of δW . What remains is to separate
|δB| and J into perpendicular and parallel components. Use is made of (see exercises)

J⊥ =
B ×∇P

B2
and δB‖ = −B (∇ · ξ⊥ + 2ξ⊥ · κ) +

ξ⊥ ·∇P

B
(3.18)

where the curvature κ = (b ·∇)b, (where b = B/B) to give for Eq. (3.15)

δWP (ξ, ξ
∗
) = δW⊥(ξ⊥, ξ

∗
⊥) + δW (ξ, ξ

∗
) where, (3.19)

δW⊥(ξ⊥, ξ
∗
⊥) =

1

2

∫
P
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
(3.20)

δW (ξ, ξ
∗
) =

1

2

∫
P
d
3
x γP (∇ · ξ)2, (3.21)

where J‖ is the parallel equilibrium current density.

Since δB = ∇× (ξ⊥ ×B) then it is seen that δW⊥ is independent of ξ‖. Each of the terms in

Eq. (3.20) has a simple physical interpretation.

I The first term in δW⊥ is always stabilising and is the magnetic energy in the Alfvén
wave associated with field line bending.

I The second term is also stabilising and corresponds to the energy necessary to compress
the magnetic field and describes the major potential energy contribution to
magnetosonic waves.

I The third term, proportional to the pressure gradient, is the potential energy drive for
the ballooning and interchange instabilities. It is destabilising if ∇P and κ are parallel
to one another (unfavourable curvature).

I The fourth term is the free energy arising from the current and is responsible for kink
instabilities. Finally, δW is the energy required to compress the plasma. It is stabilising.
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Incompressibility
Before using the energy method it is essential to attempt a reduction in the complexity of the
analysis. Here we demonstrate that under certain conditions, the dimensions of the system can
be reduced from three to two.

Equation (3.20) shows that δW⊥ is independent of ξ‖. This means that δW can be minimised

with respect to ξ‖ by only considering δW . It is clear that δW is positive definite and
minimises to zero when ∇ · ξ = 0. This requires that the parallel flow satisfies

B
∂

∂l

(
ξ‖

B

)
= −∇ · ξ⊥. (3.22)

Near marginal stability, from the point of view of obtaining the eigenfunction, variation of δW
is equivalent to the variation of δK + δW . Hence near marginal stability (weak growth rate),
instabilities are nearly incompressible, and the parallel displacement will be approximately
given by Eq. (3.22). Thus near marginal stability, δW can be written in terms of ξ⊥ alone.
Note though that the total energy depends on the parallel displacement via δK(ξ⊥, ξ‖). As
shown in the exercises, inclusion of ξ‖ in δK renormalises the growth rate compared to the

incompressible MHD model codes (e.g. TERPISCHORE) that ignore it. The renormalisation is

γ
2 → (1 + 2q

2
)γ

2
(as seen in exercise series 4).

One should note that the parallel displacement does not satisfy Eq. (3.22) far from the
stability boundary, i.e. normal modes are not incompressible when their rate of growth is large.
Where the effects of compressibility are expected to be important, the adiabatic model, which
generates δW (ξ, ξ

∗
), is lacking in rigour, and a more sophisticated model is required to

account for the parallel dynamics.

For most of this course, the incompressible MHD model is investigated (i.e. we take variations
of δK⊥ + δW⊥ + δWV ). At the end of the course, kinetic effects are included in order to
account for ‘kinetic compressibility,’ i.e. the kinetic analogue of δW (ξ, ξ

∗
). We now briefly

comment on a few fundamental concepts of kinetic MHD.
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Comment: alternative kinetic-MHD closure
The aim is to avoid the adiabatic equation of state for the energy equation

d

dt

(
Pρ
−γ
)
, which

yields Eq. (3.2), i.e δP = −γP∇ · ξ − ξ ·∇P , and replace this with a kinetic closure which
ultimately yields

δP = I(ξ⊥ ·∇P ) + δP
k

(3.23)

where the pressure tensor conforms to the diagonal tensor defined in Eq. (1.7). Also δP
k

will

be defined later, but suffice to say at present that δP
k

depends explicitly on ξ⊥ and ω.

Rather than employing the full MHD equations, we choose the (more valid) perpendicular
MHD equations defined by Eqs. (1.8), derived earlier. Ignoring equilibrium plasma flows, one
then has the perpendicular normal mode equation,

− ω2
ρξ⊥ = δF⊥(ξ⊥), (3.24)

with

δF⊥(ξ⊥) = [∇− b(b ·∇)](ξ⊥ ·∇P )− [∇− b(b ·∇)]δPk⊥ − (δPk‖ − δPk⊥)κ +

[(∇×∇× (ξ⊥ ×B))×B + (∇×B)× (∇× (ξ⊥ ×B))]⊥ . (3.25)

We now follow the energy method of ideal MHD, but this time, form the dot product of Eq.
(3.24) with ξ

∗
⊥ and integrate over all space, giving

δK⊥ + δW⊥ + δWV + δWk = 0 (3.26)

where

δK⊥ = −ω2 1

2

∫
d
3
x ρ |ξ⊥|

2
and δWk = −

1

2

∫
d
3
x
[
δPk⊥(∇ · ξ∗⊥)− (δPk‖ − δPk⊥)ξ

∗
⊥ · κ

]
From inspection, it is clear that δW⊥ is simply that defined in Eq. (3.20), and δWV is simply
that defined in Eq. (3.16).
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Comment: alternative kinetic-MHD closure

This is obvious because the sum of the δW contributions has to be identical if we
set γ → 0 and ξ→ ξ⊥ in the MHD model, and δPk = 0 in the kinetic model.
Hence, δWk has replaced the compressibility term, δW , of the MHD model. One
other subtle difference is that δK⊥ has replaced δK. This modification to the
inertia is currently being explored by a number of researchers, but it is out of the
scope of this course (I can supply references for those interested)

We note that Eq. (3.26) forms a dispersion relation, and if the force operator
associated with δWk is self-adjoint, one is permitted to apply variation to Eq.
(3.26), and thereby recover the perpendicular equation of motion Eq. (3.24). Thus
we have been able to avoid the MHD parallel equation of motion. Parallel
dynamics will be controlled by the drift kinetic equation. In principle the latter
obtains a kinetic equation analogous to Eq. (3.22), so that the parallel
displacement is not required explicitly.

The generalised dispersion relation of Eq. (3.26) is extremely powerful. It is
capable of including the physics of wave-particle interaction, e.g. Landau
damping. Modes frequently investigated include the internal kink mode, including
the interaction of fast ions on sawteeth and fishbones. Also investigated are
kinetic ballooning modes, interchange modes, infernal modes, resistive wall modes,
and many others.
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Inverse aspect ratio expansion of stability equations
We will consider stability to large scale modes (long wavelengths). We will expand all
quantities in inverse aspect ratio. At lowest order in ε, the results are identical in a torus and a
cylinder. The derivations are a little different from those typically found in textbooks, which
often start by assuming cylindrical geometry.

In an axisymmetric torus, a perturbation may be described by a Fourier decomposition in
poloidal harmonics as

ξ(r, θ, φ) =
∑
m

ξ
(m)

(r)e
i(nφ−mθ−ωt)

by virtue of the periodicity in the poloidal and toroidal directions. Since the equilibrium
magnetic field strength B ≈ B0(1− ε cos θ) is a function of θ, coupling in the different poloidal
harmonics arises in ξ. This coupling will not appear in the present lecture since only lowest
order effects are considered at present, and as a consequence, we do not need to be so careful
about the definition of θ (we often assume straight field line coordinates, more details in the
exercise series).

We will minimise δW with respect to ξ. We permit ourselves to introduce the inertia δK later,
should growth rates be required, and we can order δK as required (depends on closeness to
stability threshold). To aid the analysis the eigenvector is expanded as follows:

ξ = ξ0 + ξ1 + ξ2,

where the subscript denotes inverse aspect ratio ε = r/R0 ordering of each term, e.g.

ξ2/ξ0 ∼ O(ε
2
). Subsequently, it is found that

δW = δW0 + δW2 + δW4.

δW0, δW2 and δW4 are minimised with respect to ξ0, ξ1 and ξ2 as shown in the following.
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Minimisation of δW0
We initially consider the plasma region, i.e. δW⊥ defined in Eq. (3.20). In both
δW0 and δW2 we use (see exercise series)

ξ⊥ = ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ

ξr = ξ⊥ ·∇r, ξθ⊥ = rξ⊥ ·∇θ, ξφ⊥ = Rξ⊥ ·∇φ.

δB⊥ = δBr∇r + rδB⊥θ∇θ +RδB⊥φ∇φ

δBr = δB⊥ ·∇r, δBθ⊥ = rδB⊥ ·∇θ, δBφ⊥ = RδB⊥ ·∇φ.

We will later show (also exercises) that δB⊥0 ∼ εB0∇ · ξ⊥0. Since also P ∼ ε2B2,
only the second term in the convenient expression Eq. (3.20) for δW appears at
leading order:

δW0 =
1

2

∫
d3xB2 |∇ · ξ⊥0 + 2ξ⊥0 · κ|

2 . (3.27)

Since this term is positive definite the minimisation of Eq. (3.27) corresponds to
∇ · ξ⊥0 + 2ξ⊥0 ·κ = 0, which gives δW0 = 0. The leading order displacement does

not allow poloidal coupling; ξ0 = ξ0(r)ei(nφ−mθ−ωt). With this and
∇ · ξ⊥0 + 2ξ⊥0 · κ = 0 one has (see exercises):

ξθ⊥0 = −
i

m

∂

∂r
(rξr0) . (3.28)

We have seen that magnetic field compression energy vanishes at order zero. Since
δW0 = 0, the next order contribution δW2 must be considered.
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Minimisation of δW2
All except the third term in Eq. (3.20) feature in δW2. This term is neglected because the

ordering of β ∼ O(ε
2
) yields that terms involving the equilibrium pressure first appear in δW4.

Referring to Eq. (3.20) it is now clear that

δW2 =
1

2

∫
d
3
x
(
|δB⊥0|

2
+ B

2 |∇ · ξ⊥1 + 2ξ⊥1 · κ|
2 − J‖(ξ

∗
⊥0 × b) · δB⊥0

)
. (3.29)

The second term is minimised to zero by a constraint on ξ⊥1 such that,

∇ · ξ⊥1 + 2ξ⊥1 · κ = 0. (3.30)

Meaning that magnetic field compression vanishes also at second order. Hence ξ⊥1 is
eliminated from the problem at order δW2, which is convenient, because ξ⊥1 comprises
poloidal harmonics in a torus, each harmonic satisfying (see exercises):

∂

∂θ
ξ
θ
1 +

∂

∂r

(
rξ
r
1

)
= 0.

It is now clear that δW (and associated growth rates) calculated to order ε
2

are the
same in a torus and a cylinder (screw pinch).

For minimising δW2 we require δB⊥0 in terms of ξ
r
0 . The perturbed field is defined in terms

of the displacement via Eq. (3.3). As shown in the exercises:

δB
r
0 =

imB0

R0

(
n

m
−

1

q

)
ξ
r
0

δB
θ
0 =

B0

R0

∂

∂r

[(
n

m
−

1

q

)
rξ
r
0

]
. (3.31)

which is sufficient to define δB⊥ and |δB⊥| to the necessary order in δW2. In addition, from
Ampère’s law:

J‖ ≈ Jφ =
1

r

d

dr
(rBp) ≈

B0

R0

1

r

d

dr

(
r2

q

)
. (3.32)
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Minimisation of δW2
Hence, using

∫
d
3
x ≈ R0

∫ 2π

0
dφ

∫ 2π

0
dθ

∫ a
0
r dr we have simply,

δW2 =
2π2B2

0

R0

∫ a
0
dr

{
r

[
m

2
(
n

m
−

1

q

)2

|ξr0 |
2

+

(
d

dr

[(
n

m
−

1

q

)
r|ξr0 |

])2
]

+

(
d

dr

[
r2

q

]) [(
n

m
−

1

q

)
|ξr0 |

d

dr
(r|ξr0 |) + |ξr0 |

d

dr

[(
n

m
−

1

q

)
r|ξr0 |

]]}
.

Replacing ξ
r
0 with ξ

r
0/ exp(−imθ + inφ− iωt) so that we may drop the modulus in |ξr0 |, and

after some integration by parts and cancellation, Eq. (3.29) becomes,

δW2 =
2π2B2

0

R0

{∫ a
0
dr r

[(
r
dξr0

dr

)2

+
(
m

2 − 1
)

(ξ
r
0)

2

](
n

m
−

1

q

)2

+

a
2
(ξ
r
0(a))

2
[

2

qa

(
n

m
−

1

qa

)
+

(
n

m
−

1

qa

)2]}
(3.33)

where qa = q(a). Equation (3.33) shows that to second order in the inverse aspect ratio,
internal modes (δB

r
(a) = 0, ξ

r
(a) = 0) are stable to ideal MHD since all the terms in the

plasma region are positive or zero.
I Surface corrections (such that perturbed magnetic fields will extend into the vacuum)

also appear at order ε
2
, and these can be destabilising. This is the only source of

destabilisation at order ε
2

in the ideal model.
I Resistive corrections also introduce possibility of destabilisation at order ε

2
(see later)

I At second order in δW , toroidal corrections determine the eigenfunction ξ⊥1, but the
stability problem (also growth rate - see later) eliminates ξ⊥1 in such a way that its

effect is irrelevant. Hence the stability of a cylinder and a torus is identical at order ε
2
.

I Hence ideal external kinks and resistive tearing modes, which can be unstable at order

ε
2
, can often be legitimately treated under the cylindrical approximation (i.e. single

harmonic, no toroidicity). Most NTM analytic modelling is based on cylindrical
treatment.

I Ideal internal modes must calculate δW to order ε
4
, where toroidal effects are crucial.
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Field line bending stabilisation
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Consider internal modes conforming to
Eq. (3.33) for which we force δB(a) = 0.
We will examine whether this is a valid
boundary condition. First, the integrand
of Eq. (3.33) is positive definite,
meaning that internal modes cannot be
unstable at this order in δW . However,
we see that marginal stability occurs
when q(r) = m/n in all the plasma.

For negligible magnetic shear the
stabilisation associated with the bending
of field lines, in response to a plasma
displacement, vanishes when the pitch of
the unperturbed magnetic field lines is
perpendicular to the wave vector (see
figure), i.e. when

|δB⊥| ∝ k‖B = 0 ≈
(
n−

m

q

)
B0

R0

Recall the ”frozen in theorem”, which
should help in understanding the figure.
Bending field lines requires energy

(

∫
d
3
x |δB⊥|

2
/2), and this strongly

damps instabilities. Instabilities occur
when and where field line bending is not
strong (where q(r) ≈ m/n).

perturbed
fluid
displacement

e.g. outer flux surface

e.g. inner flux surface

B
B

B B
B

B

B

k is perpendicular to B, i.e. k_par =0.
Field lines move, due to frozen
In theorem, but they don’t bend.

k is parallel to B, i.e. k_par is non-zero
Frozen in theorem means that field lines
have to bend with fluid motion



Internal modes

The m = 1 mode is a special case. Magnetic field line bending stabilisation (see figure for

explanation) vanishes for ξ
r
0 ∼ r

m−1
, since (ξ

r
0)
′

= 0 and m
2 − 1 = 0. This solution is valid

near the magnetic axis. In order to satisfy the boundary condition ξ
r
0(a) = 0, the displacement

can reduce δW2 to zero by being constant in the core region where q < 1 (assuming n = 1),
and zero in the region where q > 1. There is a narrow transition region, or layer region, which
requires consideration of the effect of inertia (later). Since δW2 vanishes, we need to go to δW4.
At this order, toroidal effects, including the Shafranov shift, are crucial. The effects of inertia,
and toroidal effects on the m = n = 1 internal kink mode will be considered in detail later. 76 / 190

We minimise the energy of Eq. (3.33) by applying the
Euler-Lagrange minimisation, as defined in Eq. (3.14), giving

d

dr

[(
n

m
−

1

q

)2

r
3 dξ

r
0

dr

]
= (m

2−1)

(
n

m
−

1

q

)2

rξ
r
0 . (3.34)

We note that for n = 0 this turns out to be the same
equation as Eq. (2.26) defining the equilibrium shaping
terms Sm.

Equation (3.34) is singular for q = m/n. Near the magnetic
axis q is approximately constant, so that the exact solution

for small r is ξ
r
0(r) ∼ r−1±m

, where the regular solution at
r = 0 is clearly:

ξ
r
0 ∼ r

m−1
and ξ

θ
0 ∼ −(i/m)ξ

r
0 .

For m > 1 the mode amplitude vanishes at the plasma
centre. At the edge, under certain conditions, modes can be
driven unstable by the magnetic field that extends into the
vacuum region. These external kink modes will be
considered later.

m=1 fluid displacement just shifts
the field lines onto displaced torus.
As seen, field lines don’t bend
in poloidal plane in response to m=1.

B B

r rξ



m = 1 internal kink mode
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2

Both δW0 and δW2 have been minimised to zero.
That is, the internal kink mode is marginally

stable to order ε
2
. The stability of the kink mode

therefore depends on the fourth order correction,
i.e. since both δW0 and δW2 have been minimised
to zero one must consider fourth order terms. In
calculating δW4 the results for ξ⊥0 and ξ⊥1 given
in the previous two sections must be used. The
remaining component of ξ⊥1 together with ξ⊥2
must be identified.

A cylindrical calculation accurate to fourth order
in the aspect ratio was first published by
Rosenbluth (1973). However, for the all important
n = 1 case, Bussac et al (1976) demonstrated that
the fourth order cylindrical calculation is
irrelevant. By including the toroidal effects of
Shafranov shifted circular flux surfaces, Bussac
showed that the fourth order solution has the form

ˆδW4 =
(
1− q2s

)
ˆδW
C
4 + q

2
s

ˆδW
T
4 (3.35)

with δW = ˆδW (2π
2
R0B

2
0 |ξ

r
0 |

2
ε
4
)
∣∣∣
r1−δ

where qs = m/n (= 1/n for m = 1), ˆδW
C
4 is the

cylindrical potential energy [Rosenbluth] and ˆδW
T
4

is a toroidal contribution.



Notes

Toroidal and cylindrical δW

With qs = m
2
/n

2
and m = 1:

ˆδW = (1− q2s) ˆδWC + q
2
s

ˆδWT

with

ˆδWC = −
1

εsq4s

∫ rs
0

dr r2

r3s
α

ˆδWT = −
1

ε2sq
4
s

{[
3 + c

1− c

] [∫ rs
0

dr r2

r3s
α

]2

−
13

4
ε
2
s

∫ rs
0

dr r3

r4s
qs

(
1

q
−

1

qs

)}
,

where,

α = −
2q2sR0

B2
0

dP

dr

so that

βp = −2
q(rs)2

B2
0ε

2
s

∫ rs
0

dr r2

r2s

dP

dr
=

1

εs

∫ rs
0

dr r2

r3s
α.

Also c has to do the upper sideband. Analytical solutions are possible. For example, for

q = qs + ∆[(r/rs)
ν − 1],

for qs = 1 we obtain c = −3+12ν∆/(4−ν). The well known result ˆδW
T
4 ≈ 3(1−q0)[(β

c
p)

2−β2
p]

is obtained for ν = 2 and ∆ = 1− q0.



m = n = 1 internal kink mode

78 / 190

The n = m = 1 internal kink mode
produces a rigid shifted torus, with
the field line surfaces displaced
from the original toroidal surfaces
by amplitude ξ

r
. Due to the radial

dependence of ξ
r
, the shift occurs

only in the core region where q < 1.

It is seen that the cylindrical term is entirely
cancelled (for n = 1) by the inclusion of toroidal
effects!! This was probably a massive surprise, and
made the community realise that inclusion of full
toroidal effects is not simply important, but
crucial, even in the limit of infinite aspect ratio.
The m = n = 1 mode generates a new tilted
toroidal equilibrium. The field lines lie on new
toroidal surfaces which are shifted relative to the
initial equilibrium by ξ

r
.

Such is its complexity, the calculation for δW4 has
only been performed analytically by a few
researchers, and is beyond the scope of this course.
Toroidal effects will be uncovered in more detail in
this course by considering interchange and
ballooning modes (these modes are easier to
treat).

For a simple quadratic q profile:

ˆδW
T
4 ≈ 3(1− q0)

(
(β
c
p)

2 − β2
p

)
, (3.36)

where βp = βp(r1), and typically 0.1 < β
c
p < 0.3.

So it is seen that the internal kink mode is an
ideal mode, with instability governed by the
q-profile, and pressure profile.




