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Content of this lecture

2. Grad-Shafranov solutions: toroidal and shaped axisymmetric
equilibria

The poloidal flux ψ, toroidal field Bφ = F/R, the local pitch ql
and safety factor q
Straight field line coordinates
Flux coordinates for equilibrium expansion
Harmonic and ε expansion of the Grad Shafranov Equation
Solution to the toroidal field
The equation for the Shafranov shift
The equation for the penetration of cross section shaping
Toroidicity and pressure: particle trapping
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Recap of Lecture 1

The Grad-Shafranov equation has been derived. It was shown that a tokamak equilibrium can
be generated via:
(1) Given profiles in the pressure P (ψ) and the ‘current’ function F (ψ) with respect to ψ.
(2) The flux ψ on a fixed boundary defined by (R,Z)boundary .

With the introduction of flux coordinates, where ψ = ψ(r), with r a minor radius with units of
length, we are able to initialise the problem with
(1) P (r), q(r) (via Eq. (2.3). An alternative to q(r) would be to define the toroidal current
density J averaged over the flux surface defined by r, since from Eqs. (1.12) and (1.15) we have

〈
Jφ
〉

(r) =
〈R〉
ψ′

P
′

+

〈
1

R

〉
F

ψ′
F
′

where 〈X〉 (r) =

∫ 2π
0 dωXJ∫ 2π
0 dωJ

(2) The flux ψ on a fixed boundary defined by (R(r, ω), Z(r, ω))boundary

Typically, one would verify that the choice of ψ (with units Tesla m
2
) at the boundary is

consistent with the toroidal magnetic field (known experimentally). Also known, to some
extent experimentally is the distribution of current Iφ(r), and certainly Iφ enclosed within the

vessel. Note that
〈
Jφ
〉

(r) is related to the toroidal current Iφ(r) enclosed within the surface
defined by r.

From this, one will then obtain the surfaces in R(r, ω), Z(r, ω) on which the field lines and
current lines lie (the flux surfaces). Moreover, we can obtain B(r, ω) and J(r, ω) etc.
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Recap of Lecture 1
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Flux Coordinate representation of B
We start with the general coordinate system (r,Θ, φ), the system becoming a flux coordinate
system by setting ψ = ψ(r), i.e. ψ is independent of poloidal angle.

For such flux coordinates, we may write the full field Eq. (1.10) as

B = Bφeφ + Bpep

= F (r)∇φ + ∇φ×∇ψ

=
F (r)

R(r,Θ)︸ ︷︷ ︸
Bφ

R∇φ︸ ︷︷ ︸
eφ

+
ψ(r)′|∇r|
R(r,Θ)︸ ︷︷ ︸
Bp

R(r,Θ)∇φ×∇r

|∇r|︸ ︷︷ ︸
ep

(2.1)

where ψ
′

= dψ/dr and eφ,p are unit vectors. Notice that this definition of Bp is consistent
with the intuitive definition of the poloidal flux of Eq. (1.11),

Bp =
|∇r|
R

dψ

dr
→ ψ =

∫
dr

RBp

|∇r|

As a final remark, it is always possible to define B in Clebsch form,

B = ∇β ×∇ψ = ψ
′∇β ×∇r, β = β(r,Θ, φ)

As will be seen in the exercises and later when we consider stability problems, the Clebsch
form can be a convenient definition when using straight field line coordinates, less so otherwise.

I In this course we will use Θ→ ω for equilibrium expanded coordinates, and Θ→ θ for
straight field line coordinates. As we will see, we will adopt the same radial variable for
both.
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Pitch ql and q for flux coordinates (r,Θ, φ)

Recall that the local field pitch ql defined by Eq. (1.16) defines the trajectory of
the field line on each flux surface ψ or r, hence,

ql =
dφ

dΘ
=
B ·∇φ

B ·∇Θ

Noting that the Jacobian of the flux coordinate system (r,Θ, φ) is
J−1

Θ = (∇φ×∇r) ·∇Θ we see that,

ql =
B ·∇φ

B ·∇Θ
=

F/R2

ψ′(∇φ×∇r) ·∇Θ
=
F (r)JΘ

ψ(r)′R2
(2.2)

The safety factor is the poloidally averaged field line pitch, defined via Eq. (1.17).
For general flux coordinates (r,Θ, φ) we have that,

q(r) =
1

2π

∫ 2π

0
ql(r,Θ) dΘ =

F (r)

ψ′
1

2π

∫ 2π

0
dΘ

JΘ

R(r,Θ)2
(2.3)
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Straight field line flux coordinates (r, θ, φ)
We now explore the characteristics of straight field line coordinates (r, θ, φ). As explained
earlier, these have the property ql = q, i.e. that ql is independent of poloidal angle Θ→ θ.
Clearly, from Eq. (2.2) we have that the poloidal dependence in J enters solely via a

proportionality with R
2
,

Jθ =
q(r)ψ′R(r, θ)2

F (r)
. (2.4)

We can now identify how ψ
′

depends on r by consideration of the volume element dv
3

which
by definition is

dv
3

= Jθ dr dθ dφ

At the magnetic axis r = 0, we have that R(r, θ) = R0 a constant. Infintesimally close to the

axis the volume element is dv
3

= R0r dr dθ dφ, and away from r = 0, Jθ must have poloidal

dependence proportional to R
2
. These two constraints ensure the volume element and

Jacobian are given by

dv
3

= Jθ dr dθ dφ, Jθ =
rR(r, θ)2

R0

.

Equating this identity of the Jacobian with Eq. (2.4) we have

ψ
′

=
r

R0

F (r)

q(r)
(2.5)

or rearranging,

q(r) =
r

R0

F (r)

ψ′
(2.6)

or from taking the ratio of the field components in Eq. (2.1), q = rBφ|∇r|/(R0Bp).
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Fourier expansion of equilibrium
I Notice that the identification of the straight field line system has not yet helped us solve

the equilibrium problem, in particular the location of the contours of constant ψ in the
R-Z cross section. One way to do that is to Fourier expand R and Z over angle Θ

I Substitution the Fourier series into the Grad-Shafranov operator (1.13) and equation
(1.15) will identify the equations for the coefficients.

I We will see that the up-down symmetric series of Eqs. (1.24) and (1.25) when
substituted into Grad-Shafranov equation allows all the equations for the coefficients to
decouple from each other.

I We expand the coefficients in smallness parameter ε = r/R0, the local inverse aspect
ratio (note, near the magnetic axis this parameter is small even in a spherical tokamak).
First let us assume only intuitive Shafranov-displaced circular surfaces:

R(r,Θ) = R0

(
1 + ε ε cos Θ− ε2

∆(r)

R0

+ O(ε
3
)

)
Z(r,Θ) = R0

(
ε ε sin Θ + O(ε

3
)
)
,

This particular expansion in R and Z can now easily be shown to be inconsistent with straight
field line coordinate system. The Jacobian (see notes pages Lecture 1, and exercises) is:

JΘ = R

(
∂R

∂r

∂Z

∂Θ
−
∂R

∂Θ

∂Z

∂r

)
Substitution of R and Z above into JΘ yields

JΘ = rR0

{
1 + ε(ε−∆

′
) cos Θ + O(ε

2
)
}

which is not proportional to R(r,Θ)
2
, i.e. the flux coordinates of this aspect ratio expanded

equilibrium are not straight field line coordinates. For this equilibrium expansion problem, we
use Θ→ ω henceforth, and denote the Jacobian Jω .
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Equilibrium expanded coordinates (r, ω, φ)

Stability problems are most easily treated with straight field line coordinates (reasons given in
later lectures), but to evaluate dispersion relations, growth rates etc, coefficients in the
stability equations will depend on toroidicty (or shaping), and these effects will need to be
converted to the straight field line coordinates deployed in the stability problem.

I The conversion problem is simplified by ensuring the radial variable r is the same in
both systems, and hence the dependence of the flux ψ on r.

I We ensure the safety factor profile q(r) is the same for systems, and thus from Eq. (2.5)
F (r) is the same for both.

Although F (r) and ψ(r) are the same, it should be reminded that Bφ and Bp depend on
poloidal angle, and hence are distributed differently across the coordinate systems.

Equations (2.1), (2.2), (2.3), (2.5) and (2.6) are valid for both systems. An important
constraint for the equilibrium expanded system is formed by equating Eqs. (2.3) with (2.6),
which gives:

r

R0

=
1

2π

∫ 2π

0
dω
Jω
R2

(2.7)

This constraint enforces on the equilibrium expanded system (r, ω, φ) the relations of Eqs.
(2.5) or (2.6), which were obtained intuitively from the straight field line system (r, θ, φ).

Coordinate transformation
Finally, with the radial variable being the same, equating the volume elements of each
coordinate system reveals a simple coordinate transformation (see exercise),

dθ

dω
=
Jω
Jθ

(2.8)
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Expansion of equilibrium
Plasma shaping is added to the circular shifted expansion in an intuitive way, by adding an
even Fourier harmonic to R and subtracting an odd Fourier harmonic to Z. The distance of
the flux surface from the magnetic axis, averaged over poloidal angle, is roughly maintained to
be r.

R(r, ω) = R0

(
1 + ε ε cosω − ε2

∆(r)

R0

+ ε
2
∞∑
m=2

Sm(r)

R0

cos(m− 1)ω + ε
3 P(r)

R0

cosω + O(ε
4
)

)
(2.9)

Z(r, ω) = R0

(
ε ε sinω − ε2

∞∑
m=2

Sm(r)

R0

sin(m− 1)ω + ε
3 P(r)

R0

sinω + O(ε
4
)

)
, (2.10)

We carry an artificial tag, ε, which is used to denote the size of each term relative to the
inverse aspect ratio. This approach is very useful for algebraic manipulation and minimisation,
computational algebra or otherwise. There is an assumption on the size of shaping coefficients
relative to ε. We obtain (exercises).

Jω = rR0

{
1 + ε(ε−∆

′
) cosω + ε

∞∑
m=2

(
S
′
m − (m− 1)

Sm

r

)
cos(mω) + O(ε

2
)

}
(2.11)

gr,ω = r

{
ε∆
′
sinω − ε

∞∑
m=2

(
S
′
m + (m− 1)

Sm

r

)
sin(mω) + O(ε

2
)

}
(2.12)

gω,ω = r
2

{
1− ε2

∞∑
m=2

(m− 1)
Sm

r
cos(mω) + O(ε

2
)

}
(2.13)

Although not needed for this lecture, stability problems sometimes require the metric
evaluated at higher. For this, P(r) is retained as an unknown, then the constraint of Eq. (2.7)
yields P(r) in terms of the coefficients, which is then substituted back into the geometric
tensor at higher order.

P(r)

R0

= ε

(
ε2

8
+

∆(r)

2R0

)
+

∞∑
m=2

1−m
2ε

(
Sm(r)

R0

)2
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Notes

The exercises from week 1 use

Jω = R

(
∂R

∂r

∂Z

∂ω
−
∂R

∂ω

∂Z

∂r

)
, gr,ω =

∂Z

∂r

∂Z

∂ω
+
∂R

∂r

∂R

∂ω
, gω,ω =

(
∂Z

∂ω

)2

+

(
∂R

∂ω

)2

The expression for Jacobian can be calculated to the next order, with P(r) as an unknown (see
e.g. J. P. Graves, PPCF 55, 074009 (2013)):

Jω = rR0(J0 + J1 + J2),

with

J0 = 1

J1 =
(
ε−∆

′
)

cosω +
∑
m

(
(1−m)

Sm

r
+ S
′
m

)
cosmω

J2 = −
∆

R0

+
Sm

R0

cos(m− 1)ω − cosω

[
ε∆
′
cosω +

(
(m− 1)Sm

R0

− εS′m

)
cosmω

]
−P − rP′

εR0

− (m− 1)Sm

(
S
′
m −∆

′
cos(m− 1)ω

)
Substituting this and the expansion of R into the constraint of Eq. (2.7) yields,

P(r)

R0

= ε

(
ε2

8
+

∆(r)

2R0

)
+
∞∑
m=2

1−m
2ε

(
Sm(r)

R0

)2

.

The geometric tensor is then known to higher order, e.g.

J2 = −
ε

2
[ε+∆

′
(2+cos 2ω)]−2

∆

R0

+
∑
m

[
εS
′
m +

Sm

R0

(1−m)

]
cosω cosmω+

∑
m

Sm

R0

[
1 + (m− 1)

∆′

ε

]
cos(m−1)ω.



Harmonic and ε expansion of the Grad Shafranov
Equation

Depositing these ε expansion terms into the Grad-Shafranov equation of Eqs. (1.22) and (1.15)
yields

ψ′2

r

{
1 + ε

(
r∆
′′

+ ∆
′ −

r

R0

)
cosω − ε

∞∑
m=2

(
rS
′′
m + S

′
m + (1−m2

)
Sm

r

)
cos(mω) + O(ε

2
)

}
+

ψ
′
ψ
′′
{

1 + ε2∆
′
cosω − ε2

∞∑
m=2

S
′
m cos(mω) + O(ε

2
)

}
+ R

2
0

(
1 + ε2

r

R0

cosω + O(ε
2
)

)
P
′

+ FF
′

= 0 (2.14)

So, gathering Fourier components, we clearly have

cos(0ω) :

[
1

2r2

(
r
2
ψ
′2
)′

+ R
2
0P
′

+ FF
′
]

[1 + O(ε
2
)] = 0, (2.15)

cos(ω) :

[
∆
′′

+

(
2
ψ′′

ψ′
+

1

r

)
∆
′ −

1

R0

+ 2
rR0P

′

(ψ′)2

]
[1 + O(ε)] = 0, (2.16)

cos(mω) :

[
S
′′
m +

(
2
ψ′′

ψ′
+

1

r

)
S
′
m +

1−m2

r2
Sm

]
[1 + O(ε)] = 0. (2.17)

I Eq. (2.15) describes the balances of forces by the plasma pressure (∇P ) and the

magnetic pressure (∇B
2
/2), and describes how the poloidal and toroidal fields prevent

the plasma from expanding in the ∇r direction.
I Eq. (2.16) yields the radial equation for the Shafranov shift, and expresses how the

poloidal field prevents the plasma pressure from expanding the plasma in the ∇R
direction.

I Eq. (2.17) yields the radial equation for the shaping. The shaping profiles depend only
on the shaping at the boundary, and (we will see) on the q-profile. It has no dependence
on the pressure at this order.
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The full toroidal field from ∇r equation
We now solve Eq. (2.15), which is an equation for F (r). This of course provides us with the
solution to the toroidal magnetic field, Bφ = F (r)/R. An order expansion of Eq. (2.15) shows
us that we write

F = R0B0[1 + ε
2
F2(r) + O(ε

4
)], (2.18)

thus the solution to Eq. (2.15) provides us with the weak correction F2(r).

Eq. (2.15) depends on operations on ψ
′
, which from Eq. (2.5) we have

(
r2ψ′2

)′
2r2

=
(ψ′)2

r

[
2− s +

rF ′

F

]
with s =

r

q

dq

dr

ψ
′

=
rB0

q
[1 + O(ε

2
)], and thus

(
r2ψ′2

)′
2r2

=

(
B0

q

)2 1

r

[
2− s + O(ε

2
)
]

(2.19)

Hence, substituting F and Eq. (2.19) into Eq. (2.15) we have

(
ε
r

R0

)2 ( 2− s
q2

)(
1 + O(ε

2
)
)2

+ ε
2 rP

′

B2
0

+

[
1 +

(
ε
r

R0q

)2] (
1 + O(ε

2
)
)
ε
2
rF
′
2 = 0,

Taking leading order terms (i.e. dropping O(ε
4
) terms, we have on integrating:

ε
2
F2 = −ε2

P

B2
0

− ε2
∫ r
0

dr r

R2
0

(
2− s
q2

)
+ O(ε

4
) (2.20)

Note that the orders above assume that P/B
2
0 ∼ ε

2
, which is conventional ordering. However

Eqs. (2.18) and (2.20) are valid even when P/B
2
0 ∼ ε, although F2 would be renamed F1 and

the ε tags would have to be modified.
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The effect of pressure on Bφ and B

The toroidal field Bφeφ = Feφ/R has now been fully described. Need still to obtain the
poloidal field, and thus the total field, and field strength. Now from Eq. (1.10) the poloidal field

Bp = ψ
′∇φ×∇r = ψ

′|∇r||∇φ|ep where ep =
∇φ×∇r

|∇r||∇φ|
Here, clearly, ep is the unit vector pointing in the poloidal direction. From Eqs.(1.20) and

(2.19), and noting that |∇φ|2 = 1/R
2

and |∇r|2 = gω,ωR
2
/J 2
ω , we have:

Bp = ψ
′
√
gω,ωep

Jω
= B0

[(
εr

R0q

)
1

1 + ε(ε−∆′) cosω + ε
∑∞
m=2 S

′
m cosmω

+ O(ε
3
)

]
ep.

(2.21)For many applications, it of great interest to evaluate the magnetic field strength |B|, or

indeed B
2
. Since ep is perpendicular to eφ we have B

2
= B

2
φ +Bp

2
:

B
2

= B
2
0

[(
1 + F2

1 + ε cosω −∆/R0 +
∑∞
m=2(Sm/R0) cos(m− 1)ω

)2

+

ε2

q2

(
1

1 + (ε−∆′) cosω +
∑∞
m=2 S

′
m cosmω

)2

+ O(ε
4
)

]
(2.22)

We now see that the field strength is affected by the plasma pressure in two ways.
(1) Pressure reduces the toroidal field through F2. This is known as the diamagnetic effect of
the plasma pressure.
(2) Furthermore, we will see that ∆

′
is governed by the plasma pressure, and this in turn

strongly influences the poloidal field. It is clear that this enters through the 1/Jω dependence

of Bp, which in turn enters through the local field line pitch dφ/dω = FJω/(R2
ψ
′
).
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The ∇R equation: Shafranov Shift
So, here we consider the force balance equation with cosω dependence, i.e. Eq. (2.16). This
equation can be integrated once, to obtain

∆
′

=
1

R0rψ′2

[
−2R

2
0

∫ r
0
dr r

2
P
′

+

∫ r
0
dr rψ

′2
]

Now, recalling that ψ
′

= rF/(qR0) we obtain the convenient expression

∆
′
(r) =

r

R0

[
βp(r) +

li(r)

2

]
(2.23)

where βp is the local poloidal beta

βp(r) = −2
R4

0q
2

F2r4

∫ r
0
dr r

2
P
′ ≈

2〈
B2
p

〉 [〈P 〉 − P (r)] with F ≈ R0B0 (2.24)

where 〈X〉 = V (r)
−1
∫ V (r)

0
dV X is average of X within the volume defined by r. Also, li is

the local internal inductance

li(r) = 2
q2

F2r4

∫ r
0
dr

r3F2

q2
≈ 2

q2

r4

∫ r
0
dr

r3

q2
≈

4

Ip(r)2R0

∫ V (r)

0

1

2
B

2
p dV. (2.25)

where Ip is the plasma current.
Equation (2.23) describes J ×B = ∇P force balance in the ∇R direction. The first term on

the right attempts to increase the plasma volume. Since V ≈ 2π
2
r
2
R, the volume of a torus

can of course can be increased by increasing R. This force is known as the Tyre Tube Force,
since the air pressure in a toroidal inner tube similarly expands the major radius of the tyre.
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The ∇R equation: Shafranov Shift
The second term on the right of Eq. (2.23) is due to the toroidal current. It turns out the
origin for this outward force, known as the Hoop Force, in the ∇R direction, is analogous to
the Tyre Tube Force, but where the plasma pressure is replaced by minus the poloidal
magnetic pressure. To see this, one has to consider the two relevant quantities ψ and P , both
of which are constants on the flux surface, and thus have the same value on the inboard or
outboard side. Since ψ passes a smaller area on the inboard side than the outboard side, then
the Bp(in) > Bp(out) (this is clear from the 1/R dependence in Bp, though the effect is
reduced for increased Shafranov shift). The outward Hoop Force is

FHoop ∼ [Bp(in)
2
Sin − Bp(out)

2
Sout]eR,

where the quadratic dependence of Bp wins over the inverse dependence of S. Similarly, the
Tyre Tube Force can be written

FTyre = −P (Sin − Sout)eR,

whereby, as mentioned earlier, the force occurs because Sin < Sout.
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The balancing of the force on the
left hand side of (2.23), i.e. ∆

′
, is

caused by the compression of the
flux surfaces, i.e. the compression
of the poloidal flux on the LFS of
the torus. Clearly the compression
is measured by the Shafranov shift
displacement ∆.

Bp(out)Bp(in)

P Sin P Sout

Sin Bp
2(in) Sout Bp

2(out)

Sout> Sin

Ψout= ψin , hence Bp(in) ≈ Bp(out) R out /Rin

Pout =Pin

Sout

Sin

ψin Ψout



Experimental Shafranov Shift
By inspection of βp and li is is clear that ∆

′
and ∆ are monotonically increasing functions of

r. Our definition of the Shafranov shift, ∆, is the shift relative to the magnetic axis B0, which
is located at R = R0. Beware! This is not the definition understood by experimentalists!

For an experimentalist, the real world starts at the vessel wall, or the plasma edge. So any
shift, due to toroidal effects, would be relative to the plasma edge. Defining Rout(a) as the
plasma edge (a) on the LFS, and Rin(a) as the plasma edge on the HFS, the Shafranov shift
at a particular flux surface r is typically defined as the difference between the ‘centres’ of these
surfaces:

∆exp(r) = [Rout(r) + Rin(r)]/2− [Rout(a) + Rin(a)]/2

Hence ∆exp is maximum at the magnetic axis, i.e. the opposite of the definition of the
theoretician. Nevertheless, experimentalists should also beware. Since Rout = R(r, ω = 0) and
Rin = R(r, ω = π), then referring to Eqs. (1.24) and (1.28) we have:

∆exp(r) = ∆(a)−∆(r) +
rδ(r)

4
−
aδ(a)

4
and especially ∆exp(0) = ∆(a)−

aδ(a)

4

A measurement of enhanced ∆exp might lead one to believe that the configuration might be
more resistant to instability, since e.g. it is known that pressure gradients drive various
instabilities as well as the Shafranov shift. So, a large Shafranov shift would indicate that large
pressure gradients have been estabilished, and the very existance of large pressure gradients
would imply that MHD instabilities must have been tamed. However, one can also enhance
∆exp(r) via e.g. negative triangularity and lower pressure gradients.

Hence, to summarise, the Shafranov shift is a very important quantity. It describes the
primary effect of toroidicity in a tokamak. Many of the stability properties derived in the
straight cylindrical approximation of a torus are entirely cancelled by toroidal effects. For such
instabilities, the remaining stability criteria are due to toroidicity (and shaping), and
sometimes the criteria can be written explicitly in terms of the Shafranov shift.
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Shafranov shift with negative and positive triangularity
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Equation for shaping coefficients
The shaping coefficients are given by the solution of the cos(mω) terms in the Grad-Shafranov

equation, i.e. Eq. (2.17). Substituting Eq. (2.19), and ignoring small corrections in F
′
2, we

have,

r
2
S
′′
m + [3− 2s(r)]rS

′
m + (1−m2

)Sm = 0, (2.26)

so we see that the penetration of the shaping into the core, from the defined shaping at the
boundary, depends only on the magnetic shear (to leading order). If the magnetic shear is
vanishingly small, one simply has

Sm(r) = Sm(a)

(
r

a

)m−1

So that, from Eq. (1.28), one has for a flat q-profile:

κ(r) = κ(a) and δ(r) = δ(a)
r

a
,

i.e. elongation remains constant from the edge to the magnetic axis, while the triangularity
drops off linearly towards the core, and thus vanishes at the magnetic axis.

Magnetic shear modifies the penetration of the shaping into the core. An increase in the
magnetic shear reduces the shaping in the core, while a decrease in shear increases the shaping.
For an advanced scenario, negative magnetic shear actually increases κ and δ inside a region of
negative shear. This can be seen by taking

q(r) = 1−∆q

[
1−

(
r

r1

)2]
and thus s(r) = 2

∆q

q(r)

(
r

r1

)2
.
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Equation for shaping coefficients

Giving exactly,

Sm(r) = Sm(a)
( r
a

)m−1 q(r)s(r) + 2(1−∆q)(1 +m)/(m− 1)

q(a)s(a) + 2(1−∆q)(1 +m)/(m− 1)

For ∆q � 1 one then obtains the useful expressions,

κ(r) = κ(a)−
[κ(a)2 − 1][q(a)s(a)− q(r)s(r)]

12 + [1 + κ(a)]q(a)s(a)− [κ(a)− 1]q(r)s(r)
and δ(r) = δ(a)

(
r

a

)
4 + q(r)s(r)

4 + q(a)s(a)

These expressions are almost exact for a q-profile with a quadratic dependence in
r. However, since these expressions are written in terms of q(r) and s(r), they
might be used with some confidence for wider classes of safety factor. Certainly,
these expressions describe the penetration of the shape from an arbitrary surface,
a (not necessarily the plasma edge) into a surface inside, denoted by r, where the
q-profile in the region {r, a} is locally quadratic.

The penetration of the shaping into the core region, from the boundary, is
important from the stability point of view. Linear MHD stability in tokamaks is
sensitive to the shaping (and Shafranov shift) in the region where the particular
instability exists, and especially on rational surfaces. Rational surfaces and MHD
instabilities will be considered in the remainder of this course.

45 / 190



Shaped Plasma Cross Section
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Notes

Components of Bp

We know that the poloidal field is perpendicular to the toroidal field. Moreover, since the ω
direction is not the poloidal direction, then if we attempt to write the poloidal field in terms of
the ω direction, there has to be a correction factor pointing in the r (outwards from the flux
surface) direction. However, we exploit the fact that we know that the true poloidal direction is
perpendicular to r. Let,

ep ≡
∇φ×∇r

|∇r||∇φ|
= A∇ω + B∇r

Dotting this with ∇r, we note that the LHS vanishes, hence we may rearrange to obtain

B = −A
∇r ·∇ω

|∇r|2
= A

gr,ω

gω,ω
.

We still need to obtain A. However, since ep is a unit vector, we must have

ep =
∇ω +

gr,ω
gω,ω

∇r√
∇ω2 + 2

gr,ω
gω,ω

∇ω ·∇r +

(
gr,ω
gω,ω

)2
∇r2

.

Noting that ∇ω = |∇ω|eω and ∇r = |∇r|er , then from Eq. (1.20) we can rearrange to obtain

ep =

eω +

(
g2
r,ω

gω,ωgr,r

)1/2

er(
1−

g2
r,ω

gω,ωgr,r

)1/2



Notes

Now, |∇ω| which appears in gr,r has yet to be evaluated. One finds that

gr,r =

(
∂Z

∂r

)2

+

(
∂R

∂r

)2

= 1 + O(ε
2
) = 1− ε

(
2∆
′
cosω + 2

∞∑
m=2

S
′
m cosmω

)
+ O(ε

2
)

which gives,

√√√√ g2
r,ω

gω,ωgr,r
= ε∆

′
sinω − ε

∞∑
m=2

(
S
′
m + (m− 1)

Sm

r

)
sinmω + O(ε

2
),

and thus,

ep =
eω +

[
∆′ sinω −

∑∞
m=2

(
S′m + (m− 1)Sm

r

)
sinmω

]
er(

1−
[
∆′ sinω −

∑∞
m=2

(
S′m + (m− 1)Sm

r

)
sinmω

]2)1/2
+ O(ε

2
).

But, noting that the denominator should be replaced by unity at this order, because
√

1− ε2 =

ε
2
/2 + .., so that

ep = eω +

[
∆
′
sinω −

∞∑
m=2

(
S
′
m + (m− 1)

Sm

r

)
sinmω

]
er + O(ε

2
).

That the magnetic field appears to point partially in the radial direction seems, on first thought
to be wrong, since we know that r is a flux coordinate describing the surface of constant P . In
fact, there is not a net radial field. Indeed, eω is not aligned tangentially to ep, which itself
is tangent to the poloidal boundary. This means that relative to ep it turns out that eω has a
small component in the er direction (recall that the coordinates are not orthogonal). The role
of the radial field Bp · er is to cancel this out.



Importance of Poloidal and Toroidal Fields

B

J

R

TORUS WITH PURE TOROIDAL B TORUS WITH PURE POLOIDAL B

Field lines just slip around flux surface in 
response to a R-force due to imperfect 
conductor at wall. Flux cannot be trapped.
Applied external field cannot generate 
J^B in R direction. 

J

An idealised equilibrium can be generated,
Since poloidal flux can be compressed, and 
Field lines do not displace.  Can also use vertical 
field to create Radial force. But any displacement
Of perfect equilibrium, and we have disaster, i.e.
very poor MHD stability properties (e.g. sausage). 

B
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The Necessity of Vertical Field Coils

Within the plasma, the compression of the magnetic field compensates the Tyre Tube Force
and the Hoop Force. At the plasma edge (r = a) force balance has to be manufactured by
engineering. The poloidal magnetic field at the plasma edge is (see earlier total field and
poloidal field expansion):

Bp =
ψ′g1/2

ω,ω

Jω

∣∣∣∣∣∣
r=a

=
ψ′(a)

R0

[
1 + [∆

′
(a)− ε(a)] cosω −

∞∑
m=2

S
′
m(a) cosmω

]
. (2.27)

This value must be matched on the vacuum side of the plasma-vacuum interface. The vacuum
poloidal field can be established from Jφ = 0, i.e. from Eq. (1.12), ∆

∗
ψ = 0 for r > a. It is

possible to integrate ∆
∗
ψ = 0 outwards using Eq. (2.27) as an initial point. The asymptotic

value for Bp for increasing r is proportional to cosω. Hence Bp = Bpep for large r is
orientated vertically.

In practice (for reasonable plasma pulse times) it is necessary to manufacture this vertical field
Bvert via vertical field coils. The effect on the plasma edge should be intuitive: a force is
generated in the −eR direction via the cross product of the vertical field with the toroidal
plasma current, i.e. FReR = Jφ ×Bvert

If a conducting wall is placed close to the plasma edge, the poloidal flux will compress between
the plasma edge and the wall, providing the necessary force balance without vertical field coils.
However, the vessel wall will not be a perfect conductor, and as such, the poloidal flux can
only remain compressed for a skin time, which is typically short compared to experimental
times of interest. Tokamaks therefore are designed with vertical field coils, and usually they
have a fairly close fitting wall.
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Toroidicity and pressure effects on single particles
A single particle in a tokamak is considered to be trapped if it cannot circulate around the
entire poloidal cross section. The standard definition of a point in phase space where the
particle is trapped is given by

v‖ = 0.

Now from elementary theory, we assume that the kinetic energy E = v
2
‖ + v

2
⊥ is conserved over

the trajectory of the particle (constant E assumes there is no time varying electric field).

Moreover, the magnetic moment µ = v
2
⊥/(2B) is an (adiabatic) invariant. Consequently the

poloidal variation of v‖ is given by,

v‖(r, ω) = 2
√
E − µB(r, ω) (2.28)

For a low energy particle, which is strongly tied to a flux surface r (so that the banana width
is small), the trapping angle ωt, if it exists, is defined simply by

B(r, ωt) = E/µ.

The condition for whether a particle is trapped or passing is determined by the location of ω
where the field is at a maximum. A trapped particle requires:

Bmax = B(r, ωmax) > E/µ

If this state exists, then particles will ‘roll around’ in a magnetic well.
Ignoring the effects of shaping and pressure in the poloidal field, one simply finds that
B ∝ 1/R, and hence B increases monotonically with ω up to ωmax = π. However, in spherical
tokamaks, the poloidal field is large (ε isn’t small), and moreover, pressure gradients are large.
Consequently, B is not generally a monotonic function of ω, and resultingly, special (tear-drop)
trapped particles are generated.
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Application: particle trapping and plasma pressure
Field strength plotted as a function of ω at constant r (= 0.7). Assumed spherical
tokamak B0 = 1T, R0 = 1, a = 0.7, with circular cross section (κ(a) = 1, or
S2(a) = 0 and δ(a) = 0, or S3(a) = 0). Chosen monotonic q-profile, and
monotonic pressure profile reveal large Shafranov shift through internal
inductance (see later). The plasma pressure was taken to be zero.

It is seen that the well in the magnetic field is conventional, meaning that the
minimum in B is at ω = 0, and rises monotonically with respect to ±ω.
Consequently, conventional banana trapped particles are to be expected (as well
as circulating particles).
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Application: particle trapping and plasma pressure
Again plot field strength as a function of ω at constant r (= 0.7). Assume spherical tokamak
B0 = 1T, R0 = 1, a = 0.7, with typical shaped cross section (κ(a) = 1.9, or S2(a) = −0.22
and δ(a) = 0.2, or S3(a) = 0.035). Monotonic q-profile, and poloidal beta βp(a) = 0.4.

The dependence of Magnetic field with ω is unconventional. However, such a dependence is a
normal occurrence in a spherical tokamak. There are two minima in the field, each located
between π/4 < |ω| < π/2. Given sufficiently small initial parallel velocity, particles can be
trapped in this region. Conventional banana orbits also exist, but the bounce tips of such
particles cannot reside on the local magnetic hill!

The local magnetic wells occur because the toroidal field is reduced globally by the pressure
(through the diamagnetic effect F2, and because the poloidal field is generally enhanced
because of large ε near the edge of a spherical tokamak. The poloidal field can be locally
enhanced due to the local shear ql = dφ/dω i.e. the denominator of Bp is strongly reduced via

∆
′

at |ω| = π/2, and through S
′
2 at |ω| = π/4.
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Conventional deeply trapped particles cannot entirely reside in this region
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Tear-Drop Orbits in Spherical Tokamaks
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The radial excursion of a trapped (or passing) particle can be
accurately determined in terms of the equilibrium parameters that we
have derived. In the drift formulation, one finds exactly (Magnetic
confinement course):

dψ

dt
=

m

Ze
F
d

dt

( v‖
B

)
.

From Eq. (2.19) we have,

dr

dt
=
dψ

dt

dr

dψ
=
qR0

r

m

Ze
F
d

dt

( v‖
B

)

Now integrate directly, take F (r) as a constant, noting motion across
field lines is slow compared to along field lines (along ω(t), note e.g.
dθ/dt ≈ v‖/(qR)), and F depends weakly on r. Hence:

r(t)− r(t0) ≈
q(t0)R0

r(t0)

m

Ze

(
v‖[ω(t)]

B[ω(t)]
−
v‖[ω(t0)]

B[ω(t0)]

)

which is an equation for r(ω). From Eq. (2.28) recall that v‖ can be

written in terms of B(ω) and the constants of motion.
For the conventional banana orbit, we choose a 350keV proton, with

µ/E = 1/B0 = T
−1

with r(t0) = 0.4 giving trapping angle
ωt = ω(t0) = ±2.26 rads.
For the tear drop orbits, we choose a 3.5MeV proton, with

µ/E = 1/Bmin − 0.005 = 1.94/B0 = 1.94T
−1

with r(t0) = 0.67 and
giving trapping angles |ωt| = |ω(t0)| = 0.54 rads and
|ωt| = |ω(t0)| = 0.84 rads.




