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Plasma Instabilities

Solutions for Exercises Series 7

Fast ion effects on pressure driven long wavelength instabilities

Autumn Semester 2023

J. P. Graves

1. It is useful to make an initial change of variables, writing as :

nh = 2π
∑
σ

∫ ∞
0

dv‖

∫ ∞
0

dX⊥Fh

where σ is the sign of v‖ and

X⊥ =
v2⊥
2
.

The density is then,

nh = 2π
∑
σ

∫ ∞
0

dE
∫ 1/B

0

dλ J Fh,

where we note the limits of integration follow from the discussion at the start of the question sheet, and the
Jacobian of transformation is,

J =

∣∣∣∣∂v‖∂E ∂X⊥∂λ − ∂v‖

∂λ

∂X⊥
∂E

∣∣∣∣ .
Due to integration range in λ, we no longer need to concern ourselves with the sign of v‖ in the following
definitions:

v‖ =

(
2E
mh

)1/2√
1− λB, X⊥ =

EλB
mh

.

We obtain

J =

∣∣∣∣∂v‖∂E ∂X⊥∂λ − ∂v‖

∂λ

∂X⊥
∂E

∣∣∣∣
=

∣∣∣∣∣
((

2E
mh

)1/2

(2E)−1
√

1− λB

)(
EB
mh

)
−

((
2E
mh

)1/2

(−B/2)
1√

1− λB

)(
λB

mh

)∣∣∣∣∣
=

∣∣∣∣∣ 1

2mh

(
2E
mh

)1/2
B√

1− λB
[(1− λB) +Bλ]

∣∣∣∣∣
=

∣∣∣∣ EBm2
hv‖

∣∣∣∣
Hence, ∫ ∞

0

dv‖

∫ ∞
0

dX⊥ =
1

m2
h

∫ ∞
0

dE E
∫ 1/B

0

dλ
B

|v‖|

We thus obtain the required result,

nh =
2π

m2
h

∑
σ

∫ ∞
0

dE E
∫ 1/B

0

dλB

|v‖(E , λ)|
Fh(E , λ, σ, r).
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2. This question simply notes that the energy and pitch angle integrals de-nest when the distribution is isotropic.
Using the definition of v‖ and noting that Fh is independent of λ and σ for an isotropic distribution function,
one obtains:

nh =
23/2π

m
3/2
h

(∫ ∞
0

dE E1/2Fh(E , r)
)(∫ 1/B

0

dλB√
1− λB

)

where we have replaced
∑
σ with 2.

Also, for the trapped density we note the comment at the start of the question sheet, in particular that at a
given position (r,Θ), with corresponding magnetic field B(r,Θ), trapped particles have pitch angles that fall in
the range,

1

Bmax
≤ λ ≤ 1

B(r,Θ)
.

Hence for the calculation of the trapped density the lower limit of integration in λ must be changed relative to
the calculation for the full density (where the lower limit is λ = 0):

nt =
23/2π

m
3/2
h

(∫ ∞
0

dE E1/2Fh(E , r)
)(∫ 1/B

1/Bmax

dλB√
1− λB

)

Note that for a general distribution that is not isotropic, the trapped density is

nt =
21/2π

m
3/2
h

∫ ∞
0

dE E1/2
∫ 1/B

1/Bmax

dλB√
1− λB

∑
σ

Fh(E , λ, σ, r)

and the total density is,

nh =
21/2π

m
3/2
h

∫ ∞
0

dE E1/2
∫ 1/B

0

dλB√
1− λB

∑
σ

Fh(E , λ, σ, r)

3. Since the integrals have been de-nested (due to isotropy) and since the distribution function is not inside the
pitch angle integral, the energy integrals cancel in the definition of the trapped fraction:

ft =
nt
nh

=

(∫ 1/B

1/Bmax

dλB√
1− λB

)/(∫ 1/B

0

dλB√
1− λB

)
.

The analytic result for the trapped fraction simply follows from the identity,∫
dλ (1− λB)−1/2 = −2

√
1− λB

and then a little algebra gives

ft =

(
1− B

Bmax

)1/2

.

The passing fraction can be obtained by integrating over passing pitch angle space

fp =
np
nh

=

(∫ 1/Bmax

0

dλB√
1− λB

)/(∫ 1/B

0

dλB√
1− λB

)
.

or we may obtain the result from the trapped fraction, i.e. fp = 1− ft.

4. From B = B0(1 − ε cos Θ) we have that the maximum value of B on a given flux surface r is at Θ = π. So,
Bmax(r) = B0(1 + ε). Substituting these identities into the trapped fraction, and keeping only the leading order
term in ε, we have

ft = ε1/2(1 + cos Θ)1/2.
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Note that text books usually quote the trapped fraction at Θ = 0, for which ft(Θ = 0) =
√

2ε. The quantity√
2ε is often presented as the trapped fraction, probably, because all trapped particles in a large aspect ratio

tokamak pass though Θ = 0, so the trapped fraction at Θ = 0 is where there are the most trapped particles.
Or it might be because some texts and lecture notes incorrectly assume that trapped particles, at any position
in the plasma, have pitch angles that fall in the range 1/Bmax < λ < 1/Bmin. The correct range at a given
position (r,Θ) with corresponding field strength B(r,Θ) is 1/Bmax < λ < 1/B(r,Θ). A more appropriate
trapped fraction which is independent of poloidal angle would be

ft ≈
1

2π

∫ π

−π
dΘ ft =

2

π

√
2ε

5. The trapped and passing fractions are plotted below for ε = 0.1

FIG. 1: Showing the passing and trapped fractions as a function of poloidal angle, assuming ε = 0.1

At Θ = 0 we have the largest trapped fraction and the smallest passing fraction. Particles that have turning
points near Θ = 0 are called deeply trapped particles. But we note that all trapped particles pass through
Θ = 0, even the ones that bounce near Θ = π. The passing fraction fp = 1− ft is clearly least at Θ = 0. There
will be less and less trapped particles as we increase Θ, some trapped particles bouncing before reaching the
considered value of Θ. The trapped fraction vanishes at Θ = π. Such particles, if they were to exist, would
spend an infinite time stuck at that point (analogous to a pendulum stuck vertically upwards). Particles with
turning points near the limiting value Θ = π are called barely trapped particles, there are very few of these if
the distribution is isotropic. Clearly at Θ = π the passing fraction fp = 1− ft is unity.

6. By making the requested transformation we easily obtain the result in the lectures:

Fh(E , µ, r) =
m

3/2
h nc(r)

(2π)3/2T⊥(r)T‖(r)1/2
exp

(
−
mhv

2
‖(Bmin)

2T‖(r)
− mhv

2
⊥(Bmin)

2T⊥(r)

)

=
m

3/2
h nc(r)

(2π)3/2T⊥(r)T‖(r)1/2
exp

(
−E − µBmin(r)

T‖(r)
− µBmin(r)

T⊥(r)

)
.

7. Use the identities (from conservation of energy and magnetic moment) given in the question, which yield,

v2⊥(Bmin) =
Bmin
B

v2⊥

and

v2‖(Bmin) = v2‖ + v2⊥(Bmin)

(
B

Bmin
− 1

)

= v2‖ + v2⊥

(
1− Bmin

B

)
.
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The result is then easily obtained,

Fh =
m

3/2
h nc(r)

(2π)3/2T⊥(r)T‖(r)1/2
exp

(
−
mhv

2
‖

2T‖(r)
− mhv

2
⊥

2T̂⊥(r,Θ)

)
,

1

T̂⊥(r,Θ)
=

1

T⊥(r)B(r,Θ)

[
Bmin(r) +

T⊥(r)

T‖(r)
(B(r,Θ)−Bmin(r))

]
.

8. Letting v‖ = x and v2⊥ = y the velocity integral is,∫
allV

d3v = 2π

∫ ∞
0

dx

∫ ∞
0

dy

and the modified b-Maxwellian is

Fh =
m

3/2
h nc(r)

(2π)3/2T⊥(r)T‖(r)1/2
exp

(
− mhx

2

2T‖(r)
− mhy

2T̂⊥(r,Θ)

)
.

The integrals de-nest, so we have,

nh =
m

3/2
h nc

(2π)1/2T⊥T
1/2
‖

[∫ ∞
0

dx exp

(
−mhx

2

2T‖

)][∫ ∞
0

dy exp

(
−mhy

2T̂⊥

)]
.

Then use, ∫ ∞
0

dz exp (−C1z) =
1

C1
,

∫ ∞
0

dz exp
(
−C2z

2
)

=
1

2

√
π

C2

The required result:

nh = nc(r)
T̂⊥
T⊥

.

is easily obtained on noting that

1

C1
=

2T̂⊥
mh

1

2

√
π

C2
=

√
πT‖

2mh
.

9. First we write 1/T̂⊥ in the form,

1

T̂⊥
=

1

T⊥

[
1 +

(
Bmin
B
− 1

)(
1− T⊥

T‖

)]
.

We consider Bmin/B − 1 ∼ ε(cos Θ − 1) a small parameter, while T⊥/T‖ − 1 may not be small in general. We
thus have approximately,

T̂⊥
T⊥
≈ 1 +

(
Bmin
B
− 1

)(
T⊥
T‖
− 1

)
and then using leading order B = B0(1− ε cos Θ) and Bmin = B0(1− ε), and thus Bmin/B − 1 ∼ ε(cos Θ− 1)
we obtain,

T̂⊥
T⊥
≈
[
1 +

(
T⊥
T‖
− 1

)
ε(cos Θ− 1)

]
.

Hence we easily obtain,

nh(r,Θ) = nc(r)
T̂⊥
T⊥

= nc(r)

[
1 +

(
T⊥
T‖
− 1

)
ε (cos Θ− 1)

]
.

The question asks us to show how anisotropy affects the density on the high field side and low field side. This
is easily done by noting that T⊥/T‖ − 1 > 0 for perpendicular anisotropy, for which the density is higher on the
LFS (small Θ for which cos Θ− 1 ≈ 0) than the HFS (for which cos Θ− 1 ≈ −2) due to the enhanced trapped
fraction. The opposite argument follows for parallel anisotropy.
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10. For the isotropic case the density is independent of Θ. Hence the density weighted average curvature is zero,
at least for the lowest order radial curvature defined in the question. We can in fact analytically calculate the
lowest order density weighted average curvature:

1

2π

∫ π

−π
dΘ

(
− 1

R0
cos Θ

)
nc(r)

[
1 +

(
T⊥
T‖
− 1

)
ε (cos Θ− 1)

]
=
nc(r)

R0

1

2π

∫ π

−π
dΘ ε

(
1− T⊥

T‖

)
(cos Θ− 1) cos Θ

=
nc(r)

R0

1

2π

∫ π

−π
dΘ ε

(
1− T⊥

T‖

)
cos2 Θ

=
nc(r)

2R0
ε

(
1− T⊥

T‖

)
.

Hence we see that the density weighted average curvature is zero for the isotropic case, it is positive for the
parallel anisotropic case T‖ > T⊥, and negative for the perpendicular anisotropic case T‖ < T⊥. Concerning
stabilisation or destabilisation for each case, read the comments at the end of the question (and look in the
lecture notes).

11. This question is similar to the last question, but this time we evaluate,

1

2π

∫ π

−π
dΘκ0 ·∇r nh(pass) =

1

2π

∫ π

−π
dΘ

(
− 1

R0
cos Θ

)
nh(pass).

with

nh(pass) = nc(r)
[
1− ε1/2(1 + cos Θ)1/2

]
.

Hence we evaluate,

1

2π

∫ π

−π
dΘ

(
− 1

R0
cos Θ

)
nc(r)

[
1− ε1/2(1 + cos Θ)1/2

]
=
ε1/2nc(r)

R0

1

2π

∫ π

−π
dΘ (1 + cos Θ)1/2 cos Θ

=
nc(r)

R0

2

3π
(2ε)

1/2

Taking the trapped fraction as ft = ε1/2(1 + cos Θ)1/2 we note that the average trapped fraction is

1

2π

∫ π

−π
dΘ ε1/2(1 + cos Θ)1/2 =

2

π
(2ε)

1/2
.

Hence we find that the density weighted average curvature is:

nc(r)

R0

ft
3

as requested in the question. As shown in the lecture notes, it is possible to obtain the passing density averaged
curvature for the bi-Maxwellian. For example, the trapped and passing fractions can be calculated exactly for
anisotropic cases, and expanded for small ε.


