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Plasma Instabilities

Solutions for Exercises Series 5

Linear and non-linear Tearing Modes

Autumn Semester 2023

J. P. Graves

1. On the separatrix we have Ψ = rsB̂
r
1(rs, t)/m, so that,

x2 =
2B̂r1(rs, t)

msBθ0
[1− cos(mχ)] .

Solutions to x are thus x+(χ) and x−(χ):

x+,−(χ) = ±

√
2B̂r1(t)

msBθ0
|1− cos(mχ)|

The maximum width occurs for mχ = π (see figure in the slides for m = 1) for which |1−cos(mχ)| = 2. The full
width is therefore the difference between the two solutions at mχ = π multiplied by rs (recall x is a normalised
variable):

w = rs [x+(χ = π/m)− x−(χ = π/m)] = 2rsx+(χ = π/m) = 2rs

√
2B̂r1(t)

msBθ0
2 = 4rs

(
B̂r1(t)

msBθ0

)1/2

.

2. Starting with ∫ rs+w/2

rs−w/2
dr
∂Ψ1

∂t
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

we use the constant-psi approximation by taking Ψ1 outside the integral on the LHS. This means we set
Ψ(r, t) = Ψ(rs, t) so that ∂Ψ1/∂t = dΨ1(rs, t)/dt:∫ rs+w/2

rs−w/2
dr
dΨ1(rs, t)

dt
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

so that

dΨ1(rs, t)

dt
w = η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

We now use the result of the previous question, in particular Ψ1(rs, t) = Cw(t)2 where C is a constant. Hence,

dΨ1(rs, t)

dt
w = Cw

dw(t)2

dt
= 2Cw2 dw(t)

dt
= 2Ψ1(rs, t)

dw(t)

dt
.

So that

2Ψ1(rs, t)
dw(t)

dt
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

.
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We then easily obtain,

dw(t)

dt
=
η(rs)

2

1

Ψ1(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

Noting time dependence on the RHS has been normalised out. Using constant-psi approximation for 1/Ψ1(rs)
on the RHS of the above, we obtain the demanded result:

dw

dt
=
η(rs)

2
∆′(w) with ∆′(w) =

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2
rs−w/2

.

Note that we could equally define,

∆′(w) =
1

Ψ1(rs)

dΨ1

dr

∣∣∣∣rs+w/2
rs−w/2

.

3. Follow the guidance in the question by allowing radial dependence only in Ψ′′1 . Also, let jBS + jcd = jnon:

dΨ1(rs)

dt
= η(rs)

[
∂2Ψ1

∂r2
+ jnon(rs)

]
We then integrate as directed∫ rs+w/2

rs−w/2
dr
∂Ψ1

∂t
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

+ jnon(rs)

∫ rs+w/2

rs−w/2
dr,

so that

dΨ1(rs, t)

dt
w = η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

+ η(rs)jnon(rs)w

We now follow the approach in the last question, i.e. use Ψ1(rs, t) = Cw(t)2 where C is a constant. Using the
last question as a guide we use

dΨ1(rs, t)

dt
w = 2Ψ1(rs, t)

dw(t)

dt
.

This yields,

2Ψ1(rs, t)
dw(t)

dt
= η(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

+ η(rs)jnon(rs)w

or

dw(t)

dt
=
η(rs)

2

1

Ψ1(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

+
η(rs)

2
jnon(rs)

w

Ψ1(rs)

=
η(rs)

2

1

Ψ1(rs)

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

+
η(rs)

2
jnon(rs)

1

Cw

Clearly, we require a value for C. We know this from the first question in this series. From

w = 4rs

(
B̂r1(t)

msBθ0

)1/2

and Ψ1(rs) = rsB1(rs)/m we obtain,

1

C
=

16r

sBθ0

∣∣∣∣
rs

.
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We therefore find that,

dw(t)

dt
=
η(rs)

2
[∆′(w) + ∆′non(w)] with ∆′non(w) =

jnon
w

16r

sBθ0

∣∣∣∣
rs

.

Clearly, 1/w diverges for w → 0, so the literature replaces

1

w
→ w

w2
c + w2

with wc a constant. Note that the non-linear calculation cannot recover the linear results because inertia was
neglected, so the limit w → 0 is ad-hoc in the non-linear treatment that gave the 1/w dependency. Of course,
there should be no divergence, as the linear regime will not be singular in w. So that fact justifies the replacement.
Of course, wc should be much smaller than the saturated solution for w. Physically, wc represents the lowest
physical island width over which the pressure is effectively flattened. Pressure gradients can be established
across small islands. Transport calculations are undertaken to establish wc for a given plasma equilibrium.

It is perhaps worth mentioning that co-cd or counter-cd (current drive that is or co or counter to the Ohmic
current) will produce respectively destabilising (increased w) or stabilising (reduced w) effects. Bootstrap current
is also destabilising if the pressure gradient is negative (usually the case). Current drive from ECH is therefore
used in experiments to control NTMs. Note that ICCD can also be used, but ECH and ECCD tend to be
much more localised, potentially providing strong localised current drive. But this requires accurate tracking of
the local of the mode in real time. ITER plans to dedicate some of its EC power for this purpose. Note that
auxiliary heating (as opposed to current drive) can also control NTMs to some extent by locally adjusting the
resistivity profile, but such an effect is out of scope of this course (anyway it is usually a weaker effect).

4. Under ideal Ohms law we have to lowest order (assuming one poloidal mode number),

δψ =
rB0

R0

(
n

m
− 1

q

)
ξr0 .

So, on the rational surface, if ξr0 isn’t singular, δψ and hence δBr will vanish on the rational surface. If ξr0 ∼ 1/x,
then δψ will be non-zero on the rational surface.

Finite radial magnetic field on the rational surface changes the topology of the magnetic field relative to the
equilibrium field. Magnetic islands are generated (see course notes for this week). Yes, in practice, MHD modes
require resistivity to change the topology. An ideal mode with singularity ∼ 1/x is academic, since it would
be strongly stabilised. Hence any instability under the MHD model would have δψ = 0. Under the Resistive
MHD model, one can have non-zero δψ on the rational with ξr0 non-singular (though it will vary fast - see next
questions) due to a balance with the extra diffusion term in,

δψ − rη

γ
∇2

(
δψ

r

)
=
rB0

R0

(
n

m
− 1

q

)
ξr0 .

5. Solving numerically, and comparing with 1/z we have Fig. 1.
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FIG. 1: Plot of numerical integral solution of y(z) and comparison with 1/z.

There is in fact an analytic solution to y(z) which behaves well for the range of z where y(z) disagrees with 1/z.

It can be seen that its asymptote is indeed y = 1/z for |z| ' 1. And for |z| / 1 the ideal case and the solution
for y(z) differ. The boundary at which the ideal and resistive solutions agree is thus at Z ≈ 1, that is at

r − rs
δ
≈ 1

where we note that z = xrs/δ and x = (r − rs)/rs. The question defines the inertia-resistive layer width as the
width bounding the range over which the resistive solution to y(z) is different from the ideal-inertialess solution
1/z. Hence the resistive layer with is

≈ 2δ.

6. There are other ways to define the layer width as seen in the notes, e.g. we expect (ξr)′′ ∼ ξr/δ2. The estimate
δ2 ∼ ξr/(ξr)′′ turns out to be roughly consistent with the approach shown in the previous question. Noting that
y(z) is proportional to ξr(x)/δψ(rs), we have that in the layer (using z = rsx/δ),

(ξr)′′

ξr
≡ 1

ξr(r)

d2

dr2
ξr(r) =

1

r2sξ
r(x)

d2

dx2
ξr(x) =

1

δ2ξr(z)

d2

dz2
ξr(z) =

1

δ2y(z)

d2

dz2
y(z).

Since, from the lecture slides,

d2

dz2
y(z) = z2y(z)− z

then it is obvious that y(z) ∼ δ0 d2y(z)/dz2 over |z| / 1. So that over the layer region we have that

(ξr)′′

ξr
=

1

δ2y[z]

d2

dz2
y(z) ∼ 1

δ2
.

Hence the two means of identifying the resistive-layer width agree. Figure 2 plots that y(z) and d2y(z)/dz2.



5

y(z)

∂z∂zy(z)

-4 -2 0 2 4
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

z

y(
z)
,a
nd

∂
z
∂
z
y(
z)

FIG. 2: Comparing y(z) and d2y(z)/dz2.

7. Just manipulate each of the two equations and multiply them together to obtain,

δ∆′ = 2.12
S1/2

ns

(
γ

ωA

)3/2

.

Hence, for δ∆′ � 1, we require,

2.12
S1/2

ns

(
γ

ωA

)3/2

� 1

or

γ

ωA
� (ns)2/3

S1/3
.

If we take ns = 1, S = 108 we obtain,

γ

ωA
� 2 ∗ 10−3.

Given that ideal instabilities grow typically with γ/ωA ∼ 10−2 − 10−3, and that we expect resistive instabilities
to grow orders of magnitude more slowly, we can expect δ∆′ � 1 to hold (this is borne out in the next question).

8. Just requires eliminating the growth rate from the two equations given in the previous question, giving,

δ

rs
∼ S−2/5(ns)−2/5

For the values taken in the previous question we obtain δ/rs ∼ 10−3. This of course means that δ∆′ ∼ 10−3 ,
which indeed confirms δ∆′ � 1 and hence the constant-psi approximation.

For the growth rate, use the equation given in the previous question,

γ

ωA
=

[
Γ(1/4)rs∆

′

2πΓ(3/4)

]4/5
S−3/5(ns)2/5

and set rs∆
′ = 1, S = 108 and ns = 1. Hence,

γ

ωA
∼ S−3/5 ∼ 10−5

which is indeed much slower growth rate than ideal timescales.



6

9. This question is achieved via numerical integration. The result is shown in Fig. 3.

∫-X
X [1-z y(z)]ⅆz

0 2 4 6 8 10
1.7

1.8

1.9

2.0

2.1

2.2

X

Δ
'(X

)

FIG. 3: Plot of ∆′
X showing saturation with X > 1.

The result provides validation of the matching approach taken, in particular matching the ideal region with the
∆′ as X is pushed to infinity.

10. Just some algebra. Worth doing because the flux equation involving Jphi is the one you will see in the textbooks.
The equation for ξr is less visible, but it is good to know the equations used in this course are solidly connected.


