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Plasma Instabilities

Exercises Series 5

Linear and non-linear Tearing Modes

Autumn Semester 2023

J. P. Graves

Questions on non-linear island width

1. In the course slides the equation for the helical field trajectory near a rational surface is defined as:

x2 =
2

rssBθ0

[
Ψ− rsB̂

r
1(t)

m
cos(mχ)

]
,

all evaluated at rs. It is stated that the field line of the separatrix is mapped out for a total flux Ψ matching
rsB̂

r
1(rs, t)/m. Defining the island width w as width of the separatrix at the angle that makes x maximum,

show that,

w(t) = 4rs

(
B̂r1(t)

msBθ0

)1/2

.

2. starting with ∫ rs+w/2

rs−w/2
dr
∂Ψ1

∂t
= η

∂Ψ1

∂r

∣∣∣∣rs+w/2
rs−w/2

Use the final result from the previous question and the constant-psi approximation to obtain the Rutherford
equation

dw

dt
=
η(rs)

2
∆′(w) with ∆′(w) =

1

Ψ1

dΨ1

dr

∣∣∣∣rs+w/2
rs−w/2

.

3. Extend the previous question to include non-Ohmic current perturbations, such as bootstrap current effects or
auxiliary current drive effects. Start with

∂Ψ1

∂t
= η

[
∂2Ψ1

∂r2
+ jnon

]
(1)

where jnon(r) = jBS(r) + jcd(r) is the sum of e.g. bootstrap and auxiliary current drive, both are toroidal
currents. Assume directly the constant-psi approximation, by allowing radial dependence in Eq. (1) only in Ψ′′1 .
Then integrate Eq. (1) with respect to r over [rs − w/2, rs + w/2] to eventually obtain:

dw(t)

dt
=
η(rs)

2
[∆′(w) + ∆′BS(w) + ∆′cd(w)] , with ∆′X(w) =

jX
w

16r

sBθ0

∣∣∣∣
rs

.

Why is the result in the literature usually written as:

dw(t)

dt
=
η

2
[∆′(w) + ∆′BS(w) + ∆′cd(w)] , with ∆′X(w) = jX

16r

sBθ0

(
w

w2
c + w2

)∣∣∣∣
rs

,

with wc a constant.
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Questions on linear tearing mode solution in the layer, and the layer width

4. What is the value of δψ on the rational surface under the ideal MHD limit if ξr is not singular on the rational.
Consider Eq. (3). What if instead ξr(x) ∼ 1/x across x = 0, where x = (r − rs)/rs. Is your answer consistent
with the idea that only resistive modes can change the topology of the magnetic field (relative to the equilibrium
magnetic field)?

5. Use e.g. matlab or Mathematica to numerically integrate y(z), where y ∝ ξr0/δψ(rs) is defined in the lecture
notes. Numerically integrate:

y =
z

2

∫ 1

0

dµ
exp(−z2µ/2)

(1− µ2)1/4
.

Show that it is odd, has a dipole structure, its asymptote is y = 1/z for |z| ' 1. Here, y = 1/z is the ideal
current sheet solution. Hence, if we define the layer width as the width over which y(z) is different from the
inertialess ideal solution, show that the layer width is ≈ 2δ, where we note that,

z =
rsx

δ
.

6. We expect that the layer width conforms to (ξr)′′ ∼ ξr/δ2. The displacement varies rapidly across the layer,
even if δψ does not. Show that your solution to y(z) is consistent with this.

7. In the lecture notes it is shown that assuming that (ξr)′′ ∼ ξr/δ2 (which we verified in the previous question)
then,

δ∆′ � 1 (2)

must hold in order to adopt the constant-psi approximation in the calculation of the dispersion relation for
tearing modes. From the two equations given in the lecture notes,

δ

rs
=

1

d
=

[
γ

ωAn2s2S

]1/4
γ

ωA
=

[
Γ(1/4)rs∆

′

2πΓ(3/4)

]4/5
S−3/5(ns)2/5

obtain

δ∆′ = 2.12
S1/2

ns

(
γ

ωA

)3/2

and hence for the inequality of Eq. (2) we require,

γ

ωA
� (ns)2/3

S1/3
.

Assume S = 108, ns = 1, how small should γ/ωA be for Eq. (2) to apply, and is this reasonable for resistive
modes if ideal modes tend to be of order γ/ωA ∼ 10−2 − 10−3.

8. Eliminate the growth rate using the equations defined in the previous question to obtain,

δ

rs
= S−2/5(ns)−2/5

(
rs∆

′

2.12

)1/5

Recall that ∆′ is obtained from the external solutions. It is found that for reasonable tokamak like q-profiles
|rs∆′| ∼ 1. Hence show that,

δ

rs
∼ S−2/5(ns)−2/5

which is indeed small. What is the order of magnitude of δ/rs for the example values of S and ns given in the
previous question assuming rs∆

′ = +1. Does this confirm δ∆′ � 1 required for constant-psi approximation?
What is the expected order of magnitude for γ/ωA?
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9. We calculate ∆′ in the layer via the asymptotic form:

∆′ =
1

δψ(x = 0)

[
lim
X→∞

δψ′(X)− lim
X→−∞

δψ′(X)

]
.

In the slides, it is shown that ∆′ in the layer is proportional to

lim
X→∞

∆′X , with ∆′X =

∫ X

−X
dz [1− zy(z)].

Using your numerical solution for y(z) show that ∆′X saturates to nearly constant amplitude for X ' 4, and
that it tends towards the asymptotic value 2πΓ(3/4)/Γ(1/4) for X → ∞. Hence show that this saturation for
|x| ' δ validates matching with the asymptotic behaviour of the layer (with the ideal region).

Question on the outer equations

10. Show that the equation for δψ for tearing instability calculation of the magnetic field in the outer region (region
where we can neglect inertia and resistivity):

r
d

dr

(
r
dδψ

dr

)
+

(
R0

B0

)
rqmδψ

nq −m
dJφ
dr
−m2δψ = 0.

and also the equation used for external kink calculation of the displacement,

r2
d2ξr0
dr2

+ r
dξr0
dr

[
3− 2s(r)

1− nq(r)
m

]
− (m2 − 1)ξr0 = 0

are equivalent to the Euler-Lagrange equation obtained in week 3 from the variation of δW2:

d

dr

[(
n

m
− 1

q

)2

r3
dξr0
dr

]
= (m2 − 1)

(
n

m
− 1

q

)2

rξr0 .

To answer this question you may want to verify that,

J‖ ≈ Jφ =
1

r

d

dr
(rBp) ≈

B0

R0

1

r

d

dr

(
r2

q

)
and you will need to use the ideal (outer region) limit of:

ξr0 =
R0

B0r

(
n

m
− 1

q

)−1 [
δψ − rη

γ
∇2

(
δψ

r

)]
(3)

(this latter equation in the ideal limit was obtained in week 3, calculation of the radial magnetic field in terms
of ξr).


