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1. Indefinite integration gives,

ξr0(x) = −ξ0
π

arctan

(
x
ns1ωA
γ

)
+ C

The constant is obtained from the Dirichlet boundary condition at the edge, so that,

ξr0(x) =
ξ0
2

[
1− 2

π
arctan

(
x
ns1ωA
γ

)]
and it is seen that ξr0(x = 0) = ξ0/2 as expected.

A plot similar to the one in the lecture notes. The layer width vanishes at marginal stability, the growth rate
disappears, so it can’t resolve the singularity. If the shear vanishes, the magnetic field line bending is zero
everywhere, so the equations ar singular everywhere too, and in principle the inertia region fills the whole
plasma.

2. For example, at half the layer width, we have approximately,

ξr0(x− δ/2)− ξrG0(x− δ/2) ≈ 3

4
ξ0 − ξ0 = −1

4
ξ0.

3. With ξ = ξ⊥ + ξ‖b we have from ∇ · ξ = 0:

∇ · (ξ‖b) = −∇ · ξ⊥

And thus,

∇ ·
(
ξ‖
B

B

)
= −∇ · ξ⊥

Since ∇ ·B = 0:

B ·∇
(
ξ‖

B

)
= −∇ · ξ⊥.

Finally, using ∇ · ξ⊥ + 2ξ⊥ · κ = 0 gives,

B ·∇
(
ξ‖

B

)
= −2ξ⊥ · κ.

4. Lowest order expansion is straightforward. The ∇ operator in κ requires that ε corrections are retained in
∇B2 ≈ B2

0∇(1−2(r/R0) cos θ. Otherwise, we may take ε→ 0, and we may take the leading order eigenfunctions



2

for ξ⊥. Hence, from the general definition of the magnetic operator from this series, we obtain the leading order
operation,

B ·∇
(
ξ‖

B

)
≈ 1

R0

(
∂

∂φ
+

1

q

∂

∂θ

)
ξ‖.

For the curvature, we note that we can drop the pressure (since P ∼ ε2B2), we may use F = R0B0 and also using
∇B2 ≈ B2

0∇(1− 2(r/R0) cos θ, and noting that ξ⊥ ·∇⊥ = ξ⊥ ·∇, and thus 2ξ ·κ ≈ −ξ ·∇[(1− 2(r/R0) cos θ],
we easily obtain the leading order expression:

2ξ⊥ · κ ≈ −
2

R0

(
ξr0 cos θ − ξθ⊥0 sin θ

)
.

Thus, the leading order magnetic equation is:(
∂

∂φ
+

1

q

∂

∂θ

)
ξ‖ = −2

(
ξr0 cos θ − ξθ⊥0 sin θ

)
,

and furthermore that on setting

ξ‖(r, θ, φ) = ξ̂‖(r, θ) exp(−imθ + inφ)

together with the same ‘hat’ notation for the poloidal and radial displacements, we easily obtain the following

equation for ξ̂‖ is (by substituting this definition for ξ‖ into the equation, and multiplying the equation by
R0 exp(imθ − inφ): [

i

(
n− m

q

)
+

1

q

∂

∂θ

]
ξ̂‖ = −2

(
ξ̂r0 cos θ − ξ̂θ⊥0 sin θ

)
5. This can be demonstrated simply by substitution. We choose to verify the solution at the rational surface, so

we replace m with nq. Notice that the solution of the equation has the general form

ξ̂‖ = C − 2q
(
ξ̂r0 sin θ + ξ̂θ⊥0 cos θ

)
where C is a constant of integration. This constant would introduce a flute term, in addition to the sideband
terms:

ξ‖ = −
{
C + q

(
ξ̂θ⊥0 − iξ̂r0

)
exp(iθ) + q

(
ξ̂θ⊥0 + iξ̂r0

)
exp(−iθ)

}
exp(−imθ + inφ)

As mentioned in the question, it can be shown by adding more physics, in particular intertia that the flute
contribution C is zero to relevant order, and thus, as seen above, ξ comprises solely upper and lower poloidal
sideband contributions,

ξ‖ = −q
(
ξ̂θ⊥0 − iξ̂r0

)
exp[−i(m− 1)θ + inφ)]− q

(
ξ̂θ⊥0 + iξ̂r0

)
exp[−i(m+ 1)θ + inφ)]

which can be written succinctly as:

ξ‖ = −2q
(
ξr0 sin θ + ξθ⊥0 cos θ

)
.

Notice one can of course write the latter expression entirely in terms of ξr0 via the result obtained in an earlier
question:

ξθ⊥0 = − i

m

∂

∂r
(rξr0) .

6. This problem requires evaluation of

δK‖ ∝
1

2π

∫ 2π

0

dθ
∣∣ξ‖∣∣2 ,
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which should be compared with,

δK⊥ ∝
1

2π

∫ 2π

0

dθ |ξ⊥|
2 ≈

∫ 2π

0

dθ
[
|ξr0 |

2
+
∣∣ξθ⊥0

∣∣2] .
It is easiest to take the parallel displacement in the form

ξ‖ = −2q
(
ξr0 sin θ + ξθ⊥0 cos θ

)
.

We also note that

1

2π

∫ 2π

0

dθ cos2 θ =
1

2
,

1

2π

∫ 2π

0

dθ sin2 θ =
1

2
,

1

2π

∫ 2π

0

dθ cos θ sin θ = 0.

One then easily obtains that

δK‖ = 2q2δK⊥.

For establishing the modification of the growth rate by inclusion of ξ‖ and hence δK‖, we obtain,

δK = δK⊥(1 + 2q2)

= −ω2 1

2

∫
d3x ρ |ξ⊥|

2
(1 + 2q(x)2)

= −ω2 1

2

∫
d3x ρ

[
|ξr|2 +

∣∣∣∣ 1

m

∂(rξr)

∂r

∣∣∣∣2
]

(1 + 2q(x)2)

The dispersion relation that neglects parallel inertia is γ2K⊥ = −δW . In contrast, inclusion of the parallel
displacement and hence inclusion of δK‖, gives the dispersion relation (1 + 2q2)γ2K⊥ = −δW . The growth
rate γ = −iω when including the parallel inertia, relative to the case without the parallel inertia, undergoes the

replacement γ → γ/
√

1 + 2q2, where we note that unstable modes grown linearly as ∼ exp(−iωt) = exp(iγt).
Resistive instabilities in a torus also have growth rates renormalised by the same factor.

Hence codes or analytic theory which neglect the parallel displacement in the inertia predict growth rates that are

larger by a factor
√

1 + 2q2 compared to when solving full MHD. Such a model is sometimes called collisionless
MHD (see Freidberg, Ideal MHD). Many codes and analytic treatments have alternative models for parallel
dynamics, in particular they deploy alternatives to the equation of state. This is discussed briefly in the course,
but it is quite complicated.

7. demonstration simply by substitution.

8. The important point to notice here is that the vector n perpendicular to the edge flux surface is identically in
the ∇r direction. In particular B ·n = 0 and B ·∇r = 0, where B is the equilibrium field, which remains valid
with Shafranov shifted and shaped flux surfaces. Clearly r = a marks the edge minor radius, so in this question
we may use the result for δBr obtained in exercise week 3, and written in the question to lowest order in ε.

9. We have assumed that the wall geometry has roughly the same shape geometry as that of the last closed flux
surface, so that in this simplified question, we may adopt a cylindrical coordinate system describing the radial
and poloidal coordinates also in the vacuum. The poloidal coordinate is assumed to lie tangent to the wall, and
the radial coordinate perpendicular to the wall (this approximation might not be very accurate for TCV!).

10. The boundary conditions (at r = a and r = b considered in the last two questions) yields the two constants.
Rearranging gives the result in the convenient manner presented, i.e.

δψ =
B0

R0

(
n

m
− 1

qa

) ( r
b

)m − ( br )m(
a
b

)m − ( ba)m a ξa.

11. Recall from exercises series 3 that the toroidal, and parallel, perturbed fields are very small. Also, to lowest
order we can neglect non-orthogonality, so |δB|2 ≈ |δBr|2 + |δBθ|2. The result for the vacuum potential energy
is obtained by substitution of the radial and poloidal fields in terms of the flux δψ. Partial derivatives are



4

replaced by d/dr by the redefinition of the flux, as defined in the question. Note also that we use the lowest
order screw pinch volume in the vacuum:∫

V

d3x =

∫ b

a

dr

∫ 2π

0

dφR0

∫ 2π

0

dθ r

= 4π2R0

∫ b

a

dr r.

12. We take the result of the previous question and work as follows

δWV = 2π2R0

∫ b

a

dr r

[
m2

r2
δψ2 +

(
dδψ

dr

)2
]

= 2π2R0

∫ b

a

dr r

[
m2

r2
δψ2 +

(
dδψ

dr

)(
dδψ

dr

)]

= 2π2R0


∫ b

a

dr r


���

���
���

��:0
m2

r2
δψ2 − δψ

r

(
r
dδψ

dr

)+ r

[
rδψ

dψ

dr

]b
a


= 2π2R0

[
rδψ

dψ

dr

]b
a

The term that cancels appears via using integration by parts, and it cancels because of the identify given in the
question (from vanishing current in the vacuum).

13. Simply by substitution, putting the boundary terms in δWP together with the vacuum term, placing them all
on the second line of the expression given in the question. It is necessary to evaluate dδψ/dr, based on the
derived expression for δψ, and simplify δψdδψ/dr.

14. Destabilising terms in δW are those that can be negative. The only term that can be negative is the first term
on the second line, i.e.

2π2B2
0

R0
a2ξr0(a)2

2

qa

(
n

m
− 1

qa

)
.

Assuming that qa > 0 and n/m > 0, this term can be destabilising if qa < m/n, i.e. if there isn’t an exact
rational in the plasma. But qa should be only slightly smaller than m/n, because if qa � m/n the magnetic
field line bending contributions in the other terms, in all the plasma, will be strongly stabilising, outweighing
the destabilising term. In contrast, of qa is only slightly smaller than m/n we will have weak field line bending
in the edge region of the plasma and also in the vacuum (since |δB|2 in the vacuum will nearly vanish.

b/a → ∞ is known as the no-wall limit. It is the most unstable case, as can be seen from λ, since it takes the
smallest value (λ = 1 for b/a →∞) reducing the stabilising vacuum terms as much as possible. b/a = 1 is the
case where the wall is placed directly on the plasma-vacuum interface. This case is absolutely stable, since the
vacuum has been removed entirely. For this case the stabilising term in the second line of δW becomes infinitely
larger than the destabilising term in the second line of δW , since λ→∞. Note however that for the case with
no vacuum, ξr0(a) = 0, so all surface and vacuum terms are in fact zero. The resulting problem at order ε2 is
stable.

The procedure for solving the stability problem is to vary the expression for δW with respect to ξr0 (Euler-
Lagrange equation), from this, obtain ξr0(r) inside the plasma for a given q-profile, and substitute the solution
to ξr0(r) back into δW . We call this δWmin. The sign of δWmin will determine if the particular mode m,n is
stable or unstable for the choice of equilibrium q-profile. Nothing at this point has been determined about the
growth rate (except whether the mode is growing or not).

15. As mentioned in the lecture notes, we recover normal mode equations by variation of the total energy δK + δW
with respect to ξ for constant ω. For the internal kink mode case it was seen that inclusion of the inertia strongly
modifies the structure of the eigenfunction close to the rational surface. In particular it isn’t correct to first
obtain the minimum δW by variation of δW alone, and then calculated the growth rate via γ2 = −δWmin/K,
where γ2K = δK. The reason that approach goes wrong is that when the problem is done correctly, with
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variation of the total energy, it is found that the structure of the eigenfunction yields that K ∼ (1/γ)(ξr)2,
hence δK ∼ γ(ξr)2, and thus γ ∼ −δWmin (see earlier questions.

But, as hinted in the question, the external kink is a special case for which there is no rational surface inside
the plasma for unstable cases (qa < m/n). This means that there is no singularity in the Euler equation for
ξr, and hence inertia will not have a dominant effect on the structure of the eigenfunction (unless the growth
rate is very large - see how large below). In fact from the lecture notes we have that δH = δK + δW where to
relevant order in ε,

δH =
2π2B2

0

R0

∫ a

0

dr r

[(
r
dξr0
dr

)2

+
(
m2 − 1

)
(ξr0)

2

][(
n

m
− 1

q

)2

+
1

m2

(
γ

ωA

)2
]

+
2π2B2

0

R0
a2ξr0(a)2

[
2

qa

(
n

m
− 1

qa

)
+ (1 +mλ)

(
n

m
− 1

qa

)2
]
,

Providing qa is not very close to m/n, we have that for γ/ωA << 1,(
n

m
− 1

q

)
�
(
γ

ωA

)2

in all the plasma. Variation of the energy δH with respect to ξr0 for constant γ can be undertaken approximately
by setting γ = 0 in δH above. The obtained displacement can once again by substituted back into δW giving
δWmin. It can also be substituted into K, giving an approximate growth rate γ2 = −δWmin/K.

In the examples given in the lecture, we evaluated ˆδWmin in terms of ξ̂r(r) = ξr0(r)/ξr0(a). Let us now show

how γ2/ω2
A would be calculated with knowledge of ˆδWmin and ξr0 , where,

ˆδW =
R0δW2

2π2a2ξr0(a)2B2
0

.

Use

δK = −γ2 1

2

∫
dx3ρ|ξ|2, ρ =

B2
0

R2
0ω

2
A

.

Adopting cylindrical geometry, we then obtain,

δK ≈ − γ2

ω2
A0

2πa2B2
0(ξr0(a))2

R0

(
1

a2(ξr0(a))2

∫ a

0

dr
ρ

ρ0
r|ξ|2

)
Also, from the variational problem discussed in the lectures, and also the calculation of the parallel flow given
in these exercises, we have

|ξ|2 ≈ (ξr0)2 + (ξθ0)2 + (ξφ0 )2

=
[
(ξr0)2 + (ξθ0)2

]
(1 + 2q2)

=

[
(ξr0)2 +

(
1

m

d

dr
(rξr0)

)2
]

(1 + 2q2)

= (ξr0(a))
2

[
(ξ̂r)2 +

1

m2

(
d

dr
(rξ̂r)

)2
]

(1 + 2q2).

Hence, we obtain,

γ2

ω2
A0

≈ −
ˆδWmin(ξ̂r)

1
a2

∫ a
0
dr r

[
(ξ̂r(r))2 + 1

m2

(
d
dr (rξ̂r(r))

)2]
ρ
ρ0

(1 + 2q(r)2)

.

Examples of values for ˆδWmin and profiles for ξ̂r are given in the lecture notes for specific equilibria.
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At least this analytic approach for calculating linear growth rates seem correct to me. I have only seen analytic
growth rate calculations for external kink in the literature for special cases (e.g. in R. B. White Theory of Fusion
Plasmas for a shear-free example). The calculation shown here would break down if growth rates become very
large (external kink growth is fast!), or if the edge value of q is very close to the rational. The same approach
could be used to non-resonant infernal modes and non-resonant internal kink modes I think. Needs checking
as I haven’t considered the approach before for non-resonant infernal modes and internal kink modes, so do
comment.


