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1. Indefinite integration gives,

& (z) = —22arctan (mnslwA) +C
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The constant is obtained from the Dirichlet boundary condition at the edge, so that,
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and it is seen that & (z = 0) = £,/2 as expected.

A plot similar to the one in the lecture notes. The layer width vanishes at marginal stability, the growth rate
disappears, so it can’t resolve the singularity. If the shear vanishes, the magnetic field line bending is zero
everywhere, so the equations ar singular everywhere too, and in principle the inertia region fills the whole
plasma.

2. For example, at half the layer width, we have approximately,
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3. With £ =&, + &b we have from V - £ = 0:
V- (§b)=-V- &,

And thus,

V. <§|g> =-V-£

Since V - B = 0:
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Finally, using V - &, +2£, - Kk = 0 gives,

5o (%)= e

4. Lowest order expansion is straightforward. The V operator in x requires that e corrections are retained in
VB? ~ B2V (1-2(r/Rp) cos §. Otherwise, we may take ¢ — 0, and we may take the leading order eigenfunctions



for £ | . Hence, from the general definition of the magnetic operator from this series, we obtain the leading order

operation,
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For the curvature, we note that we can drop the pressure (since P ~ €2B?), we may use F' = R By and also using
VB? ~ B2V (1 —2(r/Rp) cosf, and noting that £ | -V | = ¢, -V, and thus 2¢ -k ~ —€ - V[(1 — 2(r/Ro) cos ],
we easily obtain the leading order expression:
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Thus, the leading order magnetic equation is:
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and furthermore that on setting
§1(r,6,0) = §(r,0) exp(—imb + ing)

together with the same ‘hat’ notation for the poloidal and radial displacements, we easily obtain the following
equation for £ is (by substituting this definition for £ into the equation, and multiplying the equation by
Ry exp(imb — ing):
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5. This can be demonstrated simply by substitution. We choose to verify the solution at the rational surface, so
we replace m with ng. Notice that the solution of the equation has the general form

éH =C—-2q (56 sin 6 + éio cos 9)

where C' is a constant of integration. This constant would introduce a flute term, in addition to the sideband
terms:

g =—{C+q (&0 i&) exp(i0) +q (&1 + i€y ) exp(=i6) b exp(—imd + ing)

As mentioned in the question, it can be shown by adding more physics, in particular intertia that the flute
contribution C' is zero to relevant order, and thus, as seen above, £ comprises solely upper and lower poloidal
sideband contributions,

& = —a (€ly — i€ ) expl—i(m — 1)0 + ing)] — q (% +ié; ) expl—i(m + 1)0 + ing)]
which can be written succinctly as:

&1 = —2q (& sin 0 + €1 cos 0).

Notice one can of course write the latter expression entirely in terms of £ via the result obtained in an earlier
question:
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6. This problem requires evaluation of
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which should be compared with,
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It is easiest to take the parallel displacement in the form

£ =—2q (56 sin 6 + fio cos 9) .

‘We also note that
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One then easily obtains that
(5K” = 2q25Kl.

For establishing the modification of the growth rate by inclusion of £ and hence § K, we obtain,
K = 0K | (1+ 24¢°)
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The dispersion relation that neglects parallel inertia is v2K, = —6W. In contrast, inclusion of the parallel
displacement and hence inclusion of 6K, gives the dispersion relation (1 + 2¢°)v2K, = —6W. The growth
rate v = —iw when including the parallel inertia, relative to the case without the parallel inertia, undergoes the
replacement v — v/4/1 4+ 2¢%, where we note that unstable modes grown linearly as ~ exp(—iwt) = exp(iyt).
Resistive instabilities in a torus also have growth rates renormalised by the same factor.
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Hence codes or analytic theory which neglect the parallel displacement in the inertia predict growth rates that are
larger by a factor /1 + 2¢? compared to when solving full MHD. Such a model is sometimes called collisionless
MHD (see Freidberg, Ideal MHD). Many codes and analytic treatments have alternative models for parallel
dynamics, in particular they deploy alternatives to the equation of state. This is discussed briefly in the course,
but it is quite complicated.

. demonstration simply by substitution.

. The important point to notice here is that the vector n perpendicular to the edge flux surface is identically in

the Vr direction. In particular B-n = 0 and B - Vr = 0, where B is the equilibrium field, which remains valid
with Shafranov shifted and shaped flux surfaces. Clearly » = a marks the edge minor radius, so in this question
we may use the result for §B" obtained in exercise week 3, and written in the question to lowest order in e.

. We have assumed that the wall geometry has roughly the same shape geometry as that of the last closed flux

surface, so that in this simplified question, we may adopt a cylindrical coordinate system describing the radial
and poloidal coordinates also in the vacuum. The poloidal coordinate is assumed to lie tangent to the wall, and
the radial coordinate perpendicular to the wall (this approximation might not be very accurate for TCV!).

The boundary conditions (at r = a and r = b considered in the last two questions) yields the two constants.
Rearranging gives the result in the convenient manner presented, i.e.
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Recall from exercises series 3 that the toroidal, and parallel, perturbed fields are very small. Also, to lowest

order we can neglect non-orthogonality, so |§B|? =~ |§B"|? + |§ B?|2. The result for the vacuum potential energy
is obtained by substitution of the radial and poloidal fields in terms of the flux §¢. Partial derivatives are

al,.



replaced by d/dr by the redefinition of the flux, as defined in the question. Note also that we use the lowest
order screw pinch volume in the vacuum:
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12. We take the result of the previous question and work as follows
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The term that cancels appears via using integration by parts, and it cancels because of the identify given in the
question (from vanishing current in the vacuum).

13. Simply by substitution, putting the boundary terms in §Wp together with the vacuum term, placing them all
on the second line of the expression given in the question. It is necessary to evaluate ddip/dr, based on the
derived expression for 64, and simplify §i¢ddvp/dr.

14. Destabilising terms in 6W are those that can be negative. The only term that can be negative is the first term

on the second line, i.e.
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Assuming that ¢, > 0 and n/m > 0, this term can be destabilising if ¢, < m/n, i.e. if there isn’t an exact
rational in the plasma. But ¢, should be only slightly smaller than m/n, because if q, < m/n the magnetic
field line bending contributions in the other terms, in all the plasma, will be strongly stabilising, outweighing
the destabilising term. In contrast, of ¢, is only slightly smaller than m/n we will have weak field line bending
in the edge region of the plasma and also in the vacuum (since |§B|? in the vacuum will nearly vanish.

b/a — oo is known as the no-wall limit. It is the most unstable case, as can be seen from A, since it takes the
smallest value (A = 1 for b/a — 00) reducing the stabilising vacuum terms as much as possible. b/a = 1 is the
case where the wall is placed directly on the plasma-vacuum interface. This case is absolutely stable, since the
vacuum has been removed entirely. For this case the stabilising term in the second line of 6W becomes infinitely
larger than the destabilising term in the second line of §W, since A — co. Note however that for the case with
no vacuum, &(a) = 0, so all surface and vacuum terms are in fact zero. The resulting problem at order €? is
stable.

The procedure for solving the stability problem is to vary the expression for éW with respect to & (Euler-
Lagrange equation), from this, obtain £ (r) inside the plasma for a given g-profile, and substitute the solution
to & (r) back into 6W. We call this 6W,,;,. The sign of W, will determine if the particular mode m,n is
stable or unstable for the choice of equilibrium g-profile. Nothing at this point has been determined about the
growth rate (except whether the mode is growing or not).

15. As mentioned in the lecture notes, we recover normal mode equations by variation of the total energy d K + 6W
with respect to £ for constant w. For the internal kink mode case it was seen that inclusion of the inertia strongly
modifies the structure of the eigenfunction close to the rational surface. In particular it isn’t correct to first
obtain the minimum §W by variation of §W alone, and then calculated the growth rate via 42 = —dWin /K,
where v2K = §K. The reason that approach goes wrong is that when the problem is done correctly, with



variation of the total energy, it is found that the structure of the eigenfunction yields that K ~ (1/7)(£")2,
hence K ~ v(€7)2, and thus v ~ —6W,,in (see earlier questions.

But, as hinted in the question, the external kink is a special case for which there is no rational surface inside
the plasma for unstable cases (¢, < m/n). This means that there is no singularity in the Euler equation for
¢", and hence inertia will not have a dominant effect on the structure of the eigenfunction (unless the growth
rate is very large - see how large below). In fact from the lecture notes we have that 6H = § K + W where to
relevant order in e,
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Providing ¢, is not very close to m/n, we have that for v/ws << 1,
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in all the plasma. Variation of the energy d H with respect to &) for constant « can be undertaken approximately

by setting v = 0 in 6 H above. The obtained displacement can once again by substituted back into éW giving
OWinin. It can also be substituted into K, giving an approximate growth rate 42 = —W,,in /K.

In the examples given in the lecture, we evaluated §W s, in terms of £7(r) = &(r) /&5 (a). Let us now show
how 2 /w? would be calculated with knowledge of W, and &, where,
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Adopting cylindrical geometry, we then obtain,
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Also, from the variational problem discussed in the lectures, and also the calculation of the parallel flow given
in these exercises, we have
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Hence, we obtain,
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Examples of values for SW min and profiles for é’” are given in the lecture notes for specific equilibria.



At least this analytic approach for calculating linear growth rates seem correct to me. I have only seen analytic
growth rate calculations for external kink in the literature for special cases (e.g. in R. B. White Theory of Fusion
Plasmas for a shear-free example). The calculation shown here would break down if growth rates become very
large (external kink growth is fast!), or if the edge value of ¢ is very close to the rational. The same approach
could be used to non-resonant infernal modes and non-resonant internal kink modes I think. Needs checking
as I haven’t considered the approach before for non-resonant infernal modes and internal kink modes, so do
comment.



