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Plasma Instabilities

Exercises Series 4

External kink modes and inertia treatment for ideal and resistive problems

Autumn Semester 2021

J. P. Graves

Questions on layer expansion theory: ideal internal kink mode

1. Using the expansion variable x = (r − r1)/r1 is was shown in the lecture that around the rational surface,

dξr0
dx

= −ξ0
π

(
γ

ns1ωA

)
1

x2 +
(

γ
ns1ωA

)2 .
Obtain from this ξr0(x) conforming to BC’s

lim
x→−∞

ξr0(x) = ξ0

lim
x→∞

ξr0(x) = 0.

Plot it over r, and mark on the plot the approximate characteristic width

δ =
πr1γ

2ns1ωA
.

Comment on the layer width at marginal stability, and for vanishing magnetic shear.

2. Verify that the solution to ξr0(x) above, over −δ/r1 < x < δ/r1 has the property

ξr0 − ξrG0 ∼ ε0ξ0

in the inner layer region, where

ξrG0(r) = ξ0H(r − r1).

This of course demonstrates that the ideal inertia corrections to ξr are order zero within a layer width δ of the
rational surface.

Questions inertia enhancement due to parallel flow, valid for ideal and resistive MHD instabilities

3. As shown in week 3 lecture notes, near marginal stability modes are incompressible, i.e. ∇ · ξ = 0. For a given
perpendicular displacement vector one may thus solve for the parallel displacement. Adopting ξ = ξ⊥ + ξ‖b
and using ∇ · ξ⊥ + 2ξ⊥ · κ = 0 (from exercise series 3 and lecture notes) show that

B ·∇
(
ξ‖

B

)
= 2ξ⊥ · κ.

4. Continuing the previous question, and also the following results from exercise series 3:

κ =
∇⊥
B2

(
B2

2
+ P

)
,

B ·∇ =
F

R2

[
∂

∂φ
+

1

q

∂

∂θ

]
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show that at lowest order in ε the equation satisfying ξ‖ is:(
∂

∂φ
+

1

q

∂

∂θ

)
ξ‖ = −2

(
ξr0 cos θ − ξθ⊥0 sin θ

)
.

And furthermore that on setting

ξ‖(r, θ, φ) = ξ̂‖(r, θ) exp(−imθ + inφ)

the equation for ξ̂‖ is: [
i

(
n− m

q

)
+

1

q

∂

∂θ

]
ξ̂‖ = −2

(
ξ̂r0 cos θ − ξ̂θ⊥0 sin θ

)
5. Show that at the rational surface m/n the solution is:

ξ‖ = −2q
(
ξr0 sin θ + ξθ⊥0 cos θ

)
≡ −q

[
ξθ⊥0(exp(iθ) + exp(−iθ))− iξr0(exp(iθ)− exp(−iθ))

]
.

This can be undertaken by substitution. Note that the constant of integration has been assumed zero - this can
be shown to be true by inclusion of more physics (inertia).

6. Near marginal stability ξ‖ does not enter δW . It does not feature in the Force operator. But, it does still
feature in the momentum equation (in the acceleration on the LHS) and thus in the inertia δK. This question
investigates the modification toe δK via inclusion of ξ. Defining,

δK = δK⊥ + δK‖

where

δK⊥ = −ω2 1

2

∫
d3x ρ |ξ⊥|

2

show that

δK‖ = 2q2δK⊥

And therefore, show that inclusion of δK‖ inside δK reduces the growth rate of a calculation absent of δK‖ by

γ → γ/
√

1 + 2q2.

This is important also because some codes assume incompressibility and otherwise neglect ξ‖ (e.g. the TERPSI-
CHORE code). Marginal stability conditions are therefore correct, but growth rates are overestimated relative
to the standard MHD used in this course. There are various alternatives to the ideal MHD model, which is
based on the equation of state. Models include collisionless MHD (see Freidberg, Ideal MHD), and kinetic MHD.

Questions on ideal external kink modes

7. The radial perturbed magnetic field in terms of the flux δψ is δBr = imδψ/r. The equation for the perturbed
flux in a vacuum obeys (to leading order):

1

r

d

dr

(
r
dδψ

dr

)
− m2

r2
δψ = 0 (1)

Verify by substitution that the general solution in the vacuum is

δψ = αrm + βr−m. (2)
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8. As shown in exercise series 3, the lowest order radial magnetic field in the plasma is,

δBr =
iB0

R0q
[nq −m] ξr0 .

Using again δBr = imδψ/r (which applies in the plasma too), use the boundary condition at the plasma-vacuum
interface (at r = a):

n · ˆδB|a = n ·∇× (ξ⊥ ×B)|a

to yield that

δψa = δψ(r = a) =
B0

R0

(
n

m
− 1

qa

)
a ξa (3)

where ξa = ξr0(a).

9. What have we assumed about the geometry of the wall if the general boundary condition at the wall,

n · ˆδB|wall = 0

yields

δψb = δψ(r = b) = 0? (4)

10. Use the BC’s of Eqs. (3) and (4) to obtain the constants α and β, and show that the vacuum flux is

δψ =
B0

R0

(
n

m
− 1

qa

) ( r
b

)m − ( br )m(
a
b

)m − ( ba)m a ξa. (5)

11. Consider the vacuum potential energy,

δWV =
1

2

∫
V

d3x |δB|2 .

Use that the poloidal magnetic field in the vacuum is δBθ = ∂δψ/∂r, and |δB|2 ≈ |δBr|2 + |δBθ|2 (see exercise
series 3) to yield that,

δWV ≈ 2π2R0

∫ b

a

dr r

[
m2

r2
δψ2 +

(
dδψ

dr

)2
]

where we have assumed replacement δψ → δψ/ exp(inφ− imθ − iωt).

12. Continuing the last question, use integration by parts and Eq. (1) to give

δWV ≈ 2π2R0

[
rδψ

dδψ

dr

]b
a

. (6)

13. The total potential energy is δW = δWP + δWV , where to relevant order (as shown in the lecture notes)

δWP =
2π2B2

0

R0

{∫ a

0

dr r

[(
r
dξr0
dr

)2

+
(
m2 − 1

)
(ξr0)2

](
n

m
− 1

q

)2

+

a2(ξr0(a))2

[
2

qa

(
n

m
− 1

qa

)
+

(
n

m
− 1

qa

)2
]}

(7)

with qa = q(a). By inserting the vacuum solution of Eq. (5) into Eq. (6) show that the total potential energy is:

δW =
2π2B2

0

R0

{∫ a

0

dr r

[(
r
dξr0
dr

)2

+
(
m2 − 1

)2
(ξr0)

2

](
n

m
− 1

q

)2

+a2ξr0(a)2

[
2

qa

(
n

m
− 1

qa

)
+ (1 +mλ)

(
n

m
− 1

qa

)2
]}

, (8)
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where

λ =
1 + (a/b)2m

1− (a/b)2m
.

14. Which term in δW can be destabilising? What is the condition for qa in order for that term to be destabilising?
What are the effects of and physical meanings of the limits b/a → ∞ and b/a → 1. How does one establish
from δW above whether the plasma is unstable to an external kink displacement. What is the procedure?

15. How can the growth rate of an external kink be calculated? Hint: as seen, there is no rational surface inside
the plasma for unstable modes for which qa < m/n, so the inclusion of inertia (when performing variation of
the total energy δK + δW ) does not correct the structure of the eigenfunction significantly relative to the case
where ξ is calculated by minimisation of just δW .


