Plasma Instabilities
Exercises Series 4
External kink modes and inertia treatment for ideal and resistive problems
Autumn Semester 2021

J. P. Graves

Questions on layer expansion theory: ideal internal kink mode
1. Using the expansion variable x = (r — r1)/r1 is was shown in the lecture that around the rational surface,
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Obtain from this & (z) conforming to BC’s
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Plot it over r, and mark on the plot the approximate characteristic width
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Comment on the layer width at marginal stability, and for vanishing magnetic shear.
2. Verify that the solution to &(z) above, over —d/r1 < & < ¢§/r; has the property
€0 —&Go ~ fogo
in the inner layer region, where
€Go(r) = EH (r —11).

This of course demonstrates that the ideal inertia corrections to £ are order zero within a layer width § of the
rational surface.

Questions inertia enhancement due to parallel flow, valid for ideal and resistive MHD instabilities

3. As shown in week 3 lecture notes, near marginal stability modes are incompressible, i.e. V - & = 0. For a given
perpendicular displacement vector one may thus solve for the parallel displacement. Adopting & = &, + &b
and using V - &, +2¢, -k = 0 (from exercise series 3 and lecture notes) show that
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4. Continuing the previous question, and also the following results from exercise series 3:
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show that at lowest order in e the equation satisfying | is:
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And furthermore that on setting
€1(r,0,9) = &(r,0) exp(~imb + ing)

the equation for f || is:
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5. Show that at the rational surface m/n the solution is:
£ =—2q (56 sin 6 4 £9, cos 9)
= —a [€1o(exp(i8) + exp(—if)) — ig (exp(if) — exp(—if))] .

This can be undertaken by substitution. Note that the constant of integration has been assumed zero - this can
be shown to be true by inclusion of more physics (inertia).

6. Near marginal stability §| does not enter 6W. It does not feature in the Force operator. But, it does still
feature in the momentum equation (in the acceleration on the LHS) and thus in the inertia K. This question
investigates the modification toe d K via inclusion of £. Defining,

SK = 6K, + 0K

where
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show that
(5K|| = 2(]25KJ_

And therefore, show that inclusion of 0K inside d K reduces the growth rate of a calculation absent of § K by
v =/ 1+ 2¢%

This is important also because some codes assume incompressibility and otherwise neglect & (e.g. the TERPSI-
CHORE code). Marginal stability conditions are therefore correct, but growth rates are overestimated relative
to the standard MHD used in this course. There are various alternatives to the ideal MHD model, which is
based on the equation of state. Models include collisionless MHD (see Freidberg, Ideal MHD), and kinetic MHD.

Questions on ideal external kink modes

7. The radial perturbed magnetic field in terms of the flux dv is 6 B” = imd1)/r. The equation for the perturbed
flux in a vacuum obeys (to leading order):

1d déy m?

- ) - s = 1

rdr(rdr> ’I“Zw 0 (1)
Verify by substitution that the general solution in the vacuum is

0 = ar™ 4 pro ™. (2)



8. As shown in exercise series 3, the lowest order radial magnetic field in the plasma is,

iBo
0B" = — [ng —m] &.
Roq[ q ]fo

Using again 6 B" = imdv/r (which applies in the plasma too), use the boundary condition at the plasma-vacuum
interface (at r = a):

n-0Bl,=n-V x (£, x B)|,
to yield that
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where &, = £ (a).
9. What have we assumed about the geometry of the wall if the general boundary condition at the wall,
n- 6B|wau =0
yields
Sy = Bu(r = b) = 07 (4)

10. Use the BC’s of Egs. (3) and (4) to obtain the constants o and 3, and show that the vacuum flux is
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11. Consider the vacuum potential energy,
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Use that the poloidal magnetic field in the vacuum is 6 BY = 93¢ /9r, and |6 B|? ~ |§B"|? + [0 B?|? (see exercise

series 3) to yield that,
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where we have assumed replacement 69 — 1)/ exp(ing — imf — iwt).
12. Continuing the last question, use integration by parts and Eq. (1) to give
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13. The total potential energy is 6W = §Wp + §Wy, where to relevant order (as shown in the lecture notes)
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with ¢, = g(a). By inserting the vacuum solution of Eq. (5) into Eq. (6) show that the total potential energy is:
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where
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Which term in §W can be destabilising? What is the condition for g, in order for that term to be destabilising?
What are the effects of and physical meanings of the limits b/a — oo and b/a — 1. How does one establish
from W above whether the plasma is unstable to an external kink displacement. What is the procedure?

How can the growth rate of an external kink be calculated? Hint: as seen, there is no rational surface inside
the plasma for unstable modes for which g, < m/n, so the inclusion of inertia (when performing variation of
the total energy 6K + 6W) does not correct the structure of the eigenfunction significantly relative to the case
where £ is calculated by minimisation of just 6.



