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1. First we have
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where we have used Force balance and Amperes law, as suggested in the question, and that P = P(r) so that
(b- V)P =0, ie. P is constant on a flux surface (thus does not vary along the field lines).

Now use vector identity,
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We see that Eqgs. (1) is identical to (2), so it follows that,
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2. First, consider 2¢ | - k, which from the result of the previous question, we have
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Recalling the ordering of the pressure mentioned in the question, that B>/BZ = (R3/R?) (14 O(€?)), and also
noting that Jacobian Jy = rR?/ Ry, we have that,
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And therefore,
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Consider now V - (X&), which can be written as
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where
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Hence, we see that,
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. Form the dot product of
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with
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Here we have used V¢ - V¢ = 1/R? and (V¢ x Vr) - VO =1/T,.

Then use from the second lecture
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to yield the demanded result
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The magnetic operator is very important. It measures the variation of quantities along the magnetic field lines.
When operating on a fluctuation it pulls out the parallel wave vector k. Since b = B/B, we simply divide
B -V by B to obtain:

bV

o P[0 10
0l BR?2|0¢ q08]
And, since we have normal modes of type exp(ik - ), then b -V = ik, thus
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. First, it is useful to check that ff = {1 4. This is easily tackled by forming the dot product of the covariant
form of £ =&, Vr + 1,19V + R, 4 V@ with = Vo,

¢ =RE, Vo=R(,Vr+16)V0+ RE,VE) Vo
and using V¢ - Vo = 1/R?, clearly gives
£ =€l

We can obtain £f in terms of ¢, ¢ via the definition of B = F(r)V¢ + ¢’V ¢ x Vr. In particular we use,

R V'R
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We then obtain,
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Noting that &, - B = 0 then gives,
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As in the last question use (V¢ x Vr) -Vl =1/Jp, together with (from the lecture notes)
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and since we have found Ef =14, then
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. For the poloidal contravariant component we have that
ff_ =r§, -Vl=r (&Vr +1r&,19VO+ R§L¢V¢) -V = fJ_g(l + O(E))

where as pointed out in the question, the order e correction is related to non-orthogonality associated with
Vr - V6 (this can be shown rigourously by evaluating the metric tensor for straight field line coordinates
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(lecture 6 onwards). Hence, from the results of the previous question, in particular §f = (r/(¢R))&Le we have
that

0= i§<1+0<e>>.

Continuing the question, we use the solution to question 2,
1[0, .. 0 /.0 r 0 (.4 9
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Using now that £€7 ~ £} and 8/0¢ ~ —¢~'9/96 we find that
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Hence, we easily obtain the required result,
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In the lecture course we will this drop the O(e?) corrections in the e expansion of §W up to §Ws, since the €2
corrections would appear at 6Wj.

. This problem is easily tackled since the equations mentioned in the question give
0 0 /.
ar (r&o) + % (€10) =0,
which of course forces §Wy = 0. Hence with & | (r, 0, ¢) = &, o(r) exp(—im0 + ing):
i 0 -
fﬁo =———(r&p).
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(in fact, we can easily see that
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holds for &, too, which minimises 6W5. But £, has more than one poloidal mode number in a torus, so

¢ly # —(i/m)0/or(reY)).
. We start from the identity
V- (AxB)=B-VxA-A-VxB
so that
V- [, xB)xVX]|=VX -Vx (¢ xB)— (£, xB) - (VxVX).
Using V x VX = 0 for any X, we clearly have the desired result,
0B- VX =V [(&, xB)xVX],

(which is the intermediary result) where

0B =V x (¢, x B).
We now use the triple product rule to give,

0B- VX =-V-[£,(B-VX)-B(&, -VX)]
And finally, and using V(fA) = fVA+ A - V[, and noting that V - B = 0, obtains the desired result,
6B-VX =(B-V)(§,-VX)-V-[£, (B-VX)] ()



8. Noting that B - Vr = 0 (no equilibrium field across flux surfaces) we have from Eq. (5):
§B" = (B- V)¢
For the second part of the question, we use
F[l[o 190
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Also, look in the lecture notes and verify that to lowest order in € we have that F' = RyBy, R = Ry and the
displacement is of the form

€ (r,0.¢) = & (r) exp(~imf + ing),
i.e. that a single poloidal harmonic can be identified to lowest order in € (as in a the cylindrical approximation

(r,0,z = Ro¢) of the torus). One then easily finds that

‘s ZB ‘.
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Clearly 0B vanishes in a rational surface. This prevents a change of topology. A change of
topology is only possible if we have some dissipation, e.g. resistivity. The island structure of a
tearing mode is associated with non-zero JB| on a rational surface.

9. We have from Eq. (5) that
6B =ré6B-V0=(B-V)] —rV-[¢£, (B-V0).

where ¢ =r&, - V0. Use now that
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to give,
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Noting that ¢ = ¢(r) and F = F(r), and that Jp = rR?/Ry we obtain the first desired result,
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For further reduction, we can use that V - &, +2€, - kK = 0 which applies to leading order and first order
displacements. As a result, from Eq. (3), together with F' = ByRo(1 + O(€?)) we have,

i = {5 vt - oo L (D)L as o,

we define the magnetic shear

_ rdg
qdr’
so that,
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Adopting the lowest order displacement, which is appropriate for §B§, we thus easily have the lowest order

poloidal perturbed field,
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Note this can of course be written entirely in terms of the radial displacement. From the previous question,

we have that finally,

By - nq(r)—mgrr
o [strgg + M= (rgp)].

6By =

Since the variation of F is weak, and §f ~ €£9, we my ignore §B? in the leading order construction of 6B .
Neglecting non-orthogonality corrections, which introduce higher order e terms, we have
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Instabilities align with rational surfaces because instabilities occur where the stabilising field line bending energy
is minimised, and this clearly occurs where ¢(r) = m/n (consider §Bf and §B§ from the previous questions).
As we saw at the start of this exercise, the parallel wavenumber kj = 9/9] = b- V. For leading order radial
and poloidal displacement fluctuations this is of course zero on the rational surface.

But it is clear that 6B%, is non-zero even on a rational surface if the magnetic shear is not zero. Tokamaks
require magnetic shear in order to achieve stable operation. Sometimes tokamaks operate with a g-profile that
has a local minimum, i.e. a location where s = 0 but ¢"” # 0. The location of this minimum must be chosen
to avoid low order rational surfaces, that is a rational surface where n and m are both small (these are long
wavelength modes).

Start with, as usual,
dB=V x (&£, xB)
Dotting with b and using the identity,
V. (AxB)=B-VxA-A-VxB
we have using Amperes Law and force balance:
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We have seen in this exercise sheet that instabilities occur for
V-€ +26, k=0,

so that corresponding parallel magnetic fluctuations are thus:



It is well known that finite 6B effects are associated with finite beta effects (or beta-gradient effects). This
can be seen clearly in the answer to this question. For that reason codes that neglect 6B effects (notably
some MHD codes, and some gyrokinetic codes) effectively neglect finite 8 effects. It can be rigourously shown
(Graves, PPCF 2019) that neglecting B introduces an artificial stabilising effect which can be important for
some pressure gradient driven instabilities (such as interchange and internal kink modes). It is for this reason
that some codes have not been able to obtain internal kink modes in a torus (e.g. JOREK MHD code, and
GTC gyrokinetic code).



