
1

Plasma Instabilities

Solutions for Exercises Series 3

Theory of linear ideal MHD

Autumn Semester 2021

J. P. Graves

1. First we have

κ = (b ·∇)b =

(
B

B
·∇
)
B

B

=
(B ·∇)B

B2
+
B

B
(B ·∇)

(
1

B

)
=

(B ·∇)B

B2
− B

B3
(B ·∇)B

=
(B ·∇)B

B2
− B

B4
(B ·∇)

(
B2

2

)
. (1)
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where we have used Force balance and Amperes law, as suggested in the question, and that P = P (r) so that
(b ·∇)P = 0, i.e. P is constant on a flux surface (thus does not vary along the field lines).

Now use vector identity,

B × (∇×B) =
1

2
∇B2 − (B ·∇)B

to yield

1

B2
∇⊥

(
B2

2
+ P

)
=

1

B2
∇
(
B2

2

)
− B

B4
(B ·∇)

(
B2

2

)
− 1

B2

(
1

2
∇B2 − (B ·∇)B

)
=

(B ·∇)B

B2
− B

B4
(B ·∇)

(
B2

2

)
. (2)

We see that Eqs. (1) is identical to (2), so it follows that,

κ =
∇⊥
B2
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)
.

2. First, consider 2ξ⊥ · κ, which from the result of the previous question, we have

2ξ⊥ · κ =
1
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ξ⊥ ·∇(B2 + 2P ).
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Recalling the ordering of the pressure mentioned in the question, that B2/B2
0 = (R2

0/R
2)
(
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)
, and also

noting that Jacobian Jθ = rR2/R0, we have that,
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And therefore,
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Consider now ∇ · (Xξ⊥), which can be written as
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where

ξr = ξ⊥ ·∇r, ξθ⊥ = rξ⊥ ·∇θ, ξφ⊥ = Rξ⊥ ·∇φ.

Hence, we see that,
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3. Form the dot product of

B = F (r)∇φ+ ψ′∇φ×∇r

with
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Here we have used ∇φ ·∇φ = 1/R2 and (∇φ×∇r) ·∇θ = 1/Jθ.

Then use from the second lecture
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The magnetic operator is very important. It measures the variation of quantities along the magnetic field lines.
When operating on a fluctuation it pulls out the parallel wave vector k‖. Since b = B/B, we simply divide
B ·∇ by B to obtain:

b ·∇ =
∂

∂l
=

F

BR2

[
∂

∂φ
+

1

q

∂

∂θ

]
.

And, since we have normal modes of type exp(ik · x), then b ·∇ = ik‖, thus

k‖ = −ib ·∇ = −i F

BR2

[
∂

∂φ
+

1

q

∂

∂θ

]
.

4. First, it is useful to check that ξφ⊥ = ξ⊥φ. This is easily tackled by forming the dot product of the covariant
form of ξ = ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ with = ∇φ,

ξφ⊥ ≡ Rξ⊥ ·∇φ = R (ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ) ·∇φ

and using ∇φ ·∇φ = 1/R2, clearly gives

ξφ⊥ = ξ⊥φ.

We can obtain ξφ⊥ in terms of ξ⊥θ via the definition of B = F (r)∇φ+ ψ′∇φ×∇r. In particular we use,

R∇φ =
R

F
B − ψ′R

F
∇φ×∇r.

We then obtain,

ξφ⊥ ≡ Rξ⊥ ·∇φ = Rξ⊥ ·
(
R

F
B − ψ′R

F
∇φ×∇r

)
.

Noting that ξ⊥ ·B = 0 then gives,

ξφ⊥ = R (ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ) ·
(
−ψ
′R

F
∇φ×∇r

)
.

As in the last question use (∇φ×∇r) ·∇θ = 1/Jθ, together with (from the lecture notes)

ψ′ =
r

R0

F (r)

q(r)

and

Jθ =
rR(r, θ)2

R0
.

Hence,

ξφ⊥ =
r

qR
ξ⊥θ

and since we have found ξφ⊥ = ξ⊥φ, then

ξ⊥φ =
r

qR
ξ⊥θ

5. For the poloidal contravariant component we have that

ξθ⊥ ≡ rξ⊥ ·∇θ = r (ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ) ·∇θ = ξ⊥θ(1 +O(ε))

where as pointed out in the question, the order ε correction is related to non-orthogonality associated with
∇r · ∇θ (this can be shown rigourously by evaluating the metric tensor for straight field line coordinates
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(lecture 6 onwards). Hence, from the results of the previous question, in particular ξφ⊥ = (r/(qR))ξ⊥θ we have
that

ξφ⊥ = ξθ⊥
ε

q
(1 +O(ε)).

Continuing the question, we use the solution to question 2,

∇ · ξ⊥ + 2ξ⊥ · κ =
1

r

[
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∂r
(rξr) +
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∂θ

(
ξθ⊥
)

+
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∂
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(
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Using now that ξφ⊥ ∼ εξθ⊥ and ∂/∂φ ∼ −q−1∂/∂θ we find that

∂

∂θ

(
ξθ⊥
)

+
r

R

∂

∂φ

(
ξφ⊥

)
=

∂

∂θ

(
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Hence, we easily obtain the required result,

∇ · ξ⊥ + 2ξ⊥ · κ =
1

r

[
∂

∂r
(rξr) +

∂

∂θ

(
ξθ⊥
)]

(1 +O(ε2)).

In the lecture course we will this drop the O(ε2) corrections in the ε expansion of δW up to δW2, since the ε2

corrections would appear at δW4.

6. This problem is easily tackled since the equations mentioned in the question give

∂

∂r
(rξr0) +

∂

∂θ

(
ξθ⊥0
)

= 0,

which of course forces δW0 = 0. Hence with ξ⊥0(r, θ, φ) = ξ̂⊥0(r) exp(−imθ + inφ):

ξθ⊥0 = − i

m

∂

∂r
(rξr0) .

(in fact, we can easily see that

∂

∂r
(rξr1) +

∂

∂θ

(
ξθ⊥1
)

= 0,

holds for ξ⊥1 too, which minimises δW2. But ξ⊥1 has more than one poloidal mode number in a torus, so
ξθ⊥1 6= −(i/m)∂/∂r(rξr1)).

7. We start from the identity

∇ · (A×B) = B ·∇×A−A ·∇×B

so that

∇ · [(ξ⊥ ×B)×∇X] = ∇X ·∇× (ξ⊥ ×B)− (ξ⊥ ×B) · (∇×∇X).

Using ∇×∇X = 0 for any X, we clearly have the desired result,

δB ·∇X = ∇ · [(ξ⊥ ×B)×∇X] ,

(which is the intermediary result) where

δB = ∇× (ξ⊥ ×B).

We now use the triple product rule to give,

δB ·∇X = −∇ · [ξ⊥(B ·∇X)−B(ξ⊥ ·∇X)]

And finally, and using ∇(fA) = f∇A+A ·∇f , and noting that ∇ ·B = 0, obtains the desired result,

δB ·∇X = (B ·∇)(ξ⊥ ·∇X)−∇ · [ξ⊥ (B ·∇X)] (5)
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8. Noting that B ·∇r = 0 (no equilibrium field across flux surfaces) we have from Eq. (5):

δBr = (B ·∇)ξr.

For the second part of the question, we use

B ·∇ =
F

R2

[
∂

∂φ
+

1

q

∂

∂θ

]
.

Also, look in the lecture notes and verify that to lowest order in ε we have that F = R0B0, R = R0 and the
displacement is of the form

ξr0(r, θ, φ) = ξ̂r0(r) exp(−imθ + inφ),

i.e. that a single poloidal harmonic can be identified to lowest order in ε (as in a the cylindrical approximation
(r, θ, z = R0φ) of the torus). One then easily finds that

δBr0 =
iB0

R0q
[nq −m] ξr0 .

Clearly δBr0 vanishes in a rational surface. This prevents a change of topology. A change of
topology is only possible if we have some dissipation, e.g. resistivity. The island structure of a
tearing mode is associated with non-zero δBr0 on a rational surface.

9. We have from Eq. (5) that

δBθ ≡ rδB ·∇θ = (B ·∇)ξθ⊥ − r∇ · [ξ⊥(B ·∇θ)] .

where ξθ⊥ = rξ⊥ ·∇θ. Use now that

B ·∇θ =
ψ′

Jθ
=

rF

qR0Jθ
to give,

δBθ = (B ·∇)ξθ⊥ −
rF

qR0
∇ ·

[
rξ⊥
Jθ

]
− r2

R0Jθ
ξ⊥ ·∇

(
F

q

)
Noting that q = q(r) and F = F (r), and that Jθ = rR2/R0 we obtain the first desired result,

δBθ = (B ·∇)ξθ⊥ −
rF

qR0
∇ ·

(
rξ⊥
Jθ

)
− r

R2
ξr
d

dr

(
F

q

)
.

For further reduction, we can use that ∇ · ξ⊥ + 2ξ⊥ · κ = 0 which applies to leading order and first order
displacements. As a result, from Eq. (3), together with F = B0R0(1 +O(ε2)) we have,

δBθ =

{
(B ·∇)ξθ⊥ −

rR0B0

R2
ξr
d

dr

(
1

q

)}
(1 +O(ε2)).

we define the magnetic shear

s =
r

q

dq

dr
,

so that,

δBθ =

{
(B ·∇)ξθ⊥ +

R0B0s(r)ξ
r

q(r)R2

}
(1 + (ε2)).

Adopting the lowest order displacement, which is appropriate for δBθ0 , we thus easily have the lowest order
poloidal perturbed field,

δBθ0 =
iB0ξ

θ
0

R0q
[nq −m] +

B0ξ
r
0

R0q
s(r).
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Note this can of course be written entirely in terms of the radial displacement. From the previous question,

ξθ⊥0 = − i

m

∂

∂r
(rξr0) .

we have that finally,

δBθ0 =
B0

R0q(r)

[
s(r)ξr0 +

nq(r)−m
m

∂

∂r
(rξr0)

]
.

10. Since the variation of F is weak, and ξφ⊥ ∼ εξθ⊥, we my ignore δBφ in the leading order construction of δB⊥.
Neglecting non-orthogonality corrections, which introduce higher order ε terms, we have

|δB⊥0|2 = |δBr0 |
2

+
∣∣δBθ0 ∣∣2 =

(
B0

R0q

)2
[

(nq(r)−m)2 (ξr0)
2

+

{
nq(r)−m

m

∂

∂r
(rξr0) + s(r)ξr0

}2
]

Instabilities align with rational surfaces because instabilities occur where the stabilising field line bending energy
is minimised, and this clearly occurs where q(r) = m/n (consider δBr0 and δBθ0 from the previous questions).
As we saw at the start of this exercise, the parallel wavenumber k‖ = ∂/∂l = b ·∇. For leading order radial
and poloidal displacement fluctuations this is of course zero on the rational surface.

But it is clear that δB2
⊥0 is non-zero even on a rational surface if the magnetic shear is not zero. Tokamaks

require magnetic shear in order to achieve stable operation. Sometimes tokamaks operate with a q-profile that
has a local minimum, i.e. a location where s = 0 but q′′ 6= 0. The location of this minimum must be chosen
to avoid low order rational surfaces, that is a rational surface where n and m are both small (these are long
wavelength modes).

11. Start with, as usual,

δB = ∇× (ξ⊥ ×B)

Dotting with b and using the identity,

∇ · (A×B) = B ·∇×A−A ·∇×B

we have using Amperes Law and force balance:

δB‖ =
B

B
·∇× (ξ⊥ ×B) =

=
1

B
{∇ · [(ξ⊥ ×B)×B] + (ξ⊥ ×B) · (∇×B)}

=
1

B

{
∇ ·

[
B���

�:0
ξ⊥ ·B −B2ξ⊥

]
+ (ξ⊥ ×B) · (∇⊥ ×B)

}
= −B

[
∇ · ξ⊥ +

1

B2
ξ⊥ ·∇B2

]
+

(ξ⊥ ×B) · J
B

= −B
[
∇ · ξ⊥ +

2

B2
ξ⊥ ·∇

(
B2

2
+ P

)
− 2

B2
ξ⊥ ·∇P

]
− ξ⊥ · (J ×B)

B

= −B
[
∇ · ξ⊥ + 2ξ⊥ · κ−

2

B2
ξ⊥ ·∇P

]
− ξ⊥ ·∇P

B

= −B [∇ · ξ⊥ + 2ξ⊥ · κ] +
ξr

B

dP

dr
.

We have seen in this exercise sheet that instabilities occur for

∇ · ξ⊥ + 2ξ⊥ · κ = 0,

so that corresponding parallel magnetic fluctuations are thus:

δB‖ ≈
ξr

B

dP

dr
.
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It is well known that finite δB‖ effects are associated with finite beta effects (or beta-gradient effects). This
can be seen clearly in the answer to this question. For that reason codes that neglect δB‖ effects (notably
some MHD codes, and some gyrokinetic codes) effectively neglect finite β effects. It can be rigourously shown
(Graves, PPCF 2019) that neglecting δB‖ introduces an artificial stabilising effect which can be important for
some pressure gradient driven instabilities (such as interchange and internal kink modes). It is for this reason
that some codes have not been able to obtain internal kink modes in a torus (e.g. JOREK MHD code, and
GTC gyrokinetic code).


