
1

Plasma Instabilities 

Exercises Series 3

Theory of linear ideal MHD

Autumn Semester 2023

J. P. Graves

From question number 2 onwards this exercise is based on straight field line coordinates (r, θ, φ) with Jθ = rR2/R0.

Relevant equilibrium properties

1. Consider the curvature vector

κ = (b ·∇)b, b =
B

B

which is proportional to the magnetic operator B ·∇ operating on b. Using equilibrium force balance J ×B =
∇P , Amperes law, and well know vector calculus identities, show that
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where

∇⊥ = ∇− b(b ·∇),

and hence that
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(
B2

2
+ P

)
. (1)

2. It is shown in the lecture notes that part of δW comprises ∇ · ξ⊥ + 2ξ⊥ · κ, and δW is zero at order ε0 and
order ε2 by setting ∇ · ξ⊥ + 2ξ⊥ · κ = 0. On assuming P/B2 ∼ ε2 and RB = R0B0(1 + O(ε2)) (see exercise
series 2), show that when applying straight field line coordinates, we have
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)]
(1 +O(ε2)), (3)

where

ξr = ξ⊥ ·∇r, ξθ⊥ = rξ⊥ ·∇θ, ξφ⊥ = Rξ⊥ ·∇φ.

Hint: use result from previous question (definition of curvature) and start with the general definition of diver-
gence (in terms of Jacobian) as defined in the lectures.

3. For the representation of the field B = F (r)∇φ + ψ′∇φ × ∇r show that when adopting straight field line
coordinates (r, θ, φ) the magnetic operator B ·∇ can be written at:

B ·∇ =
F
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∂θ

]
. (4)

And therefore that:
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where b = B/B. Note, when operating on fluctuations, the parallel wavenumber k‖ can be identified via
∂/∂l = b ·∇ = ik‖

Properties of vector displacements and perturbed fields

The linear ideal MHD equations can be written in terms of the displacement variable ξ = ξ⊥ + ξ‖b. The
perturbed magnetic field is,

δB = ∇× (ξ ×B) = ∇× (ξ⊥ ×B) (5)

We write the covariant and contravariant perpendicular displacements respectively in the form:

ξ⊥ = ξr∇r + rξ⊥θ∇θ +Rξ⊥φ∇φ

and

ξr = ξ⊥ ·∇r, ξθ⊥ = rξ⊥ ·∇θ, ξφ⊥ = Rξ⊥ ·∇φ.

(with these definitions ξφ⊥ = ξ⊥φ and ξθ⊥ = ξ⊥θ(1 + O(ε)), where the correction in the latter is due to the
non-orthogonality of the coordinate system. We may also write,

ξ‖b = rξ‖θ∇θ +Rξ‖φ∇φ

and

ξθ‖ = rξ‖b ·∇θ, ξφ‖ = Rξ‖b ·∇φ.

4. Show that

ξ⊥φ =
r

qR
ξ⊥θ

(notice that ξ⊥ has only two components (and one of them is ξr), so it is clear that ξφ⊥ and ξθ⊥ would not be
independent). Less important for these exercises, but you might also show that

ξ‖φ = ξφ‖ =
F

RB
ξ‖, and ξ‖θ =

r

qR
ξ‖φ.

5. From your answer to the last question show that

ξφ⊥ =
ε

q
ξθ⊥(1 +O(ε)), ε =

r

R0

And from this result, show using Eq. (3) in question 2 that,

∇ · ξ⊥ + 2ξ⊥ · κ =
1

r

[
∂

∂r
(rξr) +

∂

∂θ

(
ξθ⊥

)]
(1 +O(ε2)). (6)

where it is assumed ∂/∂φ ∼ −q−1∂/∂θ which of course forces ∂/∂l → 0 (as expected for resonant instabilities
with dominant poloidal mode number m and toroidal mode number n, and resonant surface r where q(r) = m/n)

This result is important because δW involves ∇ · ξ⊥ + 2ξ⊥ · κ, and in the order expansion developed in δW0

and δW2, it can be shown that

∇ · ξ⊥ + 2ξ⊥ · κ = 0. (7)

In the expressions for δW0 and δW2 it is legitimate to drop the O(ε2) correction in Eq. (6) because those
corrections clearly first appear in δW4.
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6. From the definition (see lecture notes), we have that

ξ⊥0(r, θ, φ) = ξ̂⊥0(r) exp(−imθ + inφ)

Show using the result of Eq. (6) and Eq. (7) that

ξθ⊥0 = − i

m

∂

∂r
(rξr0) .

7. From the definition of Eq. (5), show using vector calculus identities that,

δB ·∇X = ∇ · [(ξ⊥ ×B)×∇X]

and furthermore that

δB ·∇X = (B ·∇)(ξ⊥ ·∇X)−∇ · [ξ⊥ (B ·∇X)] (8)

8. Use Eq. (8) to show that

δBr ≡ δB ·∇r = (B ·∇)ξr.

Notice that δBr is defined as the magnetic operation on ξr.

Show, using the results of the previous questions in this series that to lowest order (in ε)

δBr0 =
iB0

R0q
[nq −m] ξr0

using also that F = R0B0(1 +O(ε2)). Comment on what happens to δBr0 on a rational surface q(r) = m/n.

9. Use again Eq. (8) to show that

δBθ ≡ rδB ·∇θ = (B ·∇)ξθ⊥ −
rF

qR0
∇ ·

(
rξ⊥
Jθ

)
− r

R2
ξr
d

dr

(
F

q

)
.

Adopt the previous results of this question sheet to find that to lowest order,

δBθ0 =
B0

R0q

[
s(r)ξr0 +

nq −m
m

∂

∂r
(rξr0)

]
.

where

s =
r

q

dq

dr

is the magnetic shear.

10. Following a similar approach to the last questions it can be shown that,

δBφ ≡ RδB ·∇φ = (B ·∇)ξφ⊥ −
rF

qR0
∇ ·

(
rξ⊥
Jθ

)
− r

qR2
ξr
dF

dr

which is clearly very small on a rational surface. Use this result and the ordering (in ε) of non-orthogonal
coordinate corrections, to argue that,

|δB⊥0|2 = |δBr0 |
2

+
∣∣δBθ0 ∣∣2

and use the previous two questions to consider |δB⊥0|2 on a rational surface. Does it vanish on a rational surface
if the magnetic shear is non-zero? By considering magnetic field line bending stabilisation (see lecture notes),
why do instabilities tend to align to rational surfaces? What is the parallel wavenumber associated with leading
order fluctuations on the rational surface? Show that stability can be improved if configuration has non-zero
magnetic shear.

11. We now calculate δB‖ = b · δB in terms of the perpendicular displacement. Show using Amperes law and force
balance J ×B = ∇P that,

δB‖ = −B [∇ · ξ⊥ + 2ξ⊥ · κ] +
ξr

B

dP

dr
.

Can this be reduced further for realistic MHD instabilities (ones that minimise δW ), and does it follow that
parallel magnetic fluctuations are directly associated with finite beta effects?


