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Abstract

Attaining ignited plasmas in next-step tokamaks requires the avoidance of strong saw-
tooth activity in the plasma core. This has motivated studying correlations between
observed sawtooth behaviour and theoretical models describing the effects of collision-
less populations of ions on the internal kink mode. An energy principle approach has
been developed which allows the kinetic effects of collisionless ions on MHD modes to
be studied. The analysis accounts for linear wave-particle interaction, which in some
cases is stabilising to the internal kink mode and in others destabilising. The stability
boundary depends sensitively on the distribution of the collisionless population and
the equilibrium.

The recent Joint European Torus deuterium-tritium campaign has yielded ion
cyclotron resonance heated (ICRH) pulses during which both the sawtooth character-
istics and the ICRH minority ion population both evolve substantially. At multiple
times during each pulse, the evolution of the kinetic-fluid MHD potential energy is
calculated from measurement of the energetic ions and compared with the evolving
sawtooth duration. It is shown that there is a strong correlation between sawtooth
duration and minority ion stabilisation of the ideal internal kink.

Thermal ions in the banana regime also give rise to significant deviations from
the ideal MHD internal kink mode stability threshold. However, the behaviour of
such ions are found to be sensitive to the equilibrium electric field and the induced
sheared plasma rotation. An analysis is presented which includes the effects of the
equilibrium electric field and plasma rotation. For changing levels of plasma rotation,
the calculated critical pressure for internal kink displacements can change by a factor
of two.
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Chapter 1

Introduction

At a time when there is an increasing need to produce environmentally friendly energy
there are few practical sources capable of meeting current energy demand. Controlled
nuclear fusion however promises to be a safe and efficient source of energy. The most
accessible fusion reaction is that forming helium ‘He’ and a neutron ‘n’ from deuterium
D and tritium T, where the energy released is 17.6 MeV per reaction:

D + T —*He(3.5MeV) + n (14.1 MeV).

In order to induce D-T fusion it is necessary to overcome the mutual repulsion due
to the positive charges of the nuclei. The most promising method of supplying the
energy is to heat the D-T fuel to a sufficiently high temperature that the thermal
velocities of the nuclei are high enough to produce the required reactions. Fusion
brought about in this way is called thermonuclear fusion. The necessary temperature
is around 20 keV (~ 2 x 108 °K). At such a temperature the fuel is fully ionised and
the resulting state of matter is termed ‘plasma’. In a reactor it would be necessary to
confine a sufficiently dense plasma for a time which allows an adequate fraction of the
fuel to fuse. At an ion density of around 102°m 3 and a fuel temperature of 20 keV
the Lawson criterion [1] indicates that the confinement time must be greater than 1
second.

The most successful approach for achieving this objective is by confining the
plasma in a tokamak configuration. In a tokamak, shown schematically in Fig. 1.1,
currents in external coils create a strong toroidal magnetic field. A current through
the plasma is induced by a transformer with the plasma forming the second winding.
The plasma current provides heating through Ohmic dissipation, and also creates a
poloidal magnetic field. Consequently, the plasma current produces the helical mag-
netic field line structure inherent in tokamak plasmas. The toroidal surfaces on which
the helical field lines lie are known as flux surfaces. Because a tokamak is an axis-
symmetric device, a single field line covers an entire flux surface. However, exceptions
to this occur at ‘rational surfaces’. Here the field lines close on themselves after an
integer numbers of poloidal and toroidal circuits.
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Figure 1.1: The configuration of a tokamak.

Each charged particle is confined to a helical orbit about a magnetic field line
and consequently transport coefficients parallel to the magnetic field are much larger
than perpendicular transport coefficients. Therefore, the density and pressure are
approximately constant on a flux surface, while large gradients may exist across the
flux surfaces.

Plasma heating by the Ohmic dissipation of the induced current is not a suffi-
cient means of reaching the ignition conditions because the electrical resistivity of the
plasma falls as the electron temperature increases. To reduce the deficit, additional
heating schemes are employed. Such schemes include the injection of neutral beam
ions (NBI) and the launching of electromagnetic waves which resonate with the cy-
clotron frequency of a minority population of ions (ICRH). In both cases the resulting
energetic ions form a minority of the overall population and therefore give up their
energy to the bulk of the plasma population through collisions. Using such auxiliary
heating techniques both the Joint European Torus (JET) and the Toroidal Fusion
TEST Reactor (TFTR) have attained individual elements of the ignition conditions.
In particular JET has achieved a peaked fusion power of 16 MW [2]. It is widely
agreed, however, that a larger tokamak such as the International Thermonuclear Ex-
perimental Reactor (ITER) [3] is required if the Lawson criteria [1] is to be satisfied.
It is envisaged that the next step tokamak will ignite and become entirely self heating
through the increased yield of fusion born alpha particles (*He).

A problem which has been apparent since the earliest experiments is the occurrence
of instabilities. All instabilities limit the achievable confinement and the internal
disruption or sawtooth instability [4] is no exception to this. This instability causes
a rapid redistribution of the hot central plasma, so that the initially peaked density
and temperature profiles are flattened close to the centre of the tokamak. When
heating of the plasma continues, the peaked profiles reform, only to collapse once
more whenever some threshold is exceeded. It is of interest to exploit a means of
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delaying the sawtooth crash because in doing so, the hot plasma is confined in the

centre for longer which ultimately allows for an increased fusion yield. The importance

of sawtooth suppression was especially highlighted in the recent D-T campaign at JET

[2]. An example is given in Fig. 1.2, where in the first of two apparently very similar

discharges a large sawtooth occurs, limiting the fusion power considerably. In the

second discharge the fusion power reached the record, for that time, of 12.9 MW.
42675 and 42676

1 L L] 1 L] LI L | L] L L] L] | LI L] T | L 1 T L] | T L LI
+~ [ Fusion ]
10 Power (MW)

Central Elec
10 [ Temp (ke V)

7

Sawtooth

Figure 1.2: Tllustrating the comparison of two JET DT discharges: conditions were almost
identical until a giant sawtooth in 42675 degraded the performance. Discharge 42676 does not
exhibit giant sawteeth and a record fusion power was measured. The record has subsequently
been superseded.

A precursor oscillation, is often observed prior to the crash event. Experiments
show that it has the topology of the internal kink mode. The internal kink mode
comprises a fundamental MHD oscillation of the form ~ exp(if — i¢ — iwt), where 0
and ¢ are the poloidal and toroidal angle respectively, ®{w} is the rotation frequency
and 7 = Q{w} is the growth rate of the kink mode. The instability is located in
the tokamak where the wave propagates perpendicularly to the magnetic field line.
At this location, commonly known as the ¢ = 1 rational surface, the field lines do
not react in response to the travelling wave and the stabilising influence of magnetic
field line bending is lost. The remaining stabilising and destabilising influences on the
internal kink mode are usually quantified using energy principle methods [5].

The collective motion of collisional particles frozen in the magnetic field is ade-
quately described by the MHD approach, but this is not the case for energetic particles
whose motion is decoupled from the magnetic field lines. Their dynamics are best de-
scribed using the guiding centre approach in which their rapid gyration and resulting
helical path is approximated by a smooth drifting trajectory. The energy principle
has been extended to include the behaviour of such populations [6]. The effects of col-
lisionless populations of alphas, ICRH, NBI and energetic thermal ions on the internal
kink mode stability have all been considered - but with varying success.

It is now recognised that populations of collisionless ions such as those produced
by auxiliary heating, affect the sawtooth instability. Perhaps the most direct exper-
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imental evidence is observed in ICRH heated plasmas where the sawteeth have been
delayed for several seconds in JET [7, 8, 9]. Plasmas heated with NBI do not usu-
ally exhibit strong sawtooth stabilisation unless heated in conjunction with ICRH [9].
Evidence for alpha particle stabilisation is probably premature because the density
of fusion alphas as opposed to auxiliary heated minority particles has thus far been
small. However, alpha particle stabilisation of sawteeth has been predicted in ‘ITER
like discharges’ on a very large scale [10].

Analysis involving the kinetic effects of collisionless populations on the internal
kink mode requires detailed knowledge of the plasma equilibrium. The most cru-
cial quantity is the hot ion distribution function. Advances have been made in the
measurement and modelling of ICRH distribution functions. However, internal kink
calculations based on accurate models of the ICRH distribution functions have un-
til recently been scarce. Some equilibrium quantities are often neglected in internal
kink calculations altogether. Such quantities include the equilibrium electric field and
the induced toroidal plasma rotation. It is envisaged that the inclusion of a more
detailed equilibrium into the internal kink stability analysis should provide a greater
understanding of the behaviour of sawteeth.

The goal of this thesis is to extend the analysis of the internal kink mode by in-
troducing a more accurate representation of the experimentally observed equilibrium.
The thesis concentrates on the collisionless effects of ICRH populations and energetic
thermal ions. ICRH discharges have thus far produced scenarios with the greatest ob-
served sawtooth suppression [7, 8, 9], and have clearly demonstrated the link between
sawtooth activity and the behaviour of energetic ions [11]. An accurate model for
the ICRH minority distribution function is used to represent the kinetic component
of the equilibrium. The largely analytical theory that follows is ultimately used to
demonstrate strong correlations with experiment. This thesis also contains a detailed
analysis of the kinetic effects of thermal ions in the banana regime. The effects of
the equilibrium electric field and sheared flows are also included in the theory. The
calculations suggest that the effects of the equilibrium electric field in hybrid plasmas
can significantly modify the internal kink mode stability.

The thesis is organised as follows. Chapter 2 presents a historical review of the
theoretical and experimental evidence for kinetic stabilisation of the internal kink
mode. Also detailed in Chapter 2 is the linear MHD description of the internal kink
mode. Chapter 3 begins by introducing various aspects of single particle theory and
the drift kinetic equation. These results are then coupled with those of Chapter 2 and
the fundamental kinetic extensions of the internal kink mode are derived. Chapter
4 continues from the review chapters by introducing and deriving further kinetic
effects. Subsequently, various regimes and scenarios are described and new results
and insights discussed. In Chapter 5 ICRH discharges from the recent deuterium -
tritium campaign are analysed. Ideal internal kink mode models are employed based
on the theory described in Chapter 4 and subject to parameters inferred from the
JET discharges. In Chapter 6, the analysis describing the ideal internal kink mode is
extended to include the equilibrium electric field and induced plasma rotation. These
effects are included in numerical evaluations of internal kink stability for plasmas in
the banana regime. Finally, in Chapter 7 the thesis concludes with a summary of the
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major results and their implications, together with suggestions for further work.



Chapter 2

Theoretical Review

2.1 Historical Overview of the Internal Kink Mode

The avoidance and control of large scale instabilities has constituted a large fraction of
experimental and theoretical plasma physics over the last few decades. Experiments
show that the stability boundaries of gross instabilities determine the normal operat-
ing regime of tokamaks. Indeed, to trigger one results in complete loss of the plasma.
The sawtooth instability is an exception to this insofar as the plasma recovers. It is
a macroscopic instability which affects the hot and dense plasma core but it does not
usually terminate a discharge, rather the core recovers and the instability repeatedly
occurs in a regular manner. The sawtooth was first reported by von Goeler et al [4]
and is a feature common to all tokamaks. The complete sawtooth cycle is illustrated
in Fig. 2.1, where the following three regimes are clearly observed.

1. The sawtooth ramp phase; a quiescent period during which the central plasma
density and temperature increase approximately linearly in time.

2. The precursor oscillation phase during which the helical perturbation exhibits
growing oscillatory behaviour.

3. The collapse phase in which the central electron temperature and density fall
rapidly.
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Figure 2.1: Showing the line integrated electron density measured from an early sawtoothing
discharge at JET. The sawtooth comprises of a ramping phase, a precursor oscillation and a
collapse phase.

When a sawtooth collapse (or crash) occurs, hot electrons transport rapidly across
flux surfaces into a cooler region away from the centre. As a consequence the temper-
ature profile is flattened rapidly during the collapse phase. The ‘mixing radius’ is the
location at which the temperature is observed not to change during a sawtooth cycle.
Measurements of the mixing radius can provide a good estimate of the instability
location. It is found experimentally that the sawtooth precursor has a m = n =1
topology, where m and n are the poloidal and toroidal mode numbers respectively.
Such a growing oscillation is described by an internal kink mode perturbation, i.e.
~ exp(if — i¢ + ~yt), where 6 is the poloidal angle and ¢ the toroidal angle, as shown
in Fig. 2.2. Also shown in Fig. 2.2 is the minor radius r, plasma edge radius a, major
radius R, axial major radius Ry and the vertical height Z.

Since the phase of the mode is conserved the mode twisting number is defined
d¢/df = m/n = 1. In a large aspect ration tokamak, the magnetic field line twisting
number, which is commonly known as the safety factor, is defined as ¢ = d¢/df =
rBy/RoBg, where By is the toroidal magnetic field and By is the poloidal magnetic
field. In the case of sawteeth, a resonance exists at the rational surface located where
the twisting of the field line and mode match, i.e. ¢(r = r;) = 1. The instability
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can therefore only exist if the local value of the safety factor falls below unity. The
safety factor is usually a monotonically increasing function of the minor radius r and
from Ampeére’s law, the existence of a flux surface with ¢ < 1 corresponds to an axial
toroidal current density j4(0) exceeding 2B4(0)/(Ropo)-

(b)

Figure 2.2: Showing (a) the cylindrical coordinate systems (R, ¢, Z) and (r, 8, ¢) where R
is the major radius, Z the vertical height ¢ the toroidal angle, r the minor radius and 6 the
poloidal angle. Also shown is the plasma edge radius a. In (b), examples of nested toroidal
flux surfaces or constant pressure surfaces are illustrated.

Experiments in a number of tokamaks including JET [12] have demonstrated that
whilst gy ramps down during the quiescent period, it often remains well below unity
during the whole sawtooth cycle. These observations indicated that ¢ < 1, is a
necessary but not sufficient condition for the sawtooth collapse.

When the sawtooth was first reported, only two relevant calculations were known.
These concerned the ideal linear MHD instability [13] and its saturated amplitude [14].
Both of these used energy principle methods to analyse the ideal MHD stability. The
energy principle is described in detail later in this chapter, but its basic philosophy
can be summarised briefly as follows. A variational scheme is used to minimise the
potential energy W with respect to a perturbed MHD displacement £. If, for a
particular equilibrium, it is found that éW < 0, then the plasma is unstable to the
perturbation.

Shafranov [13] minimised W with respect to & = &(r) exp(i — i¢ — iwt). The
analysis was made tractable by letting the ‘local inverse aspect ratio’ ¢ = r/Ry be
a formal expansion parameter. Shafranov assumed a cylindrical plasma column and
expanded W to second order in the local inverse aspect ratio. It was found that a
top-hat displacement (which takes the form of a uniform tilt and shift of the plasma
inside r1 and zero displacement outside) minimises the potential energy to zero, thus
requiring dW to be determined to higher order in €. Rosenbluth et al [14] reported
a linear and non-linear ideal cylindrical MHD treatment up to fourth order in the
aspect ratio together with an analysis of the layer region (a region centred about ry).
Rosenbluth et al [14] showed that the discontinuity of the top-hat displacement at 7
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is removed by allowing for the effects of finite inertia. This analysis yielded a linear
relationship between the growth rate v = S{w} of the internal kink mode and the
minimised fourth order potential energy of the external region (far away from the
inertial layer).

Soon after the first reported observation of sawteeth, Bussac et al [15] again tackled
the problem up to fourth order in € but this time took into account the effects of
toroidal curvature. In the all important m = n = 1 case, Bussac et al showed that
the fourth order cylindrical terms derived in Ref. [14] are exactly cancelled by some
of the new toroidal terms resulting in only pure toroidal curvature effects remaining.
Bussac et al [15] were then at liberty to use the singular layer analysis of Ref. [14]
thus linking the growth rate to the new minimised potential energy. Upon considering
a parabolic g profile it was shown that the mode is unstable for,

2'[140 /Tl QdP
= ——53 —d . 2.1
Bp 22,7 riodr > 0.3, (2.1)

where (3, is the poloidal beta measured at 71, po is the permeability of vacuum,
By is the axial magnetic field strength, P is the plasma pressure and €1 = r1/Rp,
the inverse aspect ratio at r1. The poloidal beta is one of many definitions used
for characterising the efficiency of the confinement. (3, is essentially the ratio of the
plasma internal energy and the poloidal magnetic energy. For more realistic g profiles,
which are flatter inside r;, the threshold poloidal beta corresponds to 0.1 < 87 < 0.2,
depending on the exact safety factor profile.

Some other important results should be mentioned at this point. Glasser et al
[16] realised that in the singular layer region, the toroidal component of the inertia
competes with the poloidal component. This adjusted the equation for the growth
rate by a factor of /3. Also, Bussac et al [17] and later Ara et al [18] generalised
the linear resistive theory of Ref. [19] to include the separate behaviour of ion and
electron fluids. The result most crucially affecting the ideal stability is the effect of
finite ion Larmor radius in the singular layer. The modification is seen as a shift in
the ideal eigenvalue, w, and the corresponding dispersion relation is defined as:

i/ w(w — wypi) x OW,

where W is the potential energy of the mode minimised to fourth order (e.g. Bussac’s
expression [15]), and w.p; = —P,/(eZn;Byr) is the pressure weighted ion diamagnetic
frequency. Here, P] is the radial derivative of ion pressure, n; is the ion density, e
is the proton charge, Z is the charge number (Z = 1 for hydrogen isotopes) and B
is the axial magnetic field strength. Note that two solutions of differing magnitude
exist, whereas single fluid ideal MHD predicts ¢ |w| o< dW.

Bussac’s [15] result agrees with the hypothesis that the observed quiescent ramping
of the density and temperature induces a pressure driven trigger. In conflict with this,
tokamak discharges where the heating is Ohmic alone, regularly display sawtooth
activity at much smaller values of 5, (~ 0.05), implying the internal kink instability
observed prior to each sawtooth collapse is not of ideal MHD character. Neither
do many researchers consider ideal MHD capable of describing the sawteeth trigger
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condition. The three other main branches having been used to assess the trigger
problem [20] are:

(1) resistive single fluid MHD [19],

(2) two fluid, resistive equations [17, 18],

(3) MHD plus the kinetic treatment of a collisionless population of ions.

This review will continue by reporting the essential developments made in the ideal
(non-resistive) limit of (3) together with some vital experimental evidence.

The energy principle is useful for several reasons. It allows for both a tractable
determination of stability as well as aiding in understanding competing physical pro-
cesses. Furthermore, in many instances the minimisation of the energy principle
potential energy provides access to the solutions of the exact equations of motion
(e.g. see Refs. [13, 14, 15]).

The motivation for developing a kinetic energy principle is the need for a simplified
description of the collisionless plasma. MHD deals only with the fluid displacement
& which is a function of position. In the collisionless case one must also compute the
distribution function, which depends on both position and at least two coordinates
in velocity space. Hence, a kinetic energy principle can provide a shortcut to solving
a nearly intractable problem. It renders a method of determining stability by only
considering trial functions and minimisation with respect to &.

To develop a useful energy principle one must introduce constraints on the plasma
behaviour under consideration. For example one may adopt the assumption that the
plasma and the magnetic field move together (which is the behaviour that obtains
as a consequence of the ideal Ohm’s law E + v x B = 0). Also, to remove a degree
of complexity one may consider a reduced description of the plasma such as the
guiding centre model (see Chapter 3). Construction of a useful energy principle also
invariably requires making assumptions about relative time scales [21]. Only two
energy principles [22, 6], each with different time scales, are described here.

In both [22] and [6], the potential energy comprises the sum of a fluid component
Wy, and a kinetic component §Wy. If it is assumed that the equilibrium is isotropic,
the fluid term 0W; is simply the ideal MHD energy principle term. Whichever time
scale is of interest, W} has a contribution from the perpendicular compression of the
fluid. In fact V - €, = 0 gives 6Wj = 0.

Kruskal and Oberman [22] showed that a kinetic energy principle must contain the
effects of heat flow along magnetic field lines. Using a guiding centre model consistent
with the ordering 9/t ~ v, - V, which treats kinetically the particle motion along
field lines, Kruskal and Oberman [22] derived,

where again 6Wj, i represents the energy required to compress the plasma perpendic-
ularly. It can be shown that Wy is positive definite and increasingly stable with
respect to increasing V - £ |. The evaluation of Wk requires orbit averages and in-
tegrations over energy and pitch angle space of particles. The Kruskal and Oberman
[22] energy principle has been used relatively recently to model the stability of the
internal kink mode in plasmas containing collisionless thermal ions. For example in
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Ref. [23] it was used for the case of ‘ultra flat g profiles’, and also in Ref. [24] where
it was shown that the internal kink mode is stable if
_ mV2e

(1 - )8} — (85" = F i < 0, (2:2)

where 35 is poloidal beta at which the ideal MHD stability calculated by Bussac [15]
is marginal (e.g. for parabolic g profile 8; = 0.3), u1 = 1.1 is a coefficient proportional
to an approximate solution of the inherent pitch angle integrals (see Chapter 3), and

1 2P,
Bi = Al /0 drr’/?=1 (2.3)
T

with po the permeability of a vacuum. Equation (2.2) is a limiting solution of the
stability criterion used in this thesis to analyse the stability of the internal kink mode
for plasmas with energetic thermal ions.

Some time after the Kruskal and Oberman calculation it was pointed out [6] that
some collisionless instabilities may have mode frequencies sufficiently small to fall
outside the correct regime of Ref. [22]. Antonsen et al [6] demonstrated that the
analysis for modes satisfying 0/0t << v - V requires the drift of particles with
respect to the non-homogeneity of the magnetic field. Subsequently Antonsen et al
[25] derived a collisionless energy principle for modes satisfying 0/t ~ vq-V, where
Vg 18 the magnetic drift velocity. The result is

Antonsen et al [25] showed that dWj4 is not only smaller than éWyx but can, de-
pending on the equilibrium conditions and specific mode in question, also change sign,
and thus alerted to the possibility of new instabilities not described previously.

Some of the first investigations concerning the effect of energetic particles came
from studies of the ballooning mode. Connor et al [26] proposed that the introduc-
tion of an energetic anisotropic minority species can be stabilising. Initially however,
the experimental evidence of fast particle stabilisation was not encouraging. In 1982
a new form of m = n = 1 internal kink instability was observed on the Princeton
Poloidal Divertor experiment (PDX) [27]. Like the precursor oscillation of the saw-
tooth instability, the new instability, known as the ‘fishbone’, appeared as a slowly
growing and oscillating signal (both in electron temperature and poloidal magnetic
field) rotating in the toroidal direction. In contrast to the sawtooth however, no rapid
thermal collapse phase was observed, rather the oscillating signal grows and then
decays in amplitude giving the characteristic ‘fishbone’ signal. Measurements of the
electron temperature and the time derivative of the poloidal magnetic field, as shown
in Fig. 2.3, demonstrate that periods of quiescence alternate with bursts of fishbone
activity in a regular manner. The fact that both fishbones and sawteeth are driven
unstable by the internal kink mode implies that they are intricately linked. In fact,
great insight into the kinetic behaviour of sawteeth has its origins in the theory of
fishbones.

An explanation of the fishbone instability using the recent energy principles of
Antonsen et al [25] was presented in [28]. In this work a distinction was made between
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the two major components of the plasma: the plasma core (comprising collisional
thermal ions and electrons) and a highly anisotropic collisionless minority species.
The minority ion pressure can be ordered according to P, ~ €P,., where P}, is the
perpendicular pressure corresponding to the hot ions and P, the pressure of the core
plasma. Because of this ordering the analysis of Ref. [15] for the core plasma stability
and layer region still applies [28]. The potential energy of the energetic particles have
associated with them two terms, both of which depend only on the leading order
‘top-hat’ displacement. The terms are fourth order in the inverse aspect ratio and
correspond to a fluid component dWj, and a kinetic component dWjy,. Ignoring
diamagnetic effects in the layer the dispersion relation for w becomes [28],

tw o< Wi+ Wyp + Wi (w),

where 6Wj, is the core plasma term [15], and we note that both w and W}, have real
and imaginary parts. Chen et al [28] showed that Wy, only contains the effects of
trapped particles, and if there are enough of these, a destabilising mode can exist with
an ordering w, = R{w} ~ (Wman) where 0/0t = w and (wmqgp) is the bounce averaged
magnetic drift of hot trapped particles corresponding to the quantity v,,qp + V.

3
1

w
2
T 16
w =1
= —
S 15
8 <
= 3
< ek
3
'_
L3
1.2
4._.
P
(.
2 g
52 S ot
- g
2 < |
< >
~ 0 @ O
<) ‘m
' m L
2 2
: —
!
-4 I L Lt L 1 I 1 ! 1 i 1 )
470 475 480 485 430 495 500 479 486
TIME (msec) TIME (msec)

Figure 2.3: Both electron temperature and the time derivative of the poloidal magnetic field
illustrate the characteristics of the fishbone instability.

The unique feature of the PDX device causing it to exhibit the instability so clearly lay
in the fact that the angle of the neutral beam injection (NBI) was nearly perpendicular
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to the toroidal field. The NBI power was also higher than any other machines at that
time and meant that there were enough trapped minority particles at a high enough
energy to exceed the threshold for the fishbone instability [28].

After the implications of Ref. [28] were realised much theoretical work followed.
Some of this focused on another fishbone instability defined with an ordering w, ~
Wipi ~ (Wman) [29]. With this ordering the diamagnetic corrections to the layer cannot
be neglected. By including these corrections, the ideal kink mode dispersion relation
allows for the possibility that the mode could be a discrete eigenmode, existing within
a gap in the Alfvén continuum [29]. The two fishbone modes of Refs. [28, 29] are in
fact limiting solutions of a more general scenario.

Until 1986 both experiment and theory had suggested that energetic particles
have only a detrimental effect on the internal kink stability. In 1986, however, JET
carried out a series of high power ion cyclotron resonance heating (ICRH) experiments
in which the sawtooth instability was suppressed for seconds at a time [7]. Figure
2.4 illustrates further ICRH experiments [11] where sawtooth quiescent periods were
interrupted by a sawtooth collapse which followed the switch off of ICRH with a time
lag of 60 — 80 ms - comparable to the slowing down time of energetic ions. This
clearly confirmed that the ICRH minority ions were providing a stabilising influence
to sawteeth. Sawtooth stabilisation with ICRH was subsequently verified in TFTR

[9].
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Figure 2.4: Showing one of the JET ‘ICRH switch-off’ discharges [11]. The figure displays a
correlation between the ICRH power Prp, and central electron temperature T,o. The sawteeth
were stabilised for about one second and the collapse was triggered 60-80 ms after the abrupt
switch-off of Prp, a delay comparable to the slowing down time of the energetic ions.
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After the experimental reports on the stabilisation of sawteeth, a flurry of research
activity began. Much of this was inspired by the earlier fishbone analysis. Perhaps
most notable are Refs. [30, 31, 32]. In these papers a distinction was made between
the two branches of the hybrid internal kink mode dispersion relation

iy w(w — wipi) < Wie + Wi + Wiy (w).

The lower frequency branch, thought to be responsible for sawteeth, was found to
correspond to w, < (Wpgan). A branch w, ~ (wmaen), thought to characterise the
fishbone instability, was, in many cases, found to co-exist with the sawtooth oscillation
branch.

In Ref. [30] the resistive and two-fluid analysis of Refs. [17, 18] was generalised
to include an energetic minority population. White et al [30] demonstrated that
energetic trapped particles have a strong stabilising influence on the resistive internal
kink mode. Simplified distribution functions describing either ICRH or NBI heating
were used. In both cases significant stabilisation was shown to be possible providing
that the lower frequency branch satisfied w, < (wy,qp). For the first time this provided
estimates of lower bounds of the hot ion temperature and also explained why different
levels of auxiliary heating can lead to contrasting sawtooth behaviour. Soon after this
White et al [31] showed that a stability window can exist in a high 8 plasma which is
completely stable to both sawtooth oscillations and the fishbone mode.

Coppi et al [32] also analysed the resistive kink mode. Specifically they examined
the regime where w << (wpqn) and corrected earlier assertions that R{0W},(w = 0)} =
0. However, Coppi et al failed to also correct for the fact that S{dWj(w =0)} # 0, i.e.
the Landau resonance of barely trapped energetic ions with the mode was neglected.
Nevertheless, Ref. [32] illustrated the existence of stability windows in which the
resistive internal kink was stabilised. Consequently, the paper added to the growing
consensus that the kinetic additions to the MHD energy principle were, to some extent,
taking account of the sawtooth stabilisation witnessed in experiments.

The limit w << (wmap), often used for studying sawteeth is usually justified in
plasmas for which the minority ions are either Alpha particles or are heated by ICRH.
For example, in JET and TFTR, ions heated with ICRH are often in the MeV range.
Typically however, ions heated with NBI are an order in magnitude cooler, thus
increasing the possibility that unstable modes with w, ~ wy,qp, may exist. Porcelli
[33] pointed out that the limit (w,qgn) >> w conserves the third adiabatic invariant
[34], i.e. the magnetic flux encircled by the precessional drift orbits of fast ions. This
means that the natural frequencies of trapped energetic ions are sufficiently high that
the energetic ions do not react to periodic changes in the equilibrium. Instead, the
energetic trapped ions provide rigidity to the area of the torus where particles usually
tend to be destabilising: the region of bad curvature. In the limit of strong anisotropy
Py, ~ ePyp, relevant for high power ICRH, and with {(wpan) >> w, it is possible to
show that the leading order terms in éWy, and Wy, cancel with one another. For
moderate shear and pressure the stabilising kinetic term wins. Hence, the overall
result is stabilising and the approximate ideal stability criterion [32] is obtained:

Bpn %51 [ 2 — ( ;C)Z] : (2.4)
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where 1 = 1 /Ry is the inverse aspect ratio of the ¢ = 1 rational surface and

_ 2p0 [T 30 d o1y
o= ~ger f, 7 () (%)

Bpc is the poloidal beta for the core plasma given by Eq. (2.1) and ag ~ 1/(1 — go).

The analysis of Ref. [32] contained a number of approximations and assumptions.
The energetic particle distribution function was assumed to comprise the sum of a
small purely isotropic component and a single pitch angle component, thus aiding the
complicated pitch angle integration. The model for the hot pressure profile required
on-axis heating and was assumed to be of the form P ;, ~ Py,exp(—r?/D?). It
should be noted that whenever one attempts to calculate the stability criterion in
ICRH plasmas one has to consider carefully the models used for the distribution
function of the hot ions. Subsequent improvements on Ref. [32] have concentrated on
a more realistic representation of the distribution function. However, such studies do
not usually yield clear stability criteria, such as that of Eq. (2.4), because the energy
and pitch angle integration can not be carried out analytically. Simpler calculations,
and possibly more robust predictions, are possible when the energetic ions are alpha
particles. In such cases the distribution function is isotropic and the calculations
become more tractable [35].

Soon after the publication of Ref. [32], Porcelli et al [36] compared results from the
newly reported theory with observed sawtooth behaviour at JET. Again, assumptions
were made due to the difficulty in measuring the minority ion distribution function
and of integrating the hot ion terms. In particular it was assumed that the hot ion
pressure profile was identical to the the thermal ion pressure profile. Porcelli et al [36]
were responsible for bringing to light some of the following general trends:

1) The hybrid model supported the experimental observation that an increased inver-
sion radius = r; introduces stronger internal kink destabilisation.

2) High minority ion concentrations do not stabilise sawteeth as well as smaller con-
centrations. Porcelli argued that when the concentration is high, the RF coupling to
the ions is inefficient and the tail temperatures are small. Therefore, the conserva-
tion of the third adiabatic invariant is less certain for high concentration levels, thus
affecting the stability properties of energetic ions.

3) Only in a few specialised cases has NBI competed with ICRH for achieving saw-
tooth quiescent times of the order of 1s and, moreover, many NBI heated discharges
are accompanied by fishbone activity. Porcelli argued that on JET most NBI power
is injected at an energy per neutral of 80keV. At such an energy the third adiabatic
invariant is not conserved and the stability window is obscured.

In an effort to link ideal stability to experimental observation at TFTR, Phillips
et al [37] found similar trends to Porcelli [36]. One of their key observations was the
peaking of current and pressure profiles during the quiescent phase of the sawtooth.
Measurements of the poloidal magnetic field indicated that g on axis (go) decreases to
a value of around 0.55 after a quiescent period of ~ 0.5 seconds has transpired. The
ideal MHD - kinetic theory used in Ref. [37] predicted that a corresponding expansion
of the ¢ = 1 volume leads to increased instability as observed in many discharges.
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Firmer comparisons between theory and experiment were essentially limited by
two factors [33]. First, the stability threshold depends sensitively on parameters that
are difficult to measure such as the ¢ profile and the distribution function of energetic
ions. Second, the theory may not be sufficiently developed. In this context equilibrium
electric fields and sheared flows constitute additional effects which have not until now
been considered [33] but are often measured as being significant. Indeed, some NBI
experiments have suggested that sheared flow can influence sawtooth stability. Also,
m = 2, n = 1 Resonant Magnetic Perturbations (RMP’s) that are sufficiently large
to lock the plasma to the ¢ = 2 surface, eliminate sawtoothing altogether [38]. The
sawteeth reappear when the RMP amplitude is reduced and the plasma rotation
profile is altered.

In 1995 Dendy et al [39] worked on improving some of the assumptions and sim-
plifications of previous analysis. The work used a realistic but analytically tractable
model for the distribution function of the heated ions based upon the approach of
Stix [40]. Here the level of anisotropy and the ICRH resonance position remain free
parameters in the integral expressions. Dendy et al showed that the hot ion stability
is almost invariant to changes in the level of anisotropy in the range ¢ < P, /Pip S 1.
The result was consistent with a previous analysis [35] showing that the stability of
the isotropic case is of the same order as the highly anisotropic case. In the isotropic
limit the passing particles are more numerous and spend time in the region of good
curvature thereby giving rise to stabilising terms which are of the same order as the
destabilising trapped fluid terms. However, the kinetic term is smaller in the isotropic
limit because the number of trapped particles are fewer. The overall result is similar
in magnitude to the highly anisotropic case.

In the following year McClements et al [41] followed up the improved models of
Ref. [39] and made further comparisons to JET experiments. Unlike other theo-
rists McClements used an ordering where the hot ion pressure was comparable to
the core pressure and the anisotropy was assumed only slight, i.e. P, ~ P. and
Pyn/PLp ~ /€. Such an ordering meant that the hot ions had to be included into
the fluid toroidal curvature terms which before had only contained the core plasma.
To do this a modified version of Ref. [15], capable of dealing with the small level of
anisotropy [42] was used. The shaping of the toroidal cross sections was also consid-
ered [43] together with kinetic terms. The paper contained two major results based
on discharges described in Ref. [8], two of which McClements et al described as dis-
charge A and discharge B. The first result contained two ideal kink calculations, one
made near the start of the sawtooth quiescent period of discharge A and another just
proceeding the sawtooth crash. McClements et al showed that the expansion of 1 and
the decrease in gg did not alter the kinetic stabilisation significantly but did strongly
destabilise both the toroidal terms and the shaping terms, which, in line with the
experiment, destabilised the ideal internal kink.

The second result contained in Ref. [41] concerned the different characteristics
exhibited by discharges A and B. In discharge A, the ICRH power was limited to
4.3 MW, whereas in discharge B, the ICRH power was set to approximately 6 MW.
Aside from the contrasting hot ion tail temperatures, the plasmas were very simi-
lar. However, the evolving central electron temperature yielded differing sawtooth
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characteristics. In discharge A the sawtooth quiescent period was approximately 1s,
whilst in discharge B there were many sawtooth cycles per second. These experimen-
tal findings suggested that the ICRH power can be set to a level too high to produce
sawtooth stabilisation. McClements argued that the hot ions contained in the desta-
bilising toroidal terms dominate the stabilising kinetic effects at higher pressure. A
similar process can be seen quite simply for the collisionless thermal ion case of Eq.
(2.2). Here the destabilising toroidal effects dominate stabilising kinetic effects at
high pressure because of the parabolic dependence in 3.

Also in 1996, Porcelli et al [10] simulated sawtooth cycling in a projected ITER
discharge by introducing into a transport code a sawtooth trigger criterion and pre-
scription for sawtooth collapse. The trigger criterion involved a resistive treatment
which depends critically on the shear s = d log ¢/dlogr at r1. Porcelli’s model showed
that the sawteeth can be stabilised transiently by fusion alpha particles in ITER. They
went on to point out that their calculations suggested that the sawtooth period could
exceed 100 seconds and the mixing radius easily exceed half the minor radius. Sub-
sequently, this raised a great deal of interest concerning the desirability of transient
sawtooth suppression in ITER.

Alpha particles, ICRH and NBI heated ions are not the only energetic species that
give rise to kinetic effects. With the design and construction of ever larger and hotter
tokamaks, the kinetic effects of thermal ions have been increasingly considered. It
was mentioned earlier that the Kruskal and Oberman [22] energy principle has been
applied to plasmas with energetic thermal ions [23, 24]. The Kruskal and Oberman
[22] calculation for thermal ions was also used in Ref. [10]. Fogaccia and Romanelli
[44] went further and included the kinetic effects of thermal ions based on the en-
ergy principle devised by Antonsen et al [6]. They identified a trapped thermal ion
instability characterised by w ~ (wpq;). Other authors have made more sophisticated
numerical stability calculations. For example, Antonsen and Bondenson [45] included
the effects of the perturbed parallel electric field 0 E}| - a quantity which does not exist
in ideal MHD. It was found that 6 E had a small stabilising influence. None of these
papers, however, included the effects of energetic thermal ions in the singular layer.

Some time earlier Mikhailovskii [46] published a paper reporting a modification to
the dispersion relation at the singular layer. It was found that the collisionless effects
of thermal ions in the layer, as with the modifications arising from the perturbed
toroidal flow [16], enhance the inertia. Unfortunately Mikhailovskii [46] used the sim-
plifying assumption that perturbations in the long-mean-free-path limit are isotropic.
A derivation yielding the correction to Mikhailovskii’s result is given in Chapter 4.
Romanelli et al [47] also realised the importance of the kinetic effects of thermal ions
in the singular layer. Unlike Mikhailovskii [46], they employed an ordering w ~ wy;,
where wy; is the transit frequency of passing thermal ions. It was argued that this
ordering was required in the hybrid plasma (which included both collisionless thermal
ions and a collisionless minority population) under consideration.

This thesis attempts to fill some of the gaps highlighted in this literature review.
Using the improved calculations for the hot ion kink mode stability of ICRH plasmas
[39] a detailed comparison between ideal theory and the JET experiment will be de-
scribed. Subsequently, some of the limiting factors of Refs. [36, 37, 41] are eliminated.
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Moreover, the kinetic description of the internal kink mode is extended to include the
effects of an equilibrium electric field. Sheared flows, which can arise as a consequence
of the equilibrium electric field, may be significant in many experiments [38]. These
effects are included in evaluations for the internal kink mode stability of collisionless
plasmas. In addition, unlike previous analysis [23, 24, 44, 45], the kinetic effects of
collisionless thermal ions are included consistently in both the external region and the
singular layer.

2.2 MHD Stability

The theory of magnetohydrodynamics (MHD) describes quasi neutral plasmas (where
the local electron charge is balanced by the ion charge) with scale lengths greater than
the Debye length and time scales slow enough that the plasma is collision dominated.
The MHD equations are formed by taking velocity moments of the ion and electron
kinetic equations. The resulting single fluid description of the plasma is known as
MHD. The ions carry the inertia of the plasma and the motion of the more mobile
electrons give rise to electromagnetic phenomena. MHD has proved to be a very pow-
erful tool. For example it provides a tractable means of identifying the stability of
the plasma against various macroscopic instabilities in the complicated magnetic con-
figurations required for the confinement of plasmas. In the approximation of infinite
plasma conductivity the resulting ideal MHD equations are defined as:

dp

I +pV-u = 0 (Conservation of mass)
du . . .
P +VP—-j3jxB = 0 (Equation of motion)
d
p (Pp™7) = 0 (Adiabatic equation of state)
E+uxB = 0 (Ideal Ohm’s law)
V.-B = 0 (Conservation of magnetic flux)
V xB—pyj = 0 (Ampére’s law)
0B
v +VxE = 0 (Faraday’s law), (2.6)

where u is the fluid velocity, p is the mass density, P is the plasma pressure, j is
the current density, +y is the adiabaticity index and the convective derivative d/dt =
0/0t +u - V. The electric and magnetic fields E and B consist of externally applied
fields and averaged fields arising from long-range inter-particle interactions.

2.2.1 The Normal Mode Approach

One way of identifying the instabilities that exist in MHD is the normal mode ap-
proach. In this approach all the MHD quantities comprise the sum of an equilibrium
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component and a perturbation which is small in comparison:

Q—Q+6Q.

The perturbations acquire the form dQ(z,t) = dQ(x)exp(—iwt), representing dis-
turbances that have always existed and do not require initial conditions.

In MHD it is usually assumed that the equilibrium velocity w is negligible. This
approximation is valid providing the centrifugal forces associated with a circulating
fluid is small. It is convenient to define the perturbed fluid velocity in terms of the
fluid displacement £ such that

43
ou=—_.
YT e
The linearised equation of motion is defined:
0%¢
ZS _§5F 2.7
Pop = OF, (2.7)

where
0F =6j xB+3xd6B—ViP.

The perturbed pressure can be written in terms of the fluid displacement as follows,
0P=—-yPV-£—-€E-VP,

and the remaining terms, 7 X B + 7 x d B, can also be written in terms of B and &

giving

OF(§) = V(YPV -£+£-VP)+ —[(VX VX (§xB))xB+(V xB)x(V x(§ xB))|.

1
—|
Ho
Hence the normal mode approach represents an eigenvalue problem problem in w?

with solutions conforming to,
—w’pt = 8F (§),

with & no longer an explicit function of time.

The force operator possess an important property which greatly aids the analysis
of linearised MHD stability. In particular it can be shown that for two independent
displacement vectors £; and &2 the following relation holds

/ &1 - 6F (£5)d%s = / £ 6F(&1)dx, (2.8)

where the integration is performed over all space. Thus, dF is self-adjoint [5].

Using the self-adjoint property of the force operator it is straightforward to show
that w? is real. The possibilities are
1) Two stationary modes, with one growing and the other decaying (i.e. w? < 0)
2) Two modes neither growing or decaying but both propagate with equal speeds and
in the opposite sense (i.e. w? > 0).
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2.2.2 The Energy Principle

The fact that stability boundaries occur when w? crosses zero ultimately leads to an

elegant and efficient means for testing MHD stability known as the energy principle.
The formulation is derived by forming the scalar product of Eq. (2.7) with £€* and
integrating over all space giving

5K(£a£*) + 5W(£’£*) =0, (2'9)

where the self-adjoint property of Eq. (2.8) has been used for the definitions of

SK(EE) = —3o [ p]€] &%
Wee) = -3 € oFEds (2.10)

Hence from Eq. (2.9) it is clear that the energy due to the mode is conserved.
The energy principle [5, 48] states that the eigenfunction £ is obtained by min-
imising 0K (&,€%) + W (€,£") with respect to & and keeping w fixed. Subsequently,

from Eq. (2.9),
9 20W

I \£2| d3z
determines the growth rate. This procedure is equivalent to obtaining a normal mode
solution of Eq. (2.7).

The energy principle also renders a simplified analysis. Equation (2.11) indicates
that the stability transition occurs for §W = 0, i.e. a mode is stable for 6W > 0 and
unstable for W < 0. Hence, if one is interested only in whether the mode is stable,
and the exact growth rate is not required, only the sign of §W needs to be calculated.
A proof exists [5] showing that the sign of §W is obtained correctly by minimising
only 6W, rather than 6 K4+ W, with respect to £&. This allows for a tractable means of
calculating stability boundaries and intuitive comparisons between competing sources
of stability.

Care must be taken if one uses the simplified energy principle to infer growth
rates. In the case of the internal kink mode, the minimisation of only dW and the
subsequent implementation of Eq. (2.11) leads to large errors in w. However, if one
minimises 6K + dW, it is found that £ depends on w in such a way that [ p ‘52

1/w. Therefore, even when éW is close to its stability boundary, one must minimise
0K + 0W if accurate growth rates are required.

(2.11)

w

A3z x

2.2.3 Intuitive form of 6W

The potential energy can be written in a convenient form [49] enabling various com-
peting energy sources in dW to be easily identified. Assuming that the plasma is
bounded by a perfectly conducting wall it can shown that:

6W(§’ 5*) = 5WJ.(§J_; 51) + W(Sa 6*)5
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with,
. 1 4 (6B B? 9
SWi(€.,€1) = §/d z|—=+—(V-& +2¢, k)
Ko Ko
~2(£, - VP)(k-£1) —jj (€L x &) - 6BL)  (212)
- 1
Wee) = 5 [ darP(v ¢ (213)
where j) is the parallel current density,
0B =V x (£, x B), (2.14)

€| = B/B, the magnetic field line curvature vector
K = 8é||/al (2.15)

and / is a length parallel to the magnetic field such that 9/0] = & - V. Each of
the terms in Eq. (2.12) has a simple physical interpretation. The first term in §W
is always stabilising and is the magnetic energy in the Alfvén wave associated with
field line bending. The second term is also stabilising and corresponds to the energy
necessary to compress the magnetic field and describes the major potential energy
contribution to magnetosonic waves. The third term, proportional to the pressure
gradient, is the potential energy for the ballooning instability. It is destabilising if
VP and k are parallel (unfavourable curvature). The fourth term is the free energy
arising from the current and is responsible for external kink instabilities. The internal
kink mode involves a complicated combination of the third and fourth term; that is,
both current and pressure play a role. 6W is the energy required to compress the
plasma. It is stabilising and corresponds to the major energy source in sound waves.

2.2.4 Incompressibility

Before using the energy principle it is essential to attempt a reduction in the com-
plexity of the analysis. This section demonstrates that under certain conditions, the
dimensions of the system can be reduced from three to two.

Equation (2.12) shows that W is independent of §. This means that W can be
minimised with respect to £ by only considering OW. It is clear that §W is positive
definite and minimises to zero when V - & = 0. This requires that the parallel flow

satisfies ¢
9 (&) _
B (5) ——V-&,. (2.16)

Hence, the most unstable modes that exist in the vicinity of the stability boundary
are incompressible. One should note that the parallel flow does not satisfy Eq. (2.16)
far from the stability boundary, i.e. normal modes are not incompressible when their
rate of growth is large. However, in this thesis, the growth rates are small and Eq.
(2.16) is appropriate.
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2.2.5 Collisionless MHD

The implementation of ideal MHD requires that the plasma is collision dominated.
This is not usually the case in fusion plasmas. For example, large tokamaks, like JET
and TFTR, often run at high temperatures where neither the thermal ions nor the
energetic minority species are collisional. Models other than ideal MHD are used to
analyse the stability of collisionless plasmas.

The theory used in much of the work in this thesis involves drift kinetic theory.
Here, the perpendicular motion is fluid like (i.e. involves £ | ), while a one dimensional
kinetic equation governs the behaviour parallel to the field. The model also allows for
pressure anisotropy and the effects of wave - particle resonances. Problems involving
drift kinetic theory are more difficult to solve than ideal MHD because of inherent
wave - particle resonances and the complexities associated with the parallel kinetic
motion.

The collisionless MHD model represents a simplifying limit of drift kinetic theory.
In this model the pressure is assumed isotropic, the time scales disallow wave-particle
interaction and most crucially the kinetic equation for the parallel flow is replaced by
the assumption V - £ = 0, i.e. perturbations analysed in the collisionless MHD model
are incompressible. The ideal MHD equations are altered as follows:

dp _ dp
£+pV u=0 = dt_O
d _ dP
d . d .
pd—’:+VP—ng:0 = p%—I—VLP—]xB:O.

Since parallel flow does not appear in Eq. (2.17), the collisionless MHD energy
principle now corresponds to the minimisation of

0K (€1,€1)+WL(€,,€71) (2.18)

with respect to & [50], where 6W (& ,&") is the same as that of Eq. (2.12) and

SKL(61,€1) = —30* [ ]3] . (219)

Consequently, both collisionless MHD and ideal MHD predict exactly the same sta-
bility boundaries but different growth rates. The effects of collisionless thermal ions
on the internal kink mode are considered in detail later in this thesis. In particular,
comparisons are made between the subsequent energy principles of drift kinetic theory
and those of the collisionless and ideal MHD models.

2.3 Large Aspect Ratio Equilibria

For axisymmetric equilibria, that is equilibria independent of the toroidal angle ¢, the
magnetic field lines lie in nested toroidal flux surfaces as illustrated in Fig. 2.2. The
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basic condition for equilibrium is that the force on the plasma is zero at all points.
This requires that the magnetic force balances the force due to the plasma pressure,

jxB=VP. (2.20)

It is clear from this equation that B - VP = 0. Thus pressure gradients do not exist
along field lines and magnetic flux surfaces are surfaces of constant pressure.

2.3.1 Low beta plasmas

The efficiency of the confinement of plasma pressure by the magnetic field is repre-
sented in a simple way by the ratio

P

p= B2 /2ug’

There are several alternative expressions of this type, some arising from varying
choices of definition and others from the need to quantify different equilibrium prop-
erties. One of these is the poloidal beta measured at r; as defined in Eq. (2.1).

The pressure and magnetic field are directly related through the pressure balance
equation. This is obtained by considering the equilibrium force balance of Eq. (2.20)
and Ampere’s law. As will be seen later, when considering plasmas of large aspect
ratio (which typically conform to Ryg/a 2 2.5) the local inverse aspect ratio ¢ = /Ry
is regularly used as a formal expansion parameter. The leading order terms of the
pressure balance equation give:

dP 1 d ( 32) By d

20 % (B, = 0.
P ‘|'/J07,dT(7" 0)

o M ouedr
Tokamak equilibria take a comparatively simple form for low [, large aspect ratio
plasmas. The following scalings in terms of the local inverse aspect ratio ¢ = /Ry
are used throughout this thesis:

_ Ro 2
By(r,0) = B0, 9 (1+0()
Bg ~ 8B¢
o E,‘BO
dlr) = By (+0E) ~1
B~ & (2.21)
,Bp ~ 1
1 d
s ~ ——(rB
Js uordr(r 0)
Jo ~ €J4-

Hence the pressure balance equation gives

a  Byan,
dr po dr
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The low beta ordering allows for a simplified description of the equilibrium mag-
netic field structure. In such instances it is convenient to write j x B = 0. Using this
together with Ampere’s law gives BVB = (B - V)B. It is now easy to show that

£, -VB
B

Equation (2.22) is very useful in Chapter 3. It serves to greatly simplify the kinetic
modifications of the internal kink mode.

—¢, K (2.22)

2.3.2 The Shafranov Shift

One can think of a toroidal flux surface as a bent cylindrical plasma column. The
resulting toroidal curvature has important consequences on the equilibrium properties
of the plasma. The largest of these is a shift in the major radius of nested flux surfaces.
The shift, illustrated in Fig. 2.5 is known as the Shafranov shift, A(r), and essentially
arises as a consequence of the hoop force and the tyre tube force [50].

v

Figure 2.5: Showing nested circular flux surfaces displaced by a distance A(r) from the
magnetic axis which is located at distance Ry from the major axis.

The hoop force emerges because the magnetic field strength is stronger on the
inboard side of the torus (§ = w) than the outboard (6 = 0) and the tyre tube force
because the plasma pressure acts on a smaller surface on the inboard side of the torus
than the outboard. These forces combine to produce a shift which is monotonically
increasing with r. A unique flux surface is defined by r = constant with 0 < 8 < 2,
or in terms of the cylindrical system,

Z = rsind
R = Ry— A(r)+rcosé.

A solution of the Grad-Shafranov equilibrium equation [51] yields

Al(r) =g [ﬂp +o+ ﬂ ) (2.23)
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where [, is defined in Eq. (2.1), €1 = r1/Rp is the inverse aspect ratio at the ¢ =1

rational surface and L )
=— 3 ( 5 — 1) dr. (2.24)
r1Jo Q(T)
Equation (2.23) demonstrates that the poloidal beta scales linearly with the gradient of
the Shafranov shift. If one now considers Bussac’s [15] approximate stability condition,
given by Eq. (2.1), it is now clear that the stability of the internal kink mode depends
strongly on A’. This confirms the earlier statement that the stability of the internal
kink mode depends strongly on toroidal effects.

2.3.3 Shaping of Flux Surfaces

The flux surfaces of many tokamak plasmas are not only displaced by the Shafranov
shift but are also non-circular. In general R and Z may be expressed respectively as
Fourier cosine and sine series in the poloidal angle f. Truncating each series at the
second harmonic:

Z(r,0) = r[(1+ L(r))sin@ — T'(r) sin 26
R(r,0) = Ry— A(r)+r[(1—L(r))cos@ + T(r) cos 26], (2.25)

where L(r) and T'(r) are profiles representing the elongation and triangularity respec-
tively. The effects of elongation and triangularity on flux surface cross sections is
illustrated in Fig. 2.6. If large enough, the distortions can affect the MHD stability of
the internal kink mode [43]. The effects of triangularity and elongation are considered
when interpreting JET sawteeth data in Chapter 5.

Figure 2.6: Showing typical elongated, triangular and Shafranov shifted nested flux surfaces.



2.4 The Internal kink Mode 26

2.4 The Internal Kink Mode

In an axisymmetric torus, a perturbation may be described by a Fourier decomposition
in poloidal harmonics as

5(,’,., 0’ ¢) — Z g(m) (,r)ei(mend)fwt)

by virtue of the periodicity in the poloidal and toroidal directions. Since the equilib-
rium magnetic field strength B = By(1 — e cos 0) is a function of 8, a coupling in the
different poloidal harmonics arises in &.

For the study of the internal kink mode, the principal mode numbers are m = n =
1. However, the effect of finite Shafranov shift (i.e. finite toroidal effects) is to couple
the principal mode f(l) to 5(0) and 5(2).

The following sections discuss the minimisation of §W with respect to £&. To aid
the analysis the eigenvector is written as follows:

=&+ & + &,

where the subscript denotes the aspect ratio ordering of the term, e.g. €,/&, ~ O(e?).
Subsequently, it is found that

oW = Wy + 6Ws + 0Wy.

oWy, 6Wy and 6W, are minimised with respect to &, £&; and &, as shown in the
following sections.

2.4.1 Minimisation of §W,

In both dWy and 6W, it is appropriate to write,

EJ_ = e+ &pey
0B, = 0B,é, + 6Byey
Jq = Js
In the next section it is shown that B,y ~ eByV -& | . The parallel curvature vector

K is also not a leading order effect i.e. £,y -Kk/V -& o ~ . Hence, from Eq. (2.12) it

is clear that, ,

Wy = / Pzl

2 1o

Since this term is positive definite the minimisation of Eq. (2.26) corresponds to

V - €&, = 0, which gives 6W, = 0. The leading order displacement does not allow
poloidal coupling; hence &, = &,(r)e!(™f~"¢-wt) which gives

(V-£,)% (2.26)

i 0
=——(r . 2.27
S0 = (réro) (2:27)
Since the minimised zeroth order potential energy vanishes, the next order must be
considered.
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2.4.2 Minimisation of §W¥,

All except the third term in Eq. (2.12) feature in 6W5. This term is neglected because
the ordering of 8 ~ O(g?) means that terms involving the equilibrium pressure first
appear in 6W;,. Referring to Eq. (2.12) it is now clear that

1 [ 4 (6B% B2 2 ek oo
(SWQZE/d.’IJ 7+%(V£L1+2§L0n) _]H(EJ_Oer)JBJ—O . (228)

the second term is minimised to zero by a constraint on £, ; such that,
V-€11+26,0-£=0. (2.29)
Using Eq. (2.22) with Eq. (2.29) gives

(£10-V)B

1
5 =€ k= _EV XJRE (2.30)

Many steps in calculations henceforth interchange between the the expressions con-
tained in Eq. (2.30). An additional important consequence of Egs. (2.22) and (2.29)
should be mentioned. The parallel component of Eq. (2.14) is 6B = —BV - §, —
(€. -V)B — B¢, - k. Hence, from Eq. (2.30), it is clear that 6B = 0. That is, in a
low beta plasma, internal kink oscillations do not support parallel magnetic compres-
sion. This result will be used in the kinetic description of the plasma where it will be
seen that 0B = 0 serves to greatly simplify the analysis. In addition, Eq. (2.29) is
also used in the Wy calculation [15]. It is shown that & | ; has £1 sidebands so that
0€,1/00 # 1m& ;.

To minimise §W5, both § Bgy and §B,q are written in terms of £,.9. The perturbed
field is defined in terms of the eigenfunction using Eq. (2.14). Recalling that V-£,, =
0 and using Eq. (2.21) for g, together with Eq. (2.27) and V = &,0/0r+ (€y/r)0/060+
(é¢/R)0/0¢ gives,

imB, n 1
537"0 = R 4 (_ - _> 61"0
0 m q
_ By o n 1
B = goge ()60

In addition, from Ampére’s law:

MOM_Tdr BNR()TB’I" q )

Hence, using [ d3z = Rg [Z" d¢ ;" d6 [{rdr, and integrating by parts to remove
terms involving & od€ | o/dr, Eq. (2.28) becomes,

212B2 [a déno\ 2 2 n 1\2
Wy = O/d ( 7") 2_1) ¢ (———) 2.31
>T R Jo U [ ar )t <m ) 1 \m g (251)




2.4 The Internal kink Mode 28

where it is assumed that the plasma is bounded by a perfectly conducting wall at
r = a. Equation (2.31) shows that to second order in the inverse aspect ratio, ideal
MHD does not allow unstable internal modes for 8 ~ O(e?) since all the terms are
positive definite.

It is now appropriate to minimise Eq. (2.31) with respect to &,¢ for the internal
kink mode. Setting m = 1 cancels part of the field line stabilising term and dWs

becomes: - ) )
272B2 o déro 1
Wy = 0/ drr3 (—’") (1——) . 2.32
>~ woRo Jo dr q (2:32)

It can be seen that the integrand reduces to zero for g(ri) = 1. At this rational
surface (r = r1) the poloidal curvature of magnetic field lines matches the poloidal
mode number m = 1. Moreover, a constant &.o reduces the integrand to zero for all
r. However, Eq. (2.32) is only valid for internal modes having £,0 = 0. Thus a finite
constant & is not allowed. Fig. 2.7 shows a form for &, which is wholly internal and
which satisfies the boundary conditions and minimises §W5.

Figure 2.7: The radial dependence of &9 with layer width 4. The function approaches a top
hat function for § — 0. Also shown is the corresponding ¢-profile.

The inevitable distortion of £, is taken up at r1. At this surface the perturbation has
the same helicity as the magnetic field and as a consequence the energy change can be
made arbitrarily small by localisation of dé.o/dr. This can be shown by calculating
the contribution §Ws receives from the layer region, which is defined approximately
by r1 —6/2 < r <11+ /2. By taking variations of 6Wy with respect to & within
this region, 6Ws — 0 for § — 0. This implies that 0&0/0r is singular in the vicinity
of the ¢ = 1 rational surface, and from Eq. (2.27), the poloidal displacement is also
singular. A modification of the minimisation procedure is outlined in detail later when
an analysis for the growth rate of the internal kink mode is presented. It is found that
the discontinuity at r; is resolved by including the inertia, K, in the minimisation.
Both § K and §W5 pick up finite contributions from a layer of finite width 4, such that
they are formally the same order as the §W, calculation below.



2.4 The Internal kink Mode 29

2.4.3 Minimisation of W,

Both §Wjy and W5 have been minimised to zero. That is, the internal kink mode is
marginally stable to order 2. The stability of the kink mode therefore depends on
the fourth order correction, i.e. since both 6W; and 6W5 have been minimised to zero
one must consider fourth order terms. In calculating 6W, the results for £ |, and & | ;
given in the previous two sections must be used. The remaining component of £
together with £ | 5 are still to be identified.

A cylindrical calculation accurate to fourth order in the aspect ratio was first
published by Rosenbluth [14]. However, for the all important n = 1 case Bussac et
al [15] demonstrated that the fourth order cylindrical calculation is irrelevant. By
including the toroidal effects of Shafranov shifted circular flux surfaces, Bussac et al
[15] showed that the fourth order solution has the form

N 1 N ~
Sy = (1 - ﬁ> SWS 4 6, (2.33)

where 6W = §W/(6x2RoB3E3e? /o), 5Wf is the cylindrical potential energy [14] and

5WZ is the toroidal contribution.

It was shown in the last section that the poloidal curvature matches the poloidal
mode number m = 1 in the vicinity of r1, and as a consequence the stability associated
with field line bending is lost. A cylindrical calculation cannot, however, correctly
deal with toroidal curvature. By including toroidal effects Bussac [15] demonstrated
that a nullifying resonance also exists between the toroidal curvature at ¢ = 1 and
the toroidal mode number n = 1. This effect is manifest in Eq. (2.33) where it is
shown that the cylindrical term of Ref. [14] does not contribute to W 4. As a result
the stability of the ideal m = n = 1 internal kink mode depends purely on toroidal
effects even in the limit of infinite aspect ratio.

Since the Shafranov shift is a linear function of §,, as shown in Eq. (2.23), it is
not surprising that the stability of the internal kink mode depends strongly on the
pressure. As found by Bussac et al, the toroidal coupling of the m = 2 mode produces
a stabilising effect, and the mode is destabilised only for 3, above a threshold value.
For a quadratic ¢ profile §W] is given by [15]:

oWy = (1—a0) (8%~ B2). (2.34)

with 87 = /13/144 ~ 0.3. For 8, X B, Eq. (2.34) predicts that the internal kink
mode is unstable. To obtain 37 in plasmas with more realistic ¢ profiles one must
consult the general calculation [15], which can be found in Appendix A of this thesis.
Using more realistic ¢ profiles in the general calculation, the critical poloidal beta
typically lies in the range 0.1 < g7 < 0.2. Also, modified is the dependence of (5W4T
on 3.

The effects of flux surface shaping also arise at O(e*). The flux surfaces are
described by the expansions of Eq. (2.25) and the resulting potential energy 5I7Vf
was first calculated by Edery et al [43] and also is defined in Appendix A. It was
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shown that the elongation of flux surfaces is destabilising to the internal kink mode

N .S
while triangular distortions are stabilising. The calculations of both (5W4T and W,
were confirmed collectively in a more detailed report by Connor and Hastie [52].

2.4.4 The Parallel Flow at the Rational Surface

When Rosenbluth [14] and Bussac [15] made growth rate calculations they wrongly
assumed that the parallel flow could be neglected from the inertia. They were misled
to believe that perturbations in the parallel direction are always an order smaller
in the inverse aspect ratio than the perpendicular perturbations. The singular layer
introduces a special case where £ /€19 ~ O(1). This special case is crucial to the
internal kink mode because the inertia is dominated by the singular nature of the
plasma flow at r;. This section includes an analysis for the magnitude of § located
at a general rational surface defined by ¢ = m/n.

If the growth rate is not very large, then, as shown Section 2.2.4, the ideal MHD
perturbation is incompressible. It therefore follows that the parallel displacement is
given by Eq. (2.16), which coupled with Eq. (2.27) gives

a (&1 _
B <§> —_V-£,.

Now, 0/0l = &,-V = (¢|- V8)0/00 + (& - V¢$)3/0¢, where & = B/B. Hence, since
V =¢&,0/0r + (ég/r)0/00 + (é4/R)0/0¢ and q = rB/RBy, then
o_1M2, 0]
ol R l|qd0 0¢]
Using Eq. (2.30) and noting that the variation of the field strength along the field
line is small compared to that of { approximately gives

(2.35)

- _ = >0 2.36
Rod [80 ZTLQ] &l By (2.36)
where 0§)|/0¢ = —in)|. The corresponding derivative in the poloidal angle remains

because it is suspected that & contains poloidal harmonics so that 9¢);/00 # im0 00.
Close to a singular layer, 0&,0/0r >> &o/r. Hence, from Eq. (2.27), {go >> &ro-
Also upon substitution of B = By(1 — ecos ), Eq. (2.36) now becomes

[% — im] & = 2&po gsind, (2.37)

where the equation for the rational surface m = ng has been substituted. The solution
of Eq. (2.37) is
_ ¢(m+1) (m—1)
f | — £|| + §|| )
where

6 = —n()ge”
€Y = —go(0) g™,
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or
& = —2&g0(0) g cos b. (2.38)

Hence, | comprises poloidal harmonics 0 and 2 for a principal mode m = 1.

Equation (2.38) demonstrates that close to the rational surface r; the parallel flow
is the same order of magnitude as the leading order poloidal flow. The importance of
the parallel flow is realised in the next section where an analysis for the growth rate
is described.

2.4.5 Internal Kink Growth Rate

Thus far in this chapter the stabilisation of the internal kink has been assessed by
minimising éW with respect to £&. This however has only provided information con-
cerning the stability threshold of the internal kink mode and the structure of the
eigenfunction €. By contrast, calculations of the growth rate must necessarily contain
the inertia in the minimisation procedure.

The minimisation of Eq. (2.32) produces singular poloidal and toroidal displace-
ments at r1. If one considers a regime where the growth rate, or rotation frequency,
is finite, then ostensibly the leading order poloidal and toroidal velocities are also
singular (since dugy = —wifpo and duy = —iwéy). However this is not so and it will
be shown in this section that finite inertia removes the singular behaviour located at
.

For the growth rates of interest in this thesis, the characteristics of the plasma
close to 71 are very different to those at locations far from r;. Although the poloidal
and toroidal flows close to 1 are not singular for w # 0, they are nevertheless much
larger than those far from 71, and as a consequence the inertia is dominated by the
plasma close to 1. Note that for the sake of allowing straightforward labelling of
different regions of the plasma, many authors name the region local to r; as the
‘singular layer’ even when w # 0.

Due to the contrasting behaviour between the plasma in the singular layer and
that of the plasma far from 71, the dispersion relation is split into two components
[14] as follows:

D =D+ D? (2.39)

with,

DE(E%) = dWE(E)
D*(&%) = dW(£°) +K°(£%), (2.40)

where subscript s and e denotes ‘singular’ and ‘external’ respectively. Singular quan-
tities correspond to the region 7 — d/2 S r <7 + §/2 and external quantities to
locations elsewhere in the plasma. Here, § is an estimation of the singular layer
width. The size of which is derived later.

The minimisation of JW presented earlier is now simply that of the external
region. The leading order external displacement which was calculated by minimising
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Eq. (2.32), is now defined as:

g = { Eo =) forp <y — 0/2,
r0 —

<
0 forr 2 r +4/2 (241)

where ¢ is a constant. The singular radial displacement &} must match asymptotically
to Eq. (2.41) close to r1 —6/2 and 1 + §/2.

It remains to minimise D?® with respect to £€° using the boundary conditions defined
in Eq. (2.41). First, however, it is necessary to consider the magnitude of the
eigenvalue w. For |w| ~ wyy, then for a typical equilibrium:

jwl/wa ~ €%,

where wa = va/Ro and va = By/(ppo)'/? is the Alfvén velocity, which implies that
§K* ~ O(g*) such that D¢/D* ~ 1. In this limit both §W and Eq. (2.26) are negligible
to O(e*) within the singular layer. That is V - £€° = 0 and &5, = i9(r&S;)/0r. Also,
Eq. (2.30) is satisfied within the singular layer with & =2 €50 g cos 6. Hence writing
£5(r,0,,t) = £ (r)ei®=9=“t) and recalling that & =~ irdE)/Or >> & within the
singular layer,

AS 2 -
6K; =nRy~? [ drpr (r%) / do (1 + 4¢* cos? 9), (2.42)
—T

where the appropriate limits of the radial integration are defined shortly and the
subscript ‘zero’ has been dropped from the singular radial eigenfunction without loss
of generality. Also, s is the ideal MHD growth rate which, when ideal MHD applies,
is defined by

= —w? (2.43)

The potential energy of Eq. (2.32) does not minimise to zero within the singular
layer. Combining Eq. (2.32) with Eq. (2.42) and expanding about r; gives,

972 R0 B2 00 1+ 242 2 dAs 2
p; = 2 RBE 5 I <717V+q ) ] (i) | (2.44)

o S s1wA dz

where x = (r — r1)/r1 is the local normalised radius, s = (r/q)dg/dr is the shear
and s; = s(r1). The integration limits (+o00) are appropriate because an asymptotic
match between the singular and external eigenfunctions is being sought.

Equation (2.44) is minimised with respect to &$ by the Euler-Lagrange equation,

a [[(v3u\" . o\ ()| _
(ARSI

s
e (2.45)
dx .’1}2 + (&)

giving,

S1WA
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Integrating Eq. (2.45) with respect to z and substituting the external solutions of
Eq. (2.41) yields the constant of integration

/ _ 2% V31 (2.46)
© 22 4 \/_71) T S1wA )

s1wa

From Eqgs. (2.45) and (2.46):

;2% (71\/§> L (2.47)
+

dz T \wast 3\’
waS1

where the radial dependence of d¢?/dr is contained in z. Straightforward integration
of Eq. (2.47) now gives,

S 2 wAS1
& =& |1 — —arctan |z .
™ V'3

dfﬁ 26 (was
i (71 f) (2.48)

As expected, for y; = 0 (i.e. zero inertia), Eq. (2.48) and hence the poloidal and
toroidal displacements, are singular at ;. It is now clear that finite inertia removes
the singular poloidal and parallel momenta. Also the width of the singular layer
relative to r; can be estimated by approximating the singular displacement such that
its radial derivative is constant (see Fig 2.7), i.e

o & _ VB
rio (mdé€s/dr)|,  2s1wa

Note that at

< 0O(e?).

Hence, as discussed earlier, the layer width reduces to zero for negligible v;.
The eigenfunction of Eq. (2.47) can now substituted into Eq. (2.44). This gives

, B3 © 4
D} = 4Roctst 163 Vo)’ — = 2rReels 052‘[”
4 0
siwa ) Joo g2 (fw) wA
s1wA

where w4 is evaluated at r;. From Egs. (2.39) and (2.40) the ideal internal kink mode
dispersion relation is
Vo2 f 3w

= —¢
wa !

6W4, (2.49)

where the ‘"’ corresponds to the normalisation defined in Eq. (2.33). For equilibria
with circular flux surfaces, Bussac’s [15] expression for 5WZ is often substituted into
the ideal MHD dispersion relation defined above. It should be noted that Eq. (2.49)
differs from the dispersion relation of Ref. [15] by the factor of v/3 arising as a
consequence of the correct inclusion of the parallel inertia.
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It is important to mention that providing W€ is real and positive, y; should
formally be replaced with |y7|. Hence, as expected in ideal MHD, two equal and
opposite solutions exist. The kink mode branch is the mode usually discussed in the
context of sawteeth: it corresponds to positive ;. The ion mode branch has negative
~r. In practice, however, the smallest amount of resistivity suppresses damped modes.

2.4.6 Growth Rates in Collisionless MHD

It was mentioned earlier that ideal and collisionless MHD predict identical stability
boundaries. This is a consequence of the incompressibility of ideal MHD modes. The
internal kink mode would have identical growth rates in both regimes if were it not
for Glasser et al's [16] discovery of the importance of parallel inertia.
In the collisionless MHD model the parallel flow is uncoupled from the equation
of motion, and the energy principle is entirely independent of { (see Eq. (2.18)).
Consequently the inertia only contains the poloidal flow and the factor v/3 is lost.
Therefore the ideal growth rate of collisionless MHD is an enhancement of Eq. (2.49)
given by
s 0 3T

= 2225w,

wA S1
where the subscript ‘4’ and superscript ‘e’ is henceforth assumed. It is interesting to
note that whilst Bussac’s prediction of -7 is not correct in ideal MHD, it is valid in
collisionless MHD.

That ideal and collisionless MHD predict differing growth rates is curious, espe-
cially when one recalls that in collisionless MHD the parallel displacement is uniquely
identified through V - £ = 0, and so is identical to the ideal MHD quantity § =
—2¢&gp qcosB. In fact, the collisionless MHD model does not correctly account for the
time scales of the collisionless internal kink mode. Using a drift kinetic treatment for
the internal kink mode, it will be shown that thermal ions in the banana regime give
rise to an inertial enhancement which is much larger than the enhancement arising
from the parallel inertia in ideal MHD.

2.4.7 Additional Effects in the Layer

It was shown in the last section that the growth of the internal kink mode is sufficiently
small that inertial effects are negligible in most of the plasma. Also, over most of the
plasma the resistivity is negligible and the motion can be adequately described by
ideal MHD. However, this is not necessarily the case at a resonant surface m = ng.
It is prudent therefore to consider the growth rate of the resistive tearing mode.

To see why resistivity is important at the resonance layer, one must consider the
resistive Ohm’s law E + u x B = nj, with n the resistivity. Linearising this with
perturbations ~ e(mf=né+7rt) and using Faraday’s and Ampére’s laws gives

1B
YR |1 - R—;(m —ngq) 551-; = uogB V%$B,.
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Hence, it can be seen that at the resonant surface, the du x B contribution of Ohm’s
law vanishes and, in the neighbourhood of this surface the 1 d;j term becomes impor-
tant in balancing the induced field §F.

Tearing modes require solving ideal equations over most of the plasma and in-
corporating resistive effects in a layer around the resonant surface. The m =n =1
resistive growth rate, calculated at ideal MHD marginal stability (6W = 0), is [53]:

1
TR Tzlz /3712{/3
where 7y = 1/(was1) and T = por?/n. The resistive m = n = 1 mode, unlike other
modes (m > 2), is always unstable. The m = 1 mode is fundamentally different
because the leading order external eigenfunction is a step function.
The purely ideal and resistive analyses have been generalised into a single theory
[19]. Defining A = 7/7r, the equation for the growth rate 7 is given by

gy T [(1\3/2 +5) /4]
N WAT[WE -1 /4|

T1

with 7 the ideal growth rate given by Eq. (2.49) and I the standard Gamma Function
[54]. The limit A = 1 gives the resistive growth rate v = yg and A — oo gives the
ideal limit v = y;. A < 1, which corresponds to strong ideal stability, is often labelled
as the tearing mode regime because the solution behaves similarly to more prevalent
tearing modes with m > 2. One should also note that for all values of y; (positive
and negative), v > 0 and there is no stability threshold.

It has been highlighted that resistivity can be important at the resonance layer
because the u x B component of Ohm’s law vanishes. Other terms usually neglected
from the generalised Ohm’s law

. L.
E4+uxB=nj+—(jxB-VP,), (2.50)
€Ne
are also significant at the layer. Rather than using the generalised one fluid Ohm’s
law, one may equivalently employ a two fluid description of the plasma within the
vicinity of r;. Assuming quasi-neutrality, the ion and electron equations of motion
are,

mined—t' = eZne|E +u; x B —nj] — VP, (2.51)
d
mene% = —en¢]E +ue x B—1nj]— VP, (2.52)

where Z is the charge number. The equilibrium flows, assumed to be zero in the
previous stability analysis, can now be calculated. Noting that the left hand sides of
Egs. (2.51) and (2.52) are much smaller than the right hand sides and also ignoring
7, the equilibrium drifts are,

Ui = UE + Usp; a0d UL = UE + Uspe
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with
_ExB VP, x B VP, x B

UR = ——=5— Uyp; = —————— and u =
B2 P eZn.B? *pe ene B2

The equilibrium drift velocity wg exists in plasmas with an equilibrium electric field.
Providing ug is not so large that it gives rise to centrifugal effects, the consequences of
an equilibrium E in a pure fluid problem can be removed by transforming the plasma
reference frame to one in which the electric field is zero, i.e. wg. This is possible
because, as shown in Eq. (2.53), both the electron and ion fluid drifts move together.
Hence, an equilibrium current due to finite E does not exist. Such an analysis is given
a thorough treatment in Chapter 6 where it is shown that a collisionless plasma, unlike
the collisional MHD plasma, is sensitive to an equilibrium E.

The two other drifts u.p; and wu.y. are the ion and electron velocities respec-
tively. These drifts oppose one another and give rise to the diamagnetic current
j. =—(VP x B)/B?, with P = P, + P,. This current is represented in ideal MHD
by the force balance equation. The diamagnetic velocities do not enter the ideal MHD
equations explicitly because they cannot be defined in a single fluid model. In the
layer the mode frequency w is Doppler shifted by the diamagnetic frequencies

(2.53)

P’ P’

7 e

———— and Wype =
eZn;Byr *pe

Wipi = (2.54)

en;Bor’

with /' = d/dr. Bussac et al [17] and later Ara et al [18] generalised the Coppi et al
[19] resistive internal kink calculation to include diamagnetic effects:

2 s T[(w+5) )’
Vi = —w(Ww — Wapi) A4 T [(A3/2 —1) /4] ’

T1

(2.55)

where
A= _i[w(w — Wipe) (w — ‘*’*pi)]l/3
R ’
with @upe = (1 + 0.717¢)wape, Ne = dInTe/dInn,. Note that the modifications come
from the inertial layer and all quantities are evaluated at r = r1. The generalised
dispersion relation allows for the possibility of complex eigenvalues, so that the growth
rate of a mode is now vy = S{w} and the oscillation frequency w, = R{w}. A thorough
discussion on the various thresholds and solutions contained in Egs. (2.55) is given
in Ref. [55].
The ideal limit (i.e non-resistive limit) now contains diamagnetic effects. It is
obtained by taking A >> 1 in Eq. (2.55):

V1 = —w(w — wapi(r1)), (2.56)

and from Eq. (2.49) the ideal dispersion relation is given by

= ¢2 V3T s (2.57)
WA S1
T1

i/ w(Ww — Wapi)
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The eigenvalues are defined by w = wypi/2 & (w2,;/4 — ¥)/2. For |yi| > wipi/2,
two complex solutions exist. The limit |y;| 3> wypi/2 corresponds to the ideal MHD
kink mode and ion mode branches with v ~ 7. However, if |y7| < wypi/2, a new
regime exists. In such cases both modes are marginally stable (7 = 0) and each
possess a pure oscillation frequency w,. One mode satisfies 0 < w, < wypi/2 and the
other w,pi/2 < w, < wypi- Hence, up to the limit |y;| = w,pi/2, the ideal modes
are marginally stable for W > 0. This demonstrates that diamagnetic effects can
stabilise the internal kink mode. Often such stabilisation is described as a consequence
of finite Larmor radius (FLR) corrections.

The dispersion relation contains rather different regimes when kinetic effects are
included. Kinetic terms introduce the possibility that /W and hence «; are complex.
In a detailed paper involving resistive and kinetic effects, Coppi et al [32] made a
distinction between the two ideal and marginally stable modes by stating that the
branch satisfying 0 < w, < wsypi/2 corresponds to the sawtooth instability and the
Wipi/2 < wr < wyp; branch to a fishbone instability. However, other authors, e.g.
White et al [31], have shown that upon introducing kinetic terms, the ideal marginally
stable sawtooth branch may correspond to w, > wyp;. An argument, which includes
the kinetic effects of a highly energetic species, is presented in Chapters 4 and 5
agreeing with Ref. [31]. Also, the modification of Eq. (2.57) relative to a finite
equilibrium electric field is treated in Chapter 6.

2.5 Summary

The purpose of this chapter has been to present a literature review of the kinetic sta-
bilisation of the internal kink mode, and to describe in detail the ‘fluid-like’ behaviour
of the instability. In particular, the ideal MHD growth rate has been derived in terms
of the potential energy of the mode. Details have also been presented which illustrate
the modifications to the dispersion relation resulting from finite diamagnetic effects,
resistive effects, parallel inertia and the collisionless MHD limit.

It is now of interest to investigate the effects that collisionless populations of ions
have on the internal kink mode stability. Chapters 3 and 4 contain details of the kinetic
modifications to the internal kink mode dispersion relation. It will become clear that
the collisionless MHD model described in the present chapter is strongly lacking in
its ability to characterise the dynamics arising as a consequence of collisionless ions.



Chapter 3

Kinetic Additions to the Internal
Kink Mode

The last chapter contained a description and review of MHD stability and the internal
kink mode. This theoretical background can now be extended to include the effects of
energetic particles. Such an analysis must account for the motion of single particles
and their collective behaviour in a tokamak.

The level of detail contained in the last and present chapters is motivated by a
growing demand in the fusion community for a detailed derivation of the kinetic inter-
nal kink mode. Theory which correctly accounts for the kinetic effects of collisionless
ion populations requires a broad spectrum of techniques which must be coupled with
the MHD stability analysis exhibited in Chapter 2. The present chapter attempts to
put the kinetic internal kink mode in a coherent picture which details the modified
stability boundary for thermal ions in the banana regime.

3.1 Energetic Particle Motion

In this section the primary aspects of individual energetic particle motion are consid-
ered. The equation of motion for a particle with charge eZ and mass m; is
dv
mi =eZ(E +v x B), (3.1)
where v is the velocity of the particle. The right hand side of Eq. (3.1) represents
the force acting on the particle. For tokamaks, external forces such as gravity are
negligible in comparison with the electromagnetic forces present.

38
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3.1.1 Gyro Motion

Consider Eq. (3.1) with a uniform magnetic field but absent of an electric field. The
parallel and perpendicular components are

do| dv, eZ

— =0 and — = — x B). 3.2

@~ and = (v x B) (3.2)
For motion in the plane perpendicular to B, Eq. (3.2) is differentiated with respect
to time: 2

V1
- —wpv (3.3)

where w, = eZB/m; is the cyclotron frequency, or gyro frequency. The radius of the

circular orbit
v m;v

[ P— [ —
‘" w. eZB’
is referred to as the gyro radius or more frequently the Larmor radius. Also, from Eq.
(3.2), it is clear that the particle velocity parallel to the magnetic field is constant.

3.1.2 The Conservation of the Magnetic Moment

The gyro motion of a charged particle in a magnetic field produces a circulating electric
current. The magnetic field generated by this current at distances much larger than
the Larmor radius, 7, is a magnetic dipole. The corresponding magnetic moment is

defined as:

miv?

2B
The analysis is simplified by removing the mass dependence from various defini-
tions. For example, the kinetic energy is henceforth defined as £ = v?/2 and the
magnetic moment as

_vi_ &

h=3B B

The magnetic moment remains almost constant during the particle motion. It’s

invariance depends on the time scale and length-scale variation of B. If the magnetic

field varies in time, Faraday’s law implies that this will lead to an induced electric

field which can do work on the particle and thus change its energy. The change in
energy over one cyclotron orbit time 7. = 27 /w, is

7z Z OB
AEL:e—fE-dL:—e— 9B s
m; m; 58t

(3.4)

where the contour integral follows the gyro-orbit and S corresponds to the surface
area spanned by this loop. If the variation is so slow that B is effectively constant
over one orbit, i.e. dB/0r < B/r. and 0B/0t < B/1., then

eZnr; 0B _ €L 0B
m; Ot B ot
&L

= —AB
B ?

A, =
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Hence, referring to Eq. (3.4),

ELN _ B

and thus p remains invariant as B changes. However, in practice, due to the finite
sizes of 7, and 7., the magnetic moment is not exactly conserved. For this reason u
is said to be an adiabatic invariant.

3.1.3 Energy Conservation in Equilibrium

If the plasma is in a state of equilibrium, the explicit time dependence of electromag-
netic and fluid quantities vanish, i.e. /0t = 0. In such instances, it can be shown
that the total energy assigned to each particle is conserved. Forming the dot product
of Eq. (3.1) with v gives

d (1,
— { =m; =eZE - v. .
o (2mzv > e v (3.5)

Letting E = —V®, where ® is the electrostatic potential, and recalling that d/dt =
v - V during equilibrium, obtains

d 1 9
— |=m; Z®| =0.
7 [2mzv +e ] 0

Hence, the sum of the kinetic energy and the electric potential energy is conserved
during equilibrium.

3.1.4 Guiding Centre Approximation

If the requirements for the adiabatic invariance of u are satisfied, one can neglect the
rapid gyro motion observed in Eq. (3.3). This reveals a simpler picture of the particle
motion. Averaging Eq. (3.1) over one gyro orbit gives the guiding centre velocity [34]:

Vg =)&) + VE + Vmd, (3.6)
where ExB B
VE= —py and vpg = 75 ¥ [v||n+uVB] (3.7)

and the curvature vector k is defined in Eq. (2.15). The first term in Eq. (3.6)
represents the parallel velocity of the guiding centre along a field line. The other
terms describe the perpendicular drift away from it. wvg represents the so called
E x B drift; this is the drift away from the magnetic field lines due to the electric
field. v,,4 corresponds to the drift due to the non-homogeneity in the magnetic field.
This can be split up into two components as shown in Eq. (3.7). The first of these
is commonly known as the curvature drift and the second the VB drift. It will be
shown in the subsequent sections that the drift velocity defined above plays a crucial
role in determining the kinetic stability of the internal kink mode.
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3.1.5 Particle Trapping

The guiding centre motion exhibited in Egs. (3.6) and (3.7) essentially describes two
classes of particles: passing and trapped. To leading order, passing particles follow
magnetic field lines and complete a poloidal circuit on a unique flux surface. Some
particles, however, do not pass into the inboard (0 = 7) side of the torus. Since the
toroidal magnetic field is proportional to 1/ R, the field strength is smaller on the out-
board (6 = 0) side, and particles in this region which have a small pitch angle, v| /v,
undergo a magnetic mirror reflection as they move into the region of higher field. In
the absence of collisions these particles are trapped in the low field region, undergoing
repeated reflections as they bounce backwards and forwards between turning points
as depicted in Fig. 3.1. The trapped particle trajectory projected onto the r, 8 plane
traces out a shape resembling a banana. Consequently, trapped particles are said to
complete banana orbits. The radial width of the banana is often assumed negligible
in analytical work such as this, in which case the particle is approximately confined
to a unique flux surface r.

Flux
/surface\
= e T T
]
A
N

Passing Trapped

Figure 3.1: Showing the poloidal trajectories of typical passing and trapped particles respec-
tively.

The turning points of a trapped particle correspond to the locations at which
v)) = 0. It is instructive to define the parallel velocity as follows:

v =26(1 - aB), (3.8)

with & = v?/2 and @ = p/€ a pitch angle variable. For an equilibrium absent of
E, both £ and « are conserved quantities (£ is not conserved if the equilibrium
accommodates a finite electric field; such a case is not treated until Chapter 6).
For trapped particles, the parallel velocity is reduced to zero at a point on a flux
surface where the magnetic field strength is smaller than the maximum field strength.
For a particular flux surface, the maximum magnetic field strength exists at 8 = .
Therefore, the condition for trapping is aB(@ = m) > 1. Also, since all particles,
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trapped and passing, exist at some time in the region of low field (0 0), it is
convenient to discuss the trapping condition in terms of v(¢ = 0) and v J_(G 0).
Exploiting the conservation of £ and «, the trapping condition becomes

2
1+¢ 14 ’U||(0:0)
1—¢ v, (6=0))
or, since € is small, the trapping condition can be written in an approximate, but
more informative manner:

v (0 =0) (0=0)
v1(6=0)

Hence, for an isotropic distribution function such as a Maxwellian, the fraction of
trapped particles is of the order €1/2. In a large tokamak such as JET, the fraction of
isotropically distributed collisionless particles trapped at the ¢ = 1 surface approaches
around one third. This number diminishes to zero towards the centre. For a highly
anisotropic population of energetic ions such as a minority population heated with
ICRH, the trapping condition above is met by most ions at ;. It will become clear
that the kinetic modification of the internal kink mode stability boundary comes
solely from the trapped population. Hence, the impact of ICRH on the stability of
the internal kink mode is particularly important.

< V2e. (3.9)

3.1.6 The Bounce Time

The time a particle takes to complete a closed orbit is given by 7 = ¢ dt. If the
particles approximately follow magnetic field lines, one can write dt = dl/ v)- Hence,
using the identity dl = df /(&) - V)6 yields

dr . df

dt = qR—. (3.10)

UII il
The 6 dependence of R is very weak compared with that of v)|. Hence, an approximate
relation for the orbit time is

do
T = qRO}{W. (3.11)

Now consider v)(¢). From Eq. (3.8) and using B = By(1 — £cos f) one can write

0(0) = 2 [uBoe (K —sin?(0/2))]"”, (3.12)
where

is a new pitch angle variable. Hence

(3.14)

T =

QO]{ dx
ViBoe J k2 —sin?z
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where z = 0/2. The form of 7 is fundamentally different depending on whether k2 > 1
or k? < 1. Tt is clear from Eq. (3.12) that k? < 1 is the trapping condition. Similarly,
k? > 1 corresponds to passing particles and k? = 1 to the unlikely possibility that a
particle might be trapped at the trapped - passing boundary of 6 = 7.

The orbit time of passing particles is straightforward to calculate. Direct integra-
tion of Eq. (3.14) around a passing loop (0 < 6 < 2) gives

2v/2qR,

T VEL + aBole — 1))2 K(1/k), (3-15)

where,

w/2 i
K@) = [ 4 (3.16)

\/1—j2sin?z

is a complete elliptic integral of the first kind [54].
For trapped particles, a new integral variable X is introduced. It is defined

ksin X =sinz. (3.17)

Using dx = kcos X dX /\/ 1 —k2sin? X and k% — sin?z = k% cos® X, the change of
variable introduces an integral of the type:

7{ dX _ ?{ dz

V1-k2sin? X J VK2 —sin?z

The contour integration must be considered carefully. Since the banana width is
assumed negligible we are permitted to only integrate between the limits 0 < 0 < 6,
with 6, the bounce angle, so that § df = 4f00” df. Now, since v = 0 at 0 = 0, it is

clear from Eq. (3.12) that 2, = arcsin k. Hence from Eq. (3.17), a bounce point in X
corresponds to X = 7/2. Thus

K(k?). (3.18)

Consequently a deeply trapped particle (corresponding to £ = 0 and # = 0) bounces
at a frequency

wp(R2 = 0) = — 2" _ ( . (3.19)

5)1/2 vy (60 =0)
p(k* = 0)

2 qR()

3.1.7 The Longitudinal Invariant and the Precession Drift

The longitudinal invariant J is an adiabatic invariant for magnetically trapped par-
ticles. The importance of J is that trapped particles are constrained to drift on the
surface described by

Th,&.) = § o1, €,0) di = constant,
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with ¢ a flux variable and v = \/2[€ — uB(%,1)]. Using J, much can be learned
about the particle trajectory without the need to integrate the equation of motion of
the gyrating particle or the guiding centre.

The longitudinal invariant provides access to a tractable calculation for the mag-
netic drift velocity averaged over a single banana orbit:

(Vima) = ]{vmd dt/ .

The bounce averaged velocity in the r, 8 plane is of course zero, but a finite toroidal
velocity exists, i.e. (Vmmq) = (Uma) €y Rosenbluth and Sloan [56] showed that the
toroidal precession frequency of a particle is given by

(i) 1,09 (2
R Ze 0y \ O ’

where r is related to the flux variable ¢ through rBydr = ¢(r)dy. From Eq. (3.11),
it is straight forward to identify 7, = 0.7 /0. Hence, substituting Eq. (3.10) gives,

(wma) = — Z?éig luq %—fﬁ - % f d0:/2(6 - uB)] / m (3.20)

where the first term of Eq. (3.20) arrives as a consequence of the VB drift and the
second the curvature drift.
If one substitutes 0B/0r = —(By/Rp) cos 6, the precession drift can be written,

2 .92
miq 1 dz(1 — 2sin” 1) )
(Wmd) Zor 1/€B0 [ Eppno + 4s % dr\/[k? —sin’z| / 7,

where s = (r/q)dq/dr is the magnetic shear and # = 2z. Following the analysis used
in the calculation of 7, one can show that

dz(1 — 2sin? z)
Vk2 —sin’z
fda:\/m —sin’z = 4[B(k?) - (- DK (K], (3.22)

w/2
E(5%) :/0 dz\/1 — j2sin’

is a complete elliptic integral of the second kind [54]. Hence substituting Eq. (3.18)
for 13, the precession drift finally becomes

(Wma) =

= 4 [2E(k2) - K(k2)] (3.21)

where

_ 2mq
{wma) = —— RH [Fy + 2sF), (3.23)
_ E 1 _ E 2

This definition of (wy,q) will often feature in the kinetic extensions of the internal kink
mode potential energy. However, in Chapter 6, Eq. (3.23) is modified to account for
the Shafranov shifting of flux surfaces.
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3.2 The Linearised Drift Kinetic Equation

Section 3.1 dealt with some aspects of single particle behaviour. It is now necessary to
provide an account on the collective behaviour of energetic particles. Because of the
large number of particles involved, this description has to be statistical. This is carried
out using a distribution function f(x,v,t) which measures the probability density in
the six dimensional space (x,v) at time ¢. The behaviour of f(x,v,t) is described
by the kinetic equation. Alternatively, the drift kinetic equation provides a simplified
description in which the space - velocity dimensions are reduced to five. It describes
the evolution of f under conditions where the time variation is slow compared to the
gyro-period 7. and gradual in space compared to the gyro-radius r. of the particle
orbits.

The distribution function is a function of position g, canonical momentum p and
time. From Louville’s theorem it follows that in the absence of collisions, the num-
ber of particles are conserved. Using Hamilton’s equations one can show that the
divergence of the phase flow is zero, giving
. Of

9
PR R Rhah s 4

. . 2
dt 0Ot dq op 0 (3:25)

Because Eq. (3.25) arrives as a consequence of Hamilton’s equations, g and p can
be interchanged trivially between different coordinate systems. The most common
representation of Eq. (3.25) in plasmas whose force F' = m® acting on the particles
is predominantly electromagnetic is the Vlasov equation:

df of Ze

—4v-—+—(E+vxB) of

2L =0, 2
dt or m; ov 0 (3.26)

Alternatively, if one assumes that the particles’ gyro-motion can be neglected, the
distribution function can be written as f(x4, &, ), with z4 the guiding centre position
and &£ the gyro-averaged kinetic energy. Hence, from Eq. (3.25), the drift kinetic
equation can now be defined as:

of , dwy Of  dEOf _

ot dt Oz, dt o = (3.27)

where the five variables upon which f depends evolve according to:

dx . B 2

T = Vet g x mavis + muVB - eZE] (3.28)
dp

dp 2
= 0 (3.29)
d€ m; dag 0B

e _ mid%q p 95 :
dt Ze dat o TH (3.50)

Equations (3.28) and (3.29) follow from Eqs. (3.6) and (3.4) respectively. The
remaining equation, (3.30), describes the rate of change of the gyro-averaged energy
and it is obtained as follows. The particle velocity is split into two components
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v =V + v., where v, corresponds to the circulating gyro orbit velocity. Equation

(3.5) gives
@& 7 7
&y, E+ ej{vc-Edt,
dt m; m;Te

where v, = ¢ Vdt/7, is the guiding velocity defined in Eq. (3.6). If one notes that
v.dt = dL, where L is a length following the gyro-orbit, then

%vc-Edtz— a—B-dS
s Ot

and Eq. (3.30) follows on applying the steps of Section 3.1.2.

Solutions of the evolving distribution function are obtained by linearly perturbing
Eq. (3.27). Details of this can, for example, be found in Ref. [57].

Assuming the equilibrium electric field is zero, the solution to Eq. (3.27) is [57]:

Ze 0 6B o
where 0h is a solution of the kinetic equation,
oéh . Zed v?
U”W — (W — wimg)dh — Zi%(w — Wy) |f5¢’ — ’U||(5A|| + ﬁ53|‘| =0, (3.32)

and w, is the non-local (energy dependent) diamagnetic frequency. w, operates on

electromagnetic perturbations, such that:

(éH X Vf) -Vid
w.Of |OE '

w6 = i (3.33)

The perturbed fields have the form §® = §®(r) exp(iR — iwt), where R = mf — nd.
The equilibrium distribution function is invariant to the position of particles on a flux
surface. Since flux surfaces are defined by a unique r, Vf = (3f/0r)e, and:

m; Of (8 f

—1
w =Y %) (&) % &) - VR. (3.34)

The poloidal and toroidal dependence of §h has yet to be calculated. At this stage
we write 0h = 0h(r) exp(iS — iwt), where S = S(6, ).

The other ‘frequency operator’ defined in the drift kinetic equation is the magnetic
drift frequency wy,4. It operates on dh, such that wy,qdh = v,,4-VAIh. Since the leading
order magnetic drift velocity v,,q does not include a radial drift (i.e. it is assumed
that the banana width is zero), the magnetic drift frequency can be defined

Wmd = Umd * VS.

The electromagnetic disturbances are assumed to be purely of MHD origin. Hence,
the perturbed electric field is determined by Ohm’s law:
0FE, = —iw€| x B (3.35)
5E|| = 0.
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The generalisation dEj| # 0 has been included in the drift kinetic equation elsewhere
and details can be found in Ref. [25].
The perturbed electrostatic potential, 69, is related to €, through Eq. (3.35):

Vid = —iw€| x B. (3.36)
Also, the perturbed parallel vector potential accounts for the vanishing of 4 E) :
wdA) = —106®/0l. (3.37)
0B is related to &, through dB = V x (£, x B), and a small amount of algebra
gives
-V)B
Finally, introducing
Ze Wy of
Ofy=— |1 — —|0®= + dh
T m; [ w] o€ +oh,

and referring to Eq. (3.31) yields
5f = 2¢ [w*wﬂ _ woByof
N w 0& we O

7 | ot

Furthermore, Egs. (3.36), (3.37) and (3.7), the kinetic equation of (3.32) in terms of
0 fx can be written as:
fr . : of
U i(w — wna)d fre + i(w — w*)% [/MSBH - vﬁ&L Kk — € - VB] =0.
The form of § f and the kinetic equation can be simplified further as follows. From
Eqgs. (3.33) and (3.36):
Zew, 0P af
— = =-&-Vf.
m; w O &1-VJ
It is appropriate to assume that the kinetic modifications of 6W do not alter the form
of £&. A demonstration showing that only the core fluid component of §W influences
the functional form of & will be given later. Hence, assuming 3 ~ O(e?) and referring
to Eq. (2.30), obtains

£,,'VB 1
“’T =€k =—5V £, and 6B =0.
Consequently, the perturbed distribution function can now be defined
of =6fr +0fk, (3.38)
with
off=—€.-Vf
and a simplified kinetic equation characterising d f:
00 . . 0 £, VB
el 8{k — 0 fr(w — wpg) — i(w — w*)% [fuﬁ + MB] J-OT =0.

The subscript ‘f” in the term d f; denotes ‘fluid’. This is because d f; describes the
convective perturbation of MHD. The additional perturbation which is not described
by MHD is ¢ f;. Here the subscript ‘4’ denotes kinetic.
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3.3 Internal Kink Stability Boundary for Energetic Ther-
mal Ions

The general form for §f has now been derived. In this section the perturbed distri-
bution function is chosen to describe the collisionless effects of thermal ions. Suitable
regimes where the thermal ions are collisionless and the electrons are collisional are
discussed in Chapter 6. In the present chapter the extent of the kinetic modifications
are limited to describe the ideal internal kink stability boundary. Such an analysis re-
quires only consideration of the external region, which exists outside the singular layer
of the ¢ = 1 rational surface. The principles obtained in this chapter are employed in
an original analysis in Chapter 4 where the kinetic modifications are extended to the
singular layer.

The appropriate equilibrium distribution function, f;, is the Maxwellian. Conse-
quently, equilibrium quantities such as the ion pressure are isotropic. However, the
perturbed pressure arising from the kinetic effects of thermal ions is not in general
isotropic. To account for the pressure anisotropy we employ Chew et al’s [58] double
adiabatic model (see also Taylor and Hastie, [59]):

P, 0 0
P=PI+(R-Pge=| 0 P 0
0 0 B

where [ is the unit dyadic.
From Eq. (3.38) the perturbed ion distribution function is defined

Ofi = 0fpi + 0 fri
with
O0fri=—&,-Vf; (3.39)
and ¢ f; is a solution of:
£.0-VB
B

The total perturbed ion pressure tensor ¢P, is obtained by evaluating the second
velocity moments of ¢ f;. In particular the ﬂuld component is evaluated by taking the
second moment of Eq. (3.39) to give:

ofi

Ll L (W — W) O fi — i (w — w*i)g [’Uﬁ + MB]

—0.  (3.40)

§P;; = —&, - VP, (3.41)

This term is identical to that of MHD and combined with the electron contribution
gives 6Py = —§, - VP.

Recall that the plasma momentum is carried by the ions. Since the ions are as-
sumed to be collisionless, fluid motion is only defined perpendicularly to the magnetic
field in agreement with the collisionless MHD model. Hence it follows that the total
force operator can be written as:

SF=38jxB+jx8B+V(E -VP)-V-4P, (3.42)
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with
0P, = 0P il + (6Pjk; — 6P Lki)€) €.

Forming the dot product of Eq. (3.42) with ¢ and integrating over space yields

5KJ_(§J_7 gj_) + 5WJ_(£J_5 gj_) =0,

with 6K given by Eq. (2.18), and 6W the sum
oW, = 6WJ_f + Wi (343)

It follows from Eq. (3.41) that 6W,; is described by Eq. (2.12). It will be shown
later that

]‘ *
Wi = 5/ d’zg) - (V-4P,) (3.44)

does not affect the minimisation of §W  and subsequent identification of £, . Conse-
quently, we are at liberty to use Bussac’s [15] expression for §W ;.

In the following sections, the procedures for calculating §Wj; in the external region
are derived. The results of this will provide an equation describing the stability
boundary of the internal kink mode for thermal ions in the banana regime.

3.3.1 Solution to ¢ f;; in the External Region

In this section the solution to d fx; in the external region is derived. For convenience
we write g = dff;, where e denotes external. Equation (3.40) can be expanded in
orders of w/wy < 1, where wy = 27 /7, is the bounce frequency and 7, is the bounce
time (see Eq. (3.18)). The perturbed kinetic distribution function is expanded as
g = go + g1 where

go = §go(r)exp(iS — iwt)
g = §q1(r,0)exp(iS —iwt),

and g1/go ~ w/wp. The leading order solution of Eq. (3.40) is

990

o =

Hence, using Eq. (2.35) and noting that the ¢ dependence of g is identical to that of
the MHD perturbations implies that:

S =q0 — ¢.

The leading order external displacement must now be considered. It was shown in

Chapter 2 that £, corresponds to the top-hat function and from Eq. (2.27), &5, = €5,

where €&y = &y exp(i0 — i¢ — iwt). Hence, using B = By(1 — ecos ), it is clear that
€0 VB _ &

B "Ry exp(—i¢ — iwt). (3.45)
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To the next order, Eq. (3.40) is

v 041

o9 . _ ) = 2w — wa
Roq 00 ZgO(w wmdz) ? (w w z)g

% (1 — QTBO> é—(; exp(—igf). (3.46)

To obtain the leading order distribution function gy we must first annihilate g;.
Since w/wp << 1 this can be achieved by orbit averaging Eq. (3.46). For passing ions
the periodicity property 39 56d0 = 0 is used. Denoting the passing average (z), =
$ z(Roq/v))df/7p, with 7, = §(Rog/v)dd the orbit time of passing particles (or
transit time), Eq. (3.46) becomes

(exp(—igh)),, -

(w — {Wmdi)p)g0 = 2(w — ugki)f,‘afZ ( O‘_B0> Lo

o€ 2 J Ry

Consider Eq. (3.14) for the orbit time. Since a passing orbit is defined around a loop
with 0 < 0 < 27,

/2 cos(2qx) /2
exp(—igh :/ dz / ’
(exp(—ig )>p —7/2 ( V1 — k2sin? x) / /2 V1 — kz s1n2:c

where z = /2 and k%> > 1. The —isingf term of expigf averages to zero. Also,
providing 1 — ¢ is small, < cos(gf) >, is negligible. Hence, we deduce that go ~ 0 for
passing ions.

For trapped ions, Eq. (3.46) is operated with

/9: dOR,
P

separately for v > 0 and v < 0. Quantities evaluated with v > 0 are labelled with
a ‘+’. Conversely, quantities evaluated with v < 0 are labelled with a ‘-’ (note that

9;’ and 6, are the trapped particle bounce points and are independent of whether
v > 0 or v <0).

The following properties are noted. Since at any one location (e.g. 8; or 6, ) the
number of particles with v > 0 must equal the number of particles with v < 0, it
follows that

5fi(0)) = of7(0;)
5f(0y) = 6fi (6,)- (3.47)
Thus, gf’(G;’) =g (0;') and gf (6,) =97 (8, ). For v) > 0:

8 dOR, dOR dOR
At 1+ At p— ‘A b 04 b medz b 0l _
ai (0F) — 31 0,) — ido | - // ]—
L L =y v ol

afi ( aBo) EOQ/ s dORg exp(—igh)
1—— .

Ry

—i2(w — w)E == (3.48)

2
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Similarly, for v <0

8 dOR, dOR dOR
G (67) = 9 (6,) +ig0 | —‘)q[w " 0l // 01—

|v) [

. of; ( aBo) §0q/ b dORy exp(—iqf)
2w —wi)l=5 |1 —— ) == . (3.49
2w —wa)E g 2 ) Ry oy (3.49)
Subtracting Egs. (3.48) and (3.49), and noting that a bounce average over w .. is
identical to w,, 4, gives
. W — Wyi aBy\ ,0fi &o
Y W W L R P
9o & — (@) ( 2 ) 9€ Ry (cos ¢B) ,

where the angled brackets denote averages over trapped particle space and again the
average of the sin(—g#) term of exp(—iqf) is zero. It is convenient to write (cos ¢f)

as:
I,

(cosqf) = X,
with N N
1 Y% do 1 (% dbcosqb

— _ I, = — _ .
2r Jor V1—aB ' ' 2nJo; /1-aB
Hence, neglecting the much smaller contribution from the passing particles, the per-
turbed kinetic distribution of energetic thermal ions in the external region is given

by:
W — Wy; OABO &) 8fz . .
Wy 9l — i — iwt). 51
i — ( ) ROKbEaz exp(iqd — i¢ — iwt) (3.51)

Ky = (3.50)

0fki =2

2

3.3.2 Wy, in the External Region

The last section obtained dff;. It is now a simple matter to obtain the perturbed
pressure components from it using the definitions:

2
5P = m; / vt 3fE; and GP%y; = m, / a5, (3.52)

where the integration is evaluated over all velocity space. The volume element in
velocity space can be written in terms of v and v, as follows:

dv® = 2mv dv | de.

It is convenient to define the velocity integration in terms of the constants of motion

Eand a=p/:
S 1/Bmin B
/ dv® = 4 / dE € / do —- (3.53)
0 0 e
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where v = \/2£(1 — aB). Hence, substituting Eq. (3.51) into Eq. (3.52) yields

0P¢ 50 1/Bmin aBy I 1
ki b = 27 2nm, / do (1 - —) 1—aB)/?2L o
{ 5PJ_kz } R 1/Bmax 2 ( ) K, ﬁ

/ dE 53/2 0f: [ <w“’*l >] exp(igh — i — iwt). (3.54)
mdi

where Bmin = Bo(1 — €) and Bmax = Bo(1 + ¢). The pitch angle limit & = 1/Bmnin
corresponds to those particles so deeply trapped on a flux surface r that v = 0 at
all times, i.e. Ol‘f ~ 0, ~ 0. The limit o =1 /Bmax to those particles with reflection
points at the trapped - passing boundary, i.e. 9;' ~O, =

Now consider Eq. (3.44) which describes the kinetic potential energy. The follow-
ing identities simplify the analysis:

¢ [V (6PI)] =¢. - VP,
€[V [(om —oPL) ee)] = €L (68 - 0PL).

Integrating [ dz® &*, - ViP{,,; by parts and noting that £ = 0 at the plasma edge
results in

1 * %
Wi =~ [ d'n [5P1(V - €70) — 0Pf, — 0PL)ET K] (359)
This can be simplified using Egs. (2.30) and (3.45):
OWE, = / 3z (5 ki + 5ijl~) 2—0 exp(i¢ + iwt). (3.56)
0

From Eq. (3.54) the sum of the kinetic pressure components can be written:

1/Bmin B 1 I
5.F’||ekz + 6Pik‘z = 27/27rmZ 20 /1 dO[ (]. e 0)

/Bmax V1 —-aB Kb
/ d& 85/2 Ofi [ _<ww >] exp(igh — i¢ —iwt), (3.57)
mds

where 1 — aB/2 has been replaced with 1 — aBj/2. This is a good approximation for
trapped ions since aB ~ 1. Terms involving the trapping condition 1 — aB are not
approximated; the § dependence of these terms are crucial.
The volume element
R2
de® = 2n—r dr df (3.58)
Ry
is now required to evaluate Eq. (3.56). Because Wy, involves only the top-hat
eigenfunction &5, the r integration is only required over the range 0 < r < ri. The
0 integration is only performed over trapped particle space (hence ignoring passing
particles and their effects on kinetic stability), i.e. the limits of integration are reduced
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from —m, 7 to 6 ,6,". Equations (3.56), (3.57) and (3.50) give the kinetic potential
energy term

I/Bmln aBO 2 I2

SWE = 29/27T3m,BOR0( ) / drr /1 . ( e ) o
/ dggs/zafz[ W — Wy ]
<wmdz>

first derived by Chen et al [28] where it was applied to energetic neutral beam ions.
The pitch angle integration is made tractable by changing to the pitch angle
variable k% defined in Eq. (3.13). Hence, recalling that for trapped particles aBy ~ 1,

one can write
2r

2
Boo dk

doo = —

and subsequently,

2 rm 1 2 roo of; W — Wer
W, = —27/2m%m, (5—0) / drrZ/ dk2—'1/ de £5/290 {7 ]
ki T Ry 0 0 Ky Jo 0€ |w — (Wmdi)

(3.59)
where the pitch angle integration covers all trapped particles, from those deeply
trapped with k2 = 0 to those marginally trapped with k2 = 1. Also, following

the analysis of Section 3.1.6, I, and Kj can be defined in terms of the new pitch angle
k2:

1 /2 2 [2gsin (\/_ in @)]
“ Lk, newn =L [T i’;ﬁ ap  (3.60)

I, cannot be described in terms of Elliptic Integrals unless one expands about
g = 1. This expansion is treated in Chapter 4 which describes the fast ion response.
The bounce averaged magnetic drift frequency (w,,4;) can be defined in terms of &, k?
and r by referring to Eq. (3.23) and noting that for trapped ions, p ~ £/By. Hence,

szQ( )

ZerB, Rog [P () + 25(r) Fa ()], (3.61)

<wmdz>
where F(k?) and Fy(k?) are defined in Eq. (3.24).

We should now consider the size JW}; in terms of the inverse aspect ratio. The
high frequency limit (w > wy; and w > (wpg;)) of Eq. (3.59) corresponds to the
Kruskal - Oberman regime [22]. Such a limit was employed in Ref. [24] and the
resulting internal kink dispersion relation is shown in Eq. (2.2). In this analysis
p1 =~ 1.1 is obtained by approximating I,;, K; and the pitch angle integration. The
factor v/2¢ represents the trapped fractlon of thermal ions in the banana regime. The
relative size of Bussac’s [15] fourth order fluid potential energy term 0W; and the
Kruskal - Oberman limit of Eq. (3.59) is

Wy
5Wkei 5z ’

(3.62)
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where f3; is defined in Eq. (2.3). Now, since 8 ~ €2, then €2 < 3; < e1. The exact
order of f; relative to 8 depends on the pressure profile. In any case, Eq. (3.62)
indicates that 6W); and Bussac’s [15] fourth order fluid term are approximately the
same order.

It is now clear that the minimisation of fluid terms Wy and W5, and subsequent
identification of €, is not affected by kinetic effects. Moreover, to fourth order in in-
verse aspect ratio, dW}; only depends on §;. The higher order corrections W, (&, &)
cannot compete with the fluid terms. Thus, Bussac’s minimised fluid potential energy
is still valid.

In an ideal plasma with w > w,p;, the sign of the total external potential energy
describes the stability boundary of the internal kink mode for a plasma with thermal
ions in the banana regime. Instability corresponds to

SW + R{OW} < 0. (3.63)

More detailed information, namely the dispersion relation and subsequent growth
rates, are derived in Chapter 4.

3.4 Summary

The stability boundary of the internal kink mode has been extended to include the
effects of energetic thermal ions. Using drift kinetic theory this has been achieved by
calculating the perturbed distribution function in the external region and subsequently
the modifications to the MHD energy principle. The review chapters of 1, 2 and
3, provide a basis for the original analysis contained in Chapter 4. Here the kinetic
effects of thermal ions are considered in the singular layer and a modified dispersion
relation is obtained. Furthermore, the analysis is extended to describe the kinetic
effects of ICRH heated minority ions.



Chapter 4

Extensions to the Internal Kink
Mode and Applications to
Energetic Thermal ions and

Minority ions Heated with
ICRH

In the previous chapter the ideal internal kink mode stability boundary for thermal
ions in the banana regime was obtained. There it was shown that the kinetic effects
are identical to those first identified by Chen et al [28] for NBI populations.

In this chapter the kinetic modifications to the energy principle are extended to
the singular layer, and as a result, a self-consistent dispersion relation is obtained. The
stability boundary is modified in such a way that it can describe the internal kink
mode stability for plasmas with ICRH minority ions. Different regimes, corresponding
to differing heating conditions, are then examined as a preclude to analysing specific
JET discharges in Chapter 5.

4.1 Internal Kink Stability with Thermal Ions in the Ba-
nana Regime

Equation (3.63) is a rather restrictive gauge of internal kink mode stability for the

following reasons. First it requires w > wsy;, second it does not provide information

regarding the growth rate, and third it requires that resistive effects are negligible.
Moreover, the fact that 0W}; is a function of w means that in general W}, cannot be

55
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evaluated without first solving a dispersion relation in w.

Dispersion relations describing the internal kink stability for kinetic thermal ions
have been employed elsewhere [44, 45]. However, in the analysis of Fogaccia and
Romanelli [44], or for example, Antonsen and Bondeson [45], kinetic effects in the
singular layer were neglected. In this chapter these additional kinetic effects are
evaluated for the first time by following a procedure similar to that used for the
external region, i.e. df;; and 0W}; are evaluated.

Before calculating the kinetic terms in the singular layer, the relevant frequency
regime must be identified. In Ref. [47], a regime was employed with w < wy;, where
Wi = 27/ Tp|p2_y00 18 the transit frequency of passing thermal ions and 7, the passing
orbit time defined in Eq. (3.15). Using this ordering Romanelli et al [47] evaluated
the term in the dispersion relation corresponding to the kinetic effects of thermal ions
in the singular layer. However, in this thesis the relevant ordering is w ~ wpi <K wy;.
Furthermore, to be consistent with the analysis of Chapter 3, the drift kinetic equation
will be expanded in small w/wp; and w/wp;, where wy; = 27 /7, is the bounce frequency
and wp; = 27/7, the passing orbit frequency. Subsequently, the calculations derived
in the following sections serves to correct an analysis in which Mikhailovskii [46]
assumed the relevant scaling w/wy; < 1. In a similar vein to that of Ref. [47] it is also
assumed that ion-ion collisions are negligible. Such a regime requires wyy; > v4;, with
v;; the frequency of ion-ion collisions. Comparisons between the various competing
frequencies will be discussed in greater detail in Chapter 6.

4.1.1 Solution to ¢ f;; in the Singular Layer

The analysis of the singular layer differs from that of the external region because of
the following distinguishing characteristics:

1) & ~ ird&/or > & .

2) Wrndi(T1)/wsi(r1) ~ €1.

The first of these follows from the discontinuity of the ‘top-hat’ eigenfunction at rq
and from V - €9, = 0. The second follows from considering the relative sizes of wpq;
and w,; at the layer. For simplicity we begin by considering the most deeply trapped
ions (k? = 0) with kinetic energy m;€ = 5T;/2. For such ions

(Wmdi) _ 0 i
Wi 2Ry ]Dz',’

where ' = 9/0r. Describing the pressure profile as the parabolic form P; o< 1 — (r/a)?

yields )
w0 0-0) w

Hence (wimgi) /wsi > 1 for 1 < 71, and (W) /wei ~ a/Ry for r = r1 = a/2. Less
deeply trapped ions and many passing ions give rise to a smaller ratio than that
defined in Eq. (4.1). Hence, since w ~ wyp; ~ wy;, the magnetic drift terms contained
in the drift kinetic equation are ignored in the singular layer.
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The kinetic equation describing energetic thermal ions is now applied to the sin-
gular layer. First consider the last term in Eq. (3.40). Since & > &£, it follows
that £ - VB = (¢;/r)0B/06. Also, from the conservation of p and £ it follows that
(’Uﬁ + uB)0B/d60 = —B?v0(v/B)/06. Hence in the singular layer,

of +uB) ST =yt 2 (1), (42)

The poloidal displacement takes the form £ = ég(r) exp(i0 —ip—iwt). In concordance
with the external region, the & dependence of J f;; is not in general identical to that
of §. Identifying h = d f;, we are at liberty to let

h = h(r,0) exp(i0 — i — iwt). (4.3)
Hence, from Egs. (2.35), (4.2), (4.3) and using wy; ~ w > Wnqi, Eq. (3.40) becomes

v [0 s szfa v 0
[80+z(1—q)]h—zwh—z(w—w )ag_E@(RU”)’ (4.4)
where we have used the relation BOR/00 = —R0OB/06, that results from the 1/R
dependence of B.
Since g ~ 1 in the singular layer, the 1 — g term on the left hand side of Eq. (4.4)
is neglected. In accordance with the external region, the kinetic equation is expanded

in orders of w/(27 /7). The leading order kinetic equation is

Ao _ gy yOEG O
Rq 96 *oE T RogY

and therefore, the leading order solution is

2 CI§9 ofi

h() z(w—w*,) r 85R ||+h0,

where hg is independent of 6.
To determine hg we proceed to the next order:

vy Oht _ . o
_ 4.
Rg 00 Who: (4:5)

which, in conjunction with the leading order solution gives

qge fz

oh
v o _ (W — we) L8 >

— Rv + iwhy, 4.6
R 00 I 0 (4.6)
A solution for hg is obtained by annihilating hq separately for passing and trapped
ions.

Transit averaging Eq. (4.6) over passing particle space annihilates h; directly to

give
- . Q£9 (9fz 2 d9 R
I — Wy 0
ho(pass) = —i(w i) Y %d R % ”




4.1 Internal Kink Stability with Thermal Ions in the Banana Regime 58

Now consider trapped ions by following the procedure employed in the external region.
Defining
q&5 0fi
020 p
r 0

the first order kinetic equations for v| > 0 and v < 0 are respectively

A =—w(w— wy)

\“n\ oht el
R—qw = —A |'U||‘ + ZCUhO
\’Un\ ohy e
_R—QW =A "UH‘ + zwho .
+
Operating on these equations with [ af d‘e—lqlf for both v > 0 and v < 0 respectively
b v
obtains,
. : by — % dOR
W OF) —hi05) = ~A [ dB R+ iwghy / e (4.7)
% % \Un\
. . 6 . — (% dOR
- [ @) — k)] = A/i do R + iwqhy /7 wh (4.8)
b % \“n\

Equation (3.47) indicates that ﬁf(ﬁ;’) = hy(6;), hT(6;) = h{ (8;) and EO+ =hy =
ho. Hence, summing Eqs (4.7) and (4.8) gives

ho(trap) = 0

Therefore, the leading order kinetic distribution function is

5 . q&5 0f;

ho = i(w — w) . ng”X, (4.9)
with
¥ 1 trapped ions
1- (fp do R2) /(R’UH X dg”R) passing ions.

We note at this point that ho is odd in v|. This means that ho is capable of
describing the parallel ion fluid velocity

2 00 (e}
(5ul|| = n—Z /_OO d’UL’UL ‘/_OO d’UH <'U||h'0) (4.10)

and subsequently the parallel inertia.
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4.1.2 Wy, in the singular Layer

It is now necessary to evaluate the extent to which kinetic effects in the layer modify
the internal kink stability. This is achieved through evaluating W}, the kinetic
potential energy, at the singular layer.

It follows from Egs. (3.55) and (2.30) that §W}; can be defined as:

1 Sk VB
with
S Py + 6P gy = m; / dv® [Uﬁ + ,uB] h.
Note that dW}; is non-zero when h is even in v). The largest even component of & is
hy. Hence, from Egs. (4.2), (3.53) and (3.58),

x H/Bm Y]
oWi; = —miar’RoB3 [dar [~ dee [T da f{d(,gs*h 9 (E)’
s 0 0

where the contour integration in 6 is defined appropriately for either passing or
trapped ions in conjunction with the integration over a. Integrating the poloidal
integral by parts and noting that {§*h1 = {jh1 gives

1/Bmin v Bh
SW, —mZ47T2R0BO/d’r‘fg/ dgf;/ do }[de <B') 5

Referring to Eq. (4.5), note that 6W}; can be written in terms of the leading order
distribution function hg. Hence, substituting Eq. (4.9) obtains

AS 2 InlIl
SW; = —miwRoByy? / dr@ 7{ do ( > [4 B / df;gaf’ dav
S

o€
afl 1/ Bmax $,do R2
—4 df,' 8 do —+——— 4.11
where subscript ‘p’ denotes passing space and the ideal relation 'yI = —w(w—wsyp;) has

been used. The pressure weighted diamagnetic frequency appears as a consequence
of the energy integration. To see this more clearly one can write

w*m:(/o dee?’/zfiw*i) / /0 de 37, |

which easily reduces to Eq. (2.54) upon identifying f; with the Maxwellian distribution

m; 3/2 —m;E
fi_ni(27rTi) exp( T )

The first term in the square brackets of Eq. (4.11) is evaluated over all particle
space and referring to Eq. (3.53) it is clear that it is proportional to the ion density

n; = /dv3 fi-
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The remaining term is much more complicated. Progress is made by transforming to
a new pitch angle variable y = 1/k?, where k? is defined in Eq. (3.13). It can now
be seen that the integral fp do R/ v)| gives rise to an elliptic integral of the first kind
K(y). Also evaluating the energy integral and substituting p = m;n; one can show
that

oy 1| mdoR (7 d0R?\’
STWE —9 9 2/d s\2  — _ 4.12
Wi T Royr i r(g€5) P2 —r 2R} _r 2R Q @12
—_— —-- -
1+3¢2 1+e2
where 1 3/2
g 3" dye (4.13)

~ V2o [y(1 — ) + 2¢]5/2K (y)
Referring to Eq. (2.42) one might naively believe that §K*/6W}; ~ 2. That is the
kinetic potential energy in the singular layer is much larger than the fluid inertia and
thus provides a very large inertial enhancement. However, it will become clear that
cancellation occurs in Eq. (4.12) and for this reason Q must be evaluated carefully.
Defining A = 2¢/(1 — €) and integrating (4.13) by parts obtains
T= /1 dy N K ()’
o |
0

1
+z) ,
0
Y+ A\)32K (y)?
and K(y)' = dK(y)/dy. Since 1/K(1) =0 and 1/K(0) = 2/7 then
1 s
0= (1_51).

7 cannot yet be evaluated explicitly in terms of the parameter A. Progress is made

by writing
_ L/ K(y) dy L dyS(y)
T = )\3/2 [/0 (K(y)2 — 8(y)> TESNE +/0 " A)3/2] : (4.14)

where S is chosen in such a way that the second integral can be evaluated ana-
lytically and, if one takes A = 0, the first integral converges at y = 0. Hence
S(0) = K(0)'/K(0)? and its local dependence on ¥ is obtained using the expansion

o 1 2\3/2
°=2 9 l(y TR ()

where

T 1 9
K(y) =3 [1+Zy+ 6—4y2+...].

Truncating S beyond y? gives
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and so the second integral of Eq. (4.14) is

! dyS(y) 2 3\/5 3/2 2
)\3/2/0 A e D502 1 0(6).

The first integral of Eq. (4.14) can be simplified by noting that the integrand is zero
for y = 0 and very small for y ~ . Hence,

=2 [ (5 -s0) ] o

In its present form the remaining integral still cannot be integrated accurately
within the precision of numerical routines. The difficulty now lies in the vicinity of
y = 1. However, using the result

lim (K@)} = 510 (72 )

one can write

/01 G{{((z)); _ g(y)> ;% iy l/ola (f{f((;’)); - S(y)> yff/’? + 1n(126/5)] . (4.15)

which, in practice, can be evaluated accurately to 3 decimal places for § = 1 x 1073.
The result leads to the approximate solution

2
== [5 + 1.653/2] + O(g?).
T
We now observe that terms in Q of order ¢ cancel to leave :
Q=1-162+ Qqe2,

where Qy ~ 1. Upon substituting Q into Eq. (4.12) it is clear that the leading order
term is also cancelled to give

. 1
SW§, = 2m% Roy? /dr 7"(q£‘5)Qp8—2 [1.653/2 + 22 — Q2€2] . (4.16)
S
The dispersion relation at the singular layer is given by
D* =6K1; + oWy, + W},

Referring to the perpendicular component of Eq. (2.42) it is now straightforward to
show that
oés\’
0K, + oW, = 27r2R0'y%/dr pr <T 8:) (1+A),
S

where

1.
A:q2<7g+2—Q2>
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The leading order term of A is ¢®1.6/+/¢, and represents a correction to the original
inertial enhancement calculated by Mikhailovskii [46]. Reference [46] contains a sim-
plified analysis in which perturbations in the long-mean-free-path limit are wrongly as-
sumed to be isotropic. As a result, solving Eq. (4.13) of Ref. [46] yields A = 0.45/+/.
If in addition one wishes to include the contribution arising from the poloidal inertia
(identified with the ‘1’ in (1 + A) above) one must also keep terms of order 2 ap-
pearing inside the square brackets of Eq. (4.16), i.e. the factors Q2 and 2 in A. The
term 2¢? corresponds to the inertial enhancement observed in ideal MHD, i.e. the
parallel inertia. Clearly, if one wishes to maintain this term together with that arising
from the poloidal inertia one must also calculate Q2. Hastie [60] has shown that, to
the required order of accuracy, Qo necessarily contains effects of the Shafranov shift,
and where applicable flux surface shaping. The resulting pitch angle integrals are too
complicated to include here. The result, valid at rq, is

1.6
A= (0.5 + ﬁ) : (4.17)

and following the analysis contained in Section 2.4.5 it is now straightforward to show

that )
D’ = 27‘(’]%()6%81ﬂ SM
o wA
It is interesting to contrast the singular dispersion relations of ideal MHD), col-
lisionless MHD and drift kinetic theory. In ideal MHD it was shown that a small
inertial enhancement exists as a consequence of the parallel inertia, i.e. in the above
formalism, A = 2. In collisionless MHD the parallel inertia does not enter the dis-
persion relation, and thus A = 0. It has been demonstrated in this section that the
enhancement in the kinetic regime does not arrive from the parallel inertia, but rather,
from the kinetic potential energy 6W},;. In principle, however, one can calculate K.
The analysis used to obtain both K} and 6W}; is very similar. Indeed, until § K |S| had
been evaluated accurately it was thought that they were identical. The consequence
of this would have been that the inertial enhancement observed in drift kinetic theory
would have the same underlying source as in ideal MHD, i.e. the parallel inertia.
However, this is not the case and the qualitative information that might be hoped
for does not follow. Referring to Eq. (4.10), and following the analysis used in the
calculation for §W};, it can now be shown that

(4.18)

~
S

2
5K|‘T = 2% Ry(w — w*pi)Z/dT pr (7"8;;) 7’2+ (1.6)% — 4(1-6)53/2)'

Hence, in the limit w/wyy; > 1 the leading order term in 6K|5| corresponds exactly
to the parallel inertia observed in ideal MHD. It is clear that the terms arising as a
result of the kinetic effects of thermal ions are an order of magnitude smaller. This is
in fact contrary to the ordering of terms in dW,.



4.2 Internal Kink Stability with ICRH Heated Minority Ions 63

4.1.3 The Dispersion Relation

The kinetic modifications of the internal kink mode have been derived in Chapter 3
and in the previous sections. In this section the various modifications are brought
together to form a dispersion relation that is capable of describing the stability of the
internal kink mode with thermal ions in the banana regime. From Eqgs. (2.40) and
(3.43), the dispersion relation of the external region is

where W is the minimised MHD potential energy (e.g. Bussac’s) and dWJ; is defined
in Eq. (3.59). The ideal dispersion relation corresponding to the singular region is
given in Eq. (4.18). Hence, the total dispersion relation D = D*® 4+ D¢ = 0 in the
ideal limit is

w(w - w*pl) 2 37( il il
i vt o ()] = 4.1
i o tel—— [6W 1+ 6Whi(w)| =0, (4.19)

1

where the superscript ‘e’ has been dropped from W ¢ and W k.

Although it has been possible to modify the internal kink mode dispersion relation
to include kinetic effects, it is not a trivial matter to identify the exact kink mode
growth rate from Eq. (4.19) for a given equilibrium. This stems from the fact that
0Wp; is a function of w and complicated root-finding routines must be used to identify
distinct solutions. Furthermore, referring to Eq. (3.59) it is clear that a pole exists at
w = (Wmdi). Hence, even if the mode is purely oscillatory (y = S{w} = 0), 6W y; has
an imaginary part arising as a consequence of the w = (wy,g;) resonance. Of course
in general both w and 5I7Vki are complex.

Authors have found various means of simplifying the kinetic potential energy.
These usually involve simplifying the pitch angle dependence of (wy,q4;) and making
assumptions about the magnitude of w with respect to the ion diamagnetic frequency
or magnetic drift frequency. In Chapter 5 simplifications are made concerning the
kinetic potential energy arising from an ICRH heated minority population. Here it
is found that most ions conform to (wyqn) > w and w,; > w. This allows analytical
integration over £ and a simplified evaluation of the remaining pitch angle and radial
integrals. Other authors have employed simplified minority ion distribution functions,
some of which have been discussed briefly in the Historical Review.

In Chapter 6, Eq. (4.19) is extended further to include the effects of the equilibrium
electric field. In this chapter the form of SW k; is not simplified and the ideal dispersion
relation is solved exactly.

4.2 Internal Kink Stability with ICRH Heated Minority
Ions

The last section presented a study relating to the effects of energetic thermal ions on
the internal kink mode. The results from this are now used to construct the theory
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required to describe the effects that minority ions have on the mode. This thesis
concentrates on energetic minority ions heated with ICRH. Such heating typically
introduces anisotropic velocity distributions which further complicates the analysis.
Four cases are discussed in the following sections, each with differing ICRH heating
characteristics. For simplicity it is assumed that the thermal ions are collisional,
although, it is a straightforward matter to include the kinetic effects of thermal ions
if required.

4.2.1 ICRH Heating with P, ~ Py, ~ P,

If the minority ions are heated in such a way that their contribution to the plasma
pressure is isotropic (i.e. Pij ~ P ~ P},) and competes with the core pressure
P, = P, + F;, the analysis is easily modified as follows. The hot minority ions
enter the problem in exactly the same way as collisionless thermal ions. For the
fluid contribution, one cannot distinguish between the electrons, the thermal ions
or the energetic minority ions; they all have associated with them a pressure which
collectively combine to form the total plasma pressure P = P, + P,. Hence, in the
case of Bussac’s stability calculation, the fluid term is approximately given by

5Wf = (1—qo) ((/813)2 - 'BI%) ’

where 3, is defined in Eq. (2.1) with P the total plasma pressure P = P, + P,

It is important to note that W t depends non linearly on the total pressure. This
means that the hot ion contribution to the fluid stability is coupled with the stability
of the core plasma, i.e. one cannot write 5Wf = (5ch+(5th. However, if P, ~ ¢P,,
the potential energy contribution of the hot ions to the fluid stability is additive.

The remaining perturbed pressure component is §Pg,. Referring to Eq. (3.59)
and applying it to the hot minority ions in the external region gives

2 _
SWE, = —2723m, ( ) / dr / dk? -2 / dgsf’/?afh[ Y ]

— (Wmdh)

where my, is the hot ion mass, fj, the distribution function and w,, and (wpq,) are
the hot ion diamagnetic and magnetic drift frequencies respectively.

The minority ions also have have associated with them a kinetic potential energy
contribution in the singular layer. However, the analysis presented in 3.3.3 and 3.3.4
cannot be applied to a highly energetic population heated with ICRH. Such ions have
much larger Larmor radii than those of thermal ions in the banana regime and thus
will not be confined to the comparatively narrow singular layer for a significant time.
In any case, kinetic effects in the layer do not alter the ideal stability boundary,
which only requires the sign of potential energy of the external region. Dropping the
‘e’ notation, one can write,

W (W) = W} + Wi (w), (4.20)

where instability corresponds to #{éW (w)} < 0 in an ideal regime with w > wyp;.
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As Eq. (4.20) stands, it is non-trivial to evaluate the sign of R{0W}. This is
because 0Wyy, is a function of w and thus formally the sign of 6W can only be obtained
after having identified w from the internal kink dispersion relation. However, in high
power ICRH discharges, w,, > w and (wpqn) > w for most minority ions. Hence
for such discharges, the dependence of §Wy, on w is weak and the resulting w = 0
solution provides a good approximation. Referring to Egs (3.34), (3.60), (3.61) and
(3.24) one can show that

2 1 12 IS af
§Wien(0) = —2723m, R (5—°> / d 2/ k2 —1 / de £3/2 9h
kh( ) A RO 0 nr 0 Ic+SIs 0

)
a,€

" e
where
n= 1, = 5 eee - k) 1 =2 e @ - k) e

and 0/0r|qa,¢ is a partial derivative evaluated for constant o and £ so that

Ofn|  _0fn _ 1 oo 1\0fn
or lae Or 2r(2k 1){”)k2’

and for an isotropic distribution function this is simply 9f}/0r.
Neglecting kinetic effects in the layer, the ideal dispersion relation in the limit
w K Wyp 18
(.U(w - w*p’i) 2 \/?_)71'
+ &7
wA 51

—1

[6W 5 + 5W kn(0)] = 0. (4.23)

Even in the limit w = 0, §Wyy, still has both real and imaginary parts. The imaginary
part of 6Wjy,(0) arises as a consequence of the Landau resonance of barely precessing
ions with the mode. Such ions have a pitch angle k% defined by I.(k?) + sIy(k?) = 0.
It is clear from Eq. (4.23) that whilst the real part of 6W identifies the pure growth
rate -y, the imaginary part of §Wy,(0) identifies a pure mode rotation w,. Indeed
finite I{dWjp(0)}, particularly at ideal marginal stability, can maintain w > wip;.

Whilst Coppi et al [32] recognised the importance of R{éWy(0)}, they ignored the
Landau resonance of barely precessing ions with the mode, i.e. they took S{éWy,(0)} =
0. In so doing, Coppi et al [32] stated that at marginal stability the ideal branches of
both the sawtooth and the fishbone exist in gaps in the Alfvén continuum 0 < w, <
Wypi- Furthermore neglecting S{6Wj;(0)} led Coppi et al [32] to believe that w < yg
when the internal kink mode is close to marginal stability. This falsely indicated that
resistive effects must be included and hence the sign of Re{dW} alone cannot provide
a meaningful representation of stability.

4.2.2 ICRH Heating with P, ~ cP,

This section deals with a regime where P} /P, ~ €, and a general level of anisotropy
such as P, /Pip~1or P /P, ~ e. The fact that the hot ion equilibrium pressure
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is much less than that of the core plasma means that the dependence of 3, on P, is
negligible. In such a regime Bussac’s representation of the fluid stability is indepen-
dent of the hot ions. One can clearly see this by recalling that the fourth order ideal
kink stability is driven purely by toroidal effects. Upon examining Eq. (2.23), the
dependence of the gradient of the Shafranov shift on hot ion pressure is negligible,
ie., if Py, ~ €P,, hot ions do not contribute to toroidal effects. Nevertheless, hot
minority ions do give rise to other fluid terms and these are quantified below.

In a regime where P, ~ ¢F,, the hot ions do not contribute significant kinetic or
fluid effects in the singular layer. The following analysis is therefore only valid in the
external region. From Eq. (3.38),

0fn =0ftn + 0 fkn,

where d frp, = —& -V fj, and 6 fi, is the kinetic hot ion perturbation. Energy moments
of 6 f5 gives the pressure tensor P, = Prj+ Py As before, the kinetic potential energy
term 0Wjyy, is obtained from Pyp. It follows from P, ~ eP, that the perturbed hot
ion pressure terms are uncoupled from the perturbed j x B terms. Therefore the hot
fluid potential energy 0Wyy,, like 0Wyy, is additive to the dispersion relation and is
given by

W= [ dogl (V3R

where (5:Pfh = —§, - VP,. Using Eq. (2.30) and integrating by parts it can be shown
that

1 -VB *.VB
Wy = —5/ d*z (E V(P + Prp) — (P, + Prp + C)5 5 ) d 5 (4.24)
where BY? 3f
B h
C = drmy, / de / |v||| 2 (4.25)

In most hot plasmas P|VB|/(B|VP|) < e. Hence the hot fluid potential energy
is approximately

5th_——/d3 £-vB V /dv (v} + uB)E - V fi.

Now, substituting Eqgs. (2.27) and (2.41) for £ and following the analysis used for the
kinetic contribution gives

2 pr 1%
Wi = 272 52m, Ry (6—0) /ldrr/ d€ £3/?
R 0 0

0
1/Bmi ) B\ Bcosf
x/ " o O ?{de (1—0‘—) s
0 alr af 2 V 1—aB
It is of interest to separate the terms arising from trapped and passing ions. The
total contribution of the trapped minority ions, which includes both kinetic and fluid
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effects is
b
a,&

2 1 I2 1SS af

_97/2,3 (50) / 2/ 2 (1 _ " / 3/2 9In

Wi mmp R R A drr A dk c~T3sL) )y d€ & o
(4.26)

where the subscript ‘¢’ denotes trapped, and Eq. (4.21) has been used for the kinetic
contribution Wy, (0). Consider now the competing terms of Eq. (4.26). Taylor
expanding I, to first order in 1 — ¢ gives I, = I. + (1 — ¢)I,. Hence, in the limit
where s < 1, the leading order kinetic and trapped fluid terms of Eq. (4.26) cancel
with one another. In fact, it will be shown in Chapter 5 that R{6W},} scales with
(1 —q — s/2)By, where B, is defined similarly to that of Eq. (2.5).

If the hot ion energy distribution is highly anisotropic (e.g. Py ~ €Py) the fluid
contribution dWj,, arising from the hot passing ions will be negligible. Otherwise, if
Py, ~ Pyp, 0Wpy can be evaluated in terms of pitch angle integration in y = 1 k2.
Such a calculation is detailed in Ref. [39].

The potential energy in a regime where P, ~ ¢P, and w < (wyqp) is therefore

SW = 6We + Wiy + 6Why.

Since the hot ions do not contribute kinetic effects in the layer, the dispersion relation
corresponds with that of Eq. (2.49), where (517[/'2 is identified with 6W above. In an
ideal regime with w > w,p;, instability of the internal kink mode is guaranteed for
R{6W} < 0. Alternatively, if resistive effects are thought to be important, one can
solve the dispersion relation with 7; given by Eq. (2.55).

4.2.3 ICRH Heating with P, ~ P, and Moderate Anisotropy

In this section a regime is discussed where the hot ion pressure competes in magnitude
with the core pressure and a small but finite anisotropy can exist. A highly anisotropic
plasma in which, for example, B /P, ~ €, introduces a strong 6 dependence in P .
It will be shown in Chapter 5 that P, has the form

Py(r)
By (r)

where F' ~ 1 and is strongly dependent on #. In this section we consider the case
where P /P” & 1 such that the dependence of pressure quantities on 6 can be
ignored. This limit was first considered in Ref. [42] where the additions to the MHD
energy principle were obtained.

Consider now Eq. (4.24). The term that describes the leading order hot ion fluid
stability is

Pip(r,0) = Pip(r) |[14¢ F(r,0)

1 *.VB
—§/d3x£-V(P||h+PLh)€ 7

Since P ~ P, this term must be incorporated with the core potential energy. Bus-
sac’s [15] toroidal potential energy term §W7 is therefore defined in terms of 3, with
P = P.+ (PLp + Pjp)/2. Also, if one wishes to include the effects of flux surface
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shaping [43, 52], the corresponding potential energy term §W* is additive to the total
fluid potential energy.
The remainder of Eq. (4.24) is

¢ VBE VB
B B

1

5 [ @a@n+Pu+C) (4.27)
This term is not absorbed into the core potential energy term because, as discussed in
the last section, it is an order of magnitude smaller than the leading order contribution.
Integrating Eq. (4.27) by parts yields the total normalised fluid contribution

A A A 1
SWy =W + oW + <Be,

where B¢ is defined in the same way as 3, except that the pressure is replaced with
(PLp + Py + C)/2. In the isotropic limit, Py + B, + C = 0, and hence we recover
the regime observed in Section 4.2.1.

The total perturbed potential energy of the external region in a regime where
P, ~ P, and a small amount of anisotropy exists is:

N N N 1 N
SW = oW + W + <Bo+ oW, (4.28)

where one can use Eq. (4.21) for the definition of SW g in the limit w < (Wimdh)-
Equation (4.28) will be used in Chapter 5 to assess the stability of the internal
kink mode for certain sawtoothing ICRH discharges. In these discharges the level of
anisotropy is considered moderate and thus evaluation of Eq. (4.28) is provides an
accurate measure of internal kink mode stability.

4.2.4 ICRH Heating with P, ~ P, and High Anisotropy

In some high power ICRH discharges at JET in which P, ~ P., the pressure
anisotropy takes the form P,/P,j ~ €. For such discharges neither of the repre-
sentations of 6W obtained in the previous two sections provide a reliable measure of
internal kink stability. At present an exact analytical formulation for 6W does not
exist in regimes where P, ~ P, and P,/ P ~ €. Rather, in this section we use the
knowledge gained from the previous sections to derive an expression containing the
most important effects.

First consider the toroidal fluid stability. Bussac’s calculation for dW7 is a
quadratic function of the gradient of the Shafranov Shift:

SWT = Wa+ A'sWg + (A)?6We.

This equation comes naturally from an analysis which takes account of the Shafranov
shift of flux surfaces. Subsequently, W7 can be written in terms of 3, after having
employed Eq. (2.23) - an identity relating A’ to 8, in an isotropic plasma.

Since the ICRH heating is high, the appropriate form for the kinetic potential
energy 0Wpy is defined in Eq. (4.21). It can easily be shown that in such a regime 6Wpy,
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is large and positive. For conditions close to marginal stability, the toroidal potential
energy must be equally destabilising. It is now proposed that in a highly anisotropic
plasma the toroidal stability is again strongly influenced by A’. Furthermore, it is
assumed that the leading order dependence of dW7' on A’ in a plasma that is strongly
unstable to toroidal effects is the same as that of an isotropic plasma:

-7 (c® +3)(6®? + 3) (A')2 (4.29)

W= "5 — @) \er

where 52 and ¢ involve only the ¢ profile and are defined in Appendix A.
Equation (4.29) requires that the total A’ contains the additional contributions
arising from ions heated with high power ICRH. Fortunately Madden and Hastie [61]
have calculated hydromagnetic equilibria for tokamaks in which the pressure is highly
anisotropic. Expanding the perpendicular pressure as a Fourier cosine series in 6,
Madden and Hastie obtained a second order differential equation for the generalised
Shafranov shift A. Integrating Eq. (29) of Ref. [61] once with respect to r yields

— 1
Al =g [,ch + Bop + A+ o+ Z] (4.30)

where 3, is the poloidal beta corresponding only to the core plasma and @ is the
poloidal beta defined in terms of the hot perpendicular pressure averaged in 6, i.e.,

L T e B
/Bph: T

1 m
dr where Pj = —/ Py do. 4.31
Bg‘s%r% dr rOWReRe T = or e (431)

Also, A is an anisotropic term proportional to the Fourier coefficient of cos 26:

= 2113%]5% Pf)( 1) where Pi,z (r1) = / Py y(r1,8) cos(20) db. (4.32)

Not all of the hot ion fluid effects are contained in JW?'. Other important con-
tributions arising from the trapped population are expected to compete with Wygy,.
Contributions arising from hot passing ions are not expected to be significant on ac-
count of the level of anisotropy. Taking these points into account, the dominant effects
are expected to be contained in the normalised potential energy

SW = oW + W (4.33)

with 60" and 6, defined by Eqgs. (4.29) and (4.26) respectively and A’ by Eq.
(4.30).

In Chapter 5, equation (4.33) is applied to JET sawtoothing discharges in which the
anisotropy is high. At multiple times during each pulse, A’ and 5I7Vht are calculated
from measurements of the energetic ions and thermal plasma and compared with the
sawtooth period. As before, the stability calculations are purely ideal and stability
transitions are assumed to correspond with éW = 0.
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4.3 Summary

A dispersion relation has been obtained for plasmas with thermal ions in the banana
regime. The newly modified dispersion relation arrives as a result of a kinetic treat-
ment which is employed consistently in the singular layer and the external region.
This dispersion relation will be extended in Chapter 6 to include the effects of the
equilibrium electric field and plasma rotation on the internal kink mode.

Also derived is an energy principle capable of describing the ideal internal kink
mode stability of plasmas heated with ICRH. Various regimes have been discussed,
some of which will be used in the following chapter for comparisons with sawtoothing
discharges in JET.



Chapter 5

Modelling Sawtooth

Destabilisation of ICRH
Experiments in JET

The success of experiments using minority ion cyclotron resonant heating (ICRH) to
control sawtooth activity in JET [8] and TFTR [9] has given rise to considerable in-
terest in the nature of the stabilisation mechanism, and its relation to the distribution
function of the heated ions. This chapter is dedicated to modelling the internal kink
stability of recent ICRH heated deuterium - tritium (DT) sawtoothing discharges. In
answer to some of the limiting factors outlined in Ref. [36] the contributions of the RF
heated ions to the kink mode stability are evaluated using a realistic but analytically
tractable distribution function [39]. In addition, suitable models are employed for the
evolving safety factor which are based on novel experimental observations [62, 63].

A detailed investigation is presented in which consistent trends emerge from the
rich variety of discharges analysed. The chapter is organised as follows. The minority
ion distribution function fj is introduced in Section 5.1 and is subsequently applied
to the minority ion internal kink calculations of Chapter 4. The potential energy of
the hot ions is defined in terms of f; and various simplifications are carried out in
Section 5.2. The parameters required to characterise 6W are taken from JET ICRH
sawtoothing data. The first of two studies is presented in Section 5.3 where it is found
that the level of anisotropy is slight; the formalism developed in Section 4.2.3 is used
to compare the data of sawtoothing discharges with internal kink stability. Section
5.4 is dedicated to a second study in which a more significant level of anisotropy
is observed. Here the formalism presented in Section 4.2.4 is used in conjunction
with the JET data. Finally, Section 5.5 contains a summary and a discussion on
implications of the results.

71
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5.1 Model of ICRH Minority Ion Distribution Function

In Section 3.2 it was assumed that the equilibrium distribution function depends only
on &, p and r. In fact, the additional spatial dependence of f; on @ is disallowed due
to the vanishing of a term involving B - V fj, in the drift kinetic equation [25]. It is
therefore not legitimate to construct on each flux surface a bi-Maxwellian in v and
v, because defining such a distribution in terms £ and p introduces a 6 dependence
through v2 = 2uB(r,6) and vﬁ = 2(£ —uB(r,0)). To remove the poloidal dependence
of the bi-Maxwellian, it is assumed that fj is governed by v and v at the location
on a flux surface where the greatest RF power exists [39].

In all the discharges analysed in this chapter the peak RF power is approximately
located at R = Ry, i.e. § = 7. Evaluating the bi-Maxwellian distribution function
at @ = 7 and writing it in terms of £, x4 and r obtains:

m 3/2 _
fr(r, & 1) = 2n4(r)G(r) (WZ(@) exp [—mh (lehB((;) + |5ﬂh?£0|>] . (5.1)

The normalisation factor G(r) is evaluated using

nh:f{dH /d’l)sfh,

which in conjunction with Eq. (3.53) gives [39]:

1 [1/Bmin da df B
1/G(r) = — / L (52
/60 = 5 0 (aBo + (T1n/Tw)|1 — aBo|)32 ] v/1—aB 52)

The integrals are simplified by splitting the pitch angle integration of 1/G into trapped
and passing space. Using the pitch angle variable y = 1/k%, where k? is defined in
Eq. (3.13), one can show that [39]:

1 1
+
T 3/2 T 3/2
L+ eqif2y — 1|) <y+€—@Tﬁh (2—y))

?

1/6() = 2vae [ ay () :

where the elliptic integral of the first kind K (y) arrives from the poloidal integration,
whilst the first term in the square bracket corresponds to trapped ions and the other
to passing ions.

It is important to show that Eq. (5.1) provides a realistic representation of a
minority ion distribution heated with ICRH. To do this surfaces of constant f; in
vy and v are compared with surfaces previously obtained by solving a steady state
Fokker-Planck equation that describes ICRH [64]. Since all particles, trapped and
passing, pass through # = 0, it is convenient to evaluate surfaces of constant f; in
terms of v)|(# = 0) and v, (¢ = 0). Moreover, note that the trapping condition of Eq.
(3.9) is also defined in terms of the perpendicular and parallel velocities evaluated at
0 = 0. Referring to Eq. (5.1) it is clear that the surfaces of constant fj in terms of
v]/(0) and v, (0) are given by

v (0) | Tun
1=¢ " Tjn

ev (0)
1—¢

v (0) — =C?, (5.3)
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where C is a constant. Different loci are obtained depending on whether the argument
of the modulus is positive or negative. If v)(0)/v.(0) < €'/2, Eq. (5.3) describes a
hyperbola whose centre lies at the origin. If v)(0) /v (0) 2 e1/2 Eq. (5.3) describes
either an ellipse or a hyperbola depending on whether 1 — T’ 5/ T)p is respectively
positive or negative. The position that the two conics meet is approximately defined
by v)(0)/v1(0) = /e. Particles with this pitch angle are trapped and their reflection
points are £7. Referring to Fig. 5.1 (a) it is clear that these particles give rise to the
most distinctive characteristics in fj. It can be seen that the surfaces of Eq. (5.1)
correspond to strong deviations from loci forming nested ellipses which are surfaces
of constant fj for a simple bi-Maxwellian. Shown in Fig 5.1 (b) is a solution of the
Fokker-Planck equation taken from Ref. [64]. To depict clearly the similarity between
the distribution function of Eq. (5.3) and that of Ref. [64], the surfaces of Fig. 5.1
(a) are evaluated at the unique flux surface corresponding to ¢ = 0.14, where it is
assumed that the level of anisotropy is given by Tj, /T, = 0.17 [41]. Also shown
in Fig 5.1 (a) and (b) is the trapped - passing boundary, which, as defined in Eq.
(3.9), corresponds to v}(0)/v(0) = V2¢. Both Figs 5.1 (a) and (b) exhibit sharply
defined characteristics at v);(0)/v1(0) = /€, corresponding to particles with banana
tips at the position of maximum heating. Hence, despite the simplicity of Eq. (5.1)
we infer that it provides a realistic representation of the distribution of ions heated
with ICRH.

@

Vv, (0)

Vv, (0)

Trapped-
05 passing

boundary

Figure 5.1: ICRH distribution function contours verses velocity coordinates v and v eval-
uated at the outboard mid-plane (6 = 0). (a): Contours of constant f, with fj, given by Eq.
(5.1) for the unique parameter values ¢ = 0.14 and Tj,/TLp = 0.17. (b): Contours obtained
from a steady-state Fokker Planck calculation in an ICRH heated plasma [64].
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In the following sections the crucial parameters for characterising the hot ion pop-
ulation of recent JET discharges are either measured or modelled using the PION code
[65], which calculates self-consistently the ICRH power deposition and the energetic
ion distribution. One such parameter is the hot ion density ny(r), which is usually
only measured at the edge. A degree of uncertainty surrounds the deposition of ny
with r, and for simplicity it will be assumed that the concentration

nh/ne

is constant throughout all the plasma.

The tail temperatures T’ , and TJ;, are also rather uncertain in many experiments.
A measurement of the central hot ion temperature 7' ,(0) can, in some cases, be ob-
tained using neutral particle analyser (NPA) experiments [66] and in others modelled
using PION. However, the radial dependence of the perpendicular tail temperature
is not known to a high degree of certainty. For this application the Stix formula is
applied [40]:

T14(r) = POLREL, (5.4
where 75 is the classical Spitzer slowing down time and prp is the local RF power
density coupled to the minority ions. The Spitzer slowing down time is proportional

o} Tg /2 /me. Consequently, if prr is modelled in a plasma with maximum heating
located close to the centre such that [39]

r2
PRF X €XDP D2

with D a constant, then one obtains an approximate expression for the minority ion
tail temperature deposition:

VS/Q T 7'2
Typ(r) = TLh(O)%QiO{)) exp <—ﬁ> ; (5.5)

where T, (r) = TooTo(r) and ne(r) = neofte(r).

In some of the discharges discussed later in this chapter the parallel tail temper-
ature is also characterised using the PION code. However, an approximate guide to
Tjp is discussed in Ref. [40]. Restricting attention to the central temperature, Stix
suggested that:

T(0) = 3.7Tuo(2AY2 Zog) /3, (5.6)
where A is the minority ion mass number (e.g. A = 2 for deuterons) and Z.g is the
effective charge number in a plasma with more than one population of ions (typically
Zog ~ 4 in JET). For simplicity and the lack of information to confidently guide

e
otherwise, it is assumed that the level of anisotropy is constant with respect to r, i.e.

Tijp(r) = [Tn(0)/TLA(0)]TLa(r).

McClements et al [41] used Eq. (5.6) to identify the parallel temperature and
subsequently the anisotropy. In this thesis Eq. (5.6) will be used as a quantitative
addition to PION thereby assisting in the reduction of uncertainty regarding the
parallel dynamics of ICRH minority heating.
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5.2 Modelling W in ICRH Plasmas

In Section 5.1 a realistic but analytically tractable distribution function was defined.
The kinetic and fluid potential energy terms described in Sections 4.2.3 and 4.2.4 can
now be written in terms of f,. The following sections describe analytical methods
used to simplify the kinetic and fluid terms. Seeking analytical reductions wherever
possible provides additional qualitative understanding and ultimately allows for the
rapid numerical evaluation of internal kink stability.

5.2.1 Kinetic Contribution to éW

In Section 4.2.1 it was shown that §Wpy,, and subsequently the ideal dispersion rela-
tion, is greatly simplified in limit w < (wpgp). For analysing JET ICRH discharges
in this chapter the w < (wpqn) limit is always justified. Consider the triple integral
of Eq. (4.21). The derivatives of f; with respect to r and k% can be removed by
integrating §Wy, by parts, and furthermore the energy integral is uncoupled from the
radial and pitch angle integrals. From Egs. (5.1) and (3.13) one can show that

—mp& Tihy g2
fn x exp 1+e—2k" -1 ,
Typ T, | |

and thus the energy integral
[e 0]
| el e
0

can be evaluated easily using the identity [5°£%/2 exp(—b€)dE = 3/m/(4b%/2).

The pitch angle integration provides a means of separating the real and imaginary
parts of 6Wy,. The imaginary part arises as a consequence of the pole I. + sI; = 0,
where I, and I; are defined in Eq. (4.22). In the limit s < 1, the pole occurs ap-
proximately at the unique pitch angle k2 = 0.83 for which I.(k2) = 0. The imaginary
component of the integral is evaluated by expanding the denominator of the inte-
grand as: I, + sI; = (k? — k2)d/dk?(I. + sI;). Subsequently, upon assuming s < 1
and g — 1 < 1, then

1 VE
where we have used I, = I. + (1 — q)I,, which at the pole becomes I, (k%) = (1 —
q — 8)I5(k?). The remaining radial integration must be evaluated numerically. The
details for this can be found in Ref. [39].

Upon considering the imaginary component of the ideal dispersion relation one can
obtain an estimate of the mode rotation frequency w, = S{w} at marginal stability:

wr(Wr — wapi) /3
= 81

WA S1

S{0Wip}, (5.7)
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where for most heating scenarios %{(Wth} is large enough to allow a mode to exist
with w, > wyp;. Indeed the figures depicted in Ref. [39] indicate that the real and
imaginary components of §Wyy, are a similar order of magnitude. Nevertheless, other
authors [32] have assumed that S{0W j;} = 0 in the w < (wpgs) limit. As mentioned
earlier, including the imaginary part of 6W in the dispersion relation can shift an
ideal mode out of the gap in the Alfvén continuum, and also provide a stronger case
for neglecting resistive effects. A thorough discussion on this topic is presented in
Section 5.5.

The real part of §Wy, is obtained by evaluating the principal part of the pitch
angle integral, which expanding in small 1 — ¢ and s has the form:

/01 dk? fh(kZ,r) [Ic(kQ,r) +2 (1 —q(r) — ﬂ) Is(kQ,r) _

2 (5.8)

However, the pitch angle and radial integrals of R{éWy} cannot be uncoupled from
one another and hence the remaining double nested integrals have to be evaluated
numerically.

In Sections 4.2.2 and 4.2.4 regimes were discussed in which the hot ions contribute
significantly to particular fluid potential energy terms which are in addition to toroidal
destabilising terms. One such fluid term corresponds to that of I, contained in the
pitch angle integral of Eq. (4.26) which describes the total trapped (hot fluid and
kinetic) potential energy dWj;. The trapped fluid contribution exactly cancels the
kinetic term identified with I, in Eq. (5.8) above. The remaining kinetic contributions
of Eq. (4.26) give rise to the following scaling:

R{6W i} ~ (1 —q- f) [f—%
€1

2
where 5 " IP
B, = — Mo3/2 / 31280k g
Bze2ry'” Jo dr

The exact details concerning the numerical integration of R{éWy;} are described
in Ref. [39]. However, it should now be clear that the kinetic contributions are
evaluated with a high degree of accuracy, where particular attention has been paid to
the pitch angle integrals.

5.2.2 Modelling A’ and S¢

Section 4.2.4 proposed that the toroidal stability of an anisotropic plasma is strongly
influenced by the key parameter A’ - the gradient of the Shafranov shift. Evalua-
tion of A’ requires the hot ion pressure components P, and Pjp. These pressure
components are obtained by taking moments of the equilibrium distribution func-
tion, and in a highly anisotropic plasma are strongly dependent on the poloidal angle.
This section outlines the procedure for obtaining Pj and P, and through func-
tion modelling, a rapid numerical computation for A’. Furthermore, for moderately
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anisotropic plasmas, the quantity S described in Section 4.2.3 is obtained in terms
of simple computations for P, P, and C.
The hot ion pressure components are most easily calculated by writing Eq. (5.1)

as:
3/2 2 v?
mp vl |
= 2n,G ( ) exp |—m — + ——||.
=2\ g v l " <2Tuz 2TIIh)]

The definition of T ;, depends on the sign of €& — uBy:

1 _{ﬁh(%+%}?(1—%)) for &€ — uBy >0
ﬁh(%_%(l—%)) for &€ — uBy < 0.

o (5.9)

On the inboard side of the plasma (where R < Ry, or 7/2 < 6 < 3w /2, such that
B > Byj) it can be shown that & — uBy > 0 for any combination of vﬁ and v?.
Subsequently, one can easily calculate the pressure components

o0 9 o]

13||h, = 47rmh/0 d’U” ’UH/0 d’UJ_ ’UJ_fh
o0 o0

P, = 27rmh/ du / dv, v3 fp,
0 0

via the identity [5° 2" ! exp(—az?)dz = T'(n)/a™.

On the outboard side (where R > Ry, or —7/2 < 6 < /2, such that B < By) the
situation is more complicated. The difficulty lies at the threshold £ — uBy = 0, which
upon substituting B = By(1 — € cos #) corresponds to

1
2 2
Rt (l—ecosﬂ )

At 8 = 0, the threshold is approximately defined by vﬁ = ev?, and as shown in Fig. 5.1,
surfaces of constant f; are discontinuous at this pitch angle. Similar discontinuities
exist throughout the entire outboard side. To tackle this the pressure components are
evaluated using;:

o o o0 U” o
/ dv | / dv| = / du| [/ VBB gy -I-/ . dm_] ,
0 0 0 0

v/Bo/B-1

and subsequent analytical solutions to the perpendicular velocity integrals are ob-
tained with the aid of: 2a [ = exp(—az?) dz = — exp(—az?) and 2a? [ 23 exp(—az?) dz =
—(az? + 1) exp(—az?).

On the inboard side one obtains:

Py = 2mnGTy, (L E

L Tin 1— )Acosf
T \ '/ 12

Pin = 2npGT1n T 1—MXcos@) ’
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and on the outboard side:

Tin \ 7% [1 = (\cos §)3/2 A cos 6)3/2
B = 2nGTj, (T'i) l (cos )77 | (Acosd)

" 1— Acosf 1+ Acosf

T Y2 1(3 4 Acos 0) (A cos 0)1/2
= T, [ =1
PJ_h nhG Lh (TLh> (1 + A cos 0)2
+(1 — (Acos 0)/2)2((Acos )72 + 2)
(1 — Xcos )2 ’
where T

N =g 2t

Tijn

If the level of anisotropy is so high that T /715 ~ €, then by definition A ~ 1, and
hence it is clear that P, and P, are strongly dependent on 6. The ordering A ~ 1
reflects the level of anisotropy for some of the later ICRH discharges detailed in this
chapter.

The appropriate limit for the formalism described in Section 4.2.3 is A = 0. To-
gether with P, and P, one can also evaluate C, where C is defined by Eq. (4.25):

1'1||h 1/2
T\ /2
PiaA=0) = 2n,GTin (Tl_i;) (5.11)
T2, (T \"?
CA=0) = —dn,G=th (L> , 5.12
(A =0) Gt (i (5.12)

and hence in the isotropic limit (7,5, = Tj,), one obtains ¢ = 0 as expected. How-
ever, upon substituting Eqgs. (5.10), (5.11) and (5.12) for the case where T\, 2 T,
one finds that Sc # 0. The toroidal effects associated with S¢ together with ki-
netic effects and core toroidal effects all contribute to Eq. (4.28), which in Section
5.3, is used to compare the ideal internal kink stability threshold with moderately
anisotropic sawtoothing discharges.

To evaluate A’ one can see from Eq. (4.30) that the quantities P, ; and PJ(_Q,Z (r1)
must first be considered. We seek to facilitate the evaluation of A’ by ensuring that
numerical calculations are limited to radial integration only. To assist in this the
pitch angle integrals of Eq. (5.2) are fitted to a polynomial in A\. By evaluating the
pitch angle integrals numerically within the range 0 < A < 3, and comparing with the
polynomial fit, G can be determined with an error of less than 1 percent:

1/2
Ty
G=|(=") @y,

(Tnh) N

where, for 0 < A < 3,

Gy = 0.49528 4 0.1097X — 0.00598 ).
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Note that in addition to A’ this definition of G' can be substituted into S¢.
The poloidal integrals of P, and PJ(_Q,E (r1) are also fitted to a polynomial in A.
For maximum error bars of less than one percent:

Pip = 2GNnp T F
PY = 2GNn, T, F@),

with

F 1.01361 — 0.45243)\ + 0.16633)% — 0.03439)\3 + 0.00291)\*
F® = 0.007 — 0.33466 + 0.206862% — 0.05951)% + 0.00661 )%,

which is again valid for 0 < A $ 3. According to Ref. [61], the poloidal dependence
of P, is negligible. Hence the definition

Ty, (0
-k

is used in B,,. Finally, B,n, A and o of Egs. (4.31), (4.32) and (2.24) are easily
evaluated via numerical integration in the minor radius. Defining the normalised
quantities 7y, = np x 107 and T}, = T, 1/1 keV, it is straightforward to show that:

. 4.026 x 1073 (™ d . —  Tn(0)
= =" | drr®— [T hGN | F
Bph B /0 rro lnh Lh N( +TM(O)
2.013 x 1073 .
A = %ﬁhTLhGNF(Q) .
Byjet
T1

where the radial dependence enters Gy, F and F(?) through A.

Using Eq. (4.30), the gradient of the Shafranov shift can now be calculated easily
for regimes where the plasma is highly anisotropic. This computation of A’ is used
in Section 5.4 to characterise the toroidal stability of JET sawtoothing discharges.

5.3 The Sawtooth Trigger in JET ICRH Discharges and
the Evolution of q

Already in this chapter potential energy terms suitable for describing the ideal internal
kink mode stability of ICRH discharges have been defined. This analysis is now used
to correlate marginal stability with the sawtooth crash events of JET DTE1 ICRH
experiments.

Rather than attempting to obtain evidence of a pressure driven trigger, this section
investigates the possible link between the sawtooth trigger and the evolving ¢ profile.
This differs from previous attempts [67, 68, 69] to correlate characteristics of the ¢
profile with the trigger because in the current study the ideal limit is assumed. To
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undertake such an investigation we choose to analyse two particular shots chosen
from a class of DTE1 ICRH discharges [70]. Both constitute tritium rich plasmas
with relatively high concentrations of minority ions: one with minority deuterium (D)
and the other Helium (He?). In both discharges the ICRH power is relatively low,
which when coupled with the high concentrations of either D or He® minority ions,
gives rise to relatively small tail temperatures which are only moderately anisotropic.
Conversely, as discussed in Section 5.4, low concentrations of minority protons heated
with high power RF give rise to very high perpendicular tail temperatures and a
high degree of anisotropy. However, the appropriate regime in the present study is
described in Section 4.2.3 and in particular the relevant hot ion pressure quantities
are defined by Egs. (5.10) - (5.12).

5.3.1 Ramping Phase Model

To correlate the ideal kink mode stability with the sawtooth trigger we choose to only
consider the effects of the safety factor. During the quiescent period of the sawtooth
cycle it is well known that both the pressure and the ¢ profile evolve. For simplicity
and clarity, core and minority pressure contributions are held constant whilst the effect
of the evolving ¢ profile is analysed. One might argue that this is a particularly good
approximation in the case of giant sawteeth where the ramping up of the pressure
is greatly reduced in the later stages of the quiescent period. Conversely however, a
pressure driven sawtooth trigger is given consideration in Section 5.4.

Experiments in a number of tokamaks including JET [12] have demonstrated that
go remains below unity during the whole sawtooth cycle. On TFTR the motional stark
effect MSE [71] has shown with particular clarity the ramping down of ¢y during the
quiescent period of the sawtooth [62]. Figure 5.2, taken from Ref. [62] demonstrates
that go changes by between 10 and 20 percent during the sawtooth cycle, and in
addition suggests that an approximate model of the ramping down might be linear in
time.
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Figure 5.2: (a) go measurements using MSE during sawtoothing on the TFTR tokamak. (b)
go evolution during the Sawtooth ramp, obtained by averaging over 9 consecutive Sawtooth
events [62].

In addition to gy, characterisation of the evolving ¢ profile can be supplemented
by information regarding the ¢ = 1 radius. Pellet injection in JET quite frequently
results in the creation of a high density closed tube of plasma (the Snake) [63] on the
q = 1 surface when a pellet of sufficient size reaches the core. Snakes are long lived
phenomena, aligned to the closed magnetic field lines of the ¢ = 1 surface. They often
survive many sawtooth crashes, with the thermal and density redistribution taking
place around them. Figure 5.3 shows the evolution of X-ray flux and inferred values
of r1 during a sawtooth cycle. At each sawtooth event, the radial position of the
Snake suddenly decreases by up to 40 percent [63], and then increases slowly during
the subsequent ramp phase of the sawtooth.
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Figure 5.3: X-ray-flux plot for the vertical-camera signals showing the inward shift of the
snake during a sawtooth collapse in JET. The solid line follows the point of maximum emission
and the dashed line the inferred radius of the ¢ = 1 surface [63].

In the forthcoming analysis the following ¢ profile is assumed:
q = qo(1 + c(r/a)*)1/4, (5.13)

with a the plasma boundary. This description for ¢ admits a very flat profile inside
r1 and a steep increase to the boundary value g,. The ¢ profile can be characterised
in terms of a, qg, g, and 1 via a solution of

1—qo+ (CIo—qg) (%>2d20

for d which then gives ¢ = ¢%/qo — 1.

JET does not currently have an accurate diagnostic for measuring the safety factor
in the core. Consequently, the evolution of gy and 1 during the sawtooth cycle of the
discharges described in this thesis are not known to a high degree of certainty. To
counter this, in the following section éW is calculated for a whole range of possible
combinations of r; and ¢y using the above model for g.

5.3.2 Results

The two sawtoothing discharges depicted in Fig. 5.4 are considered in this investiga-
tion. Each vertical line in Fig. 5.4 represents a time at which parameters characterising
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the core plasma and energetic ion population were either measured or modelled using
the PION code [65].
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Figure 5.4: Showing the evolving central electron temperature of discharges 42772 and 41737
from the JET DTE1 campaign. The vertical dotted lines represent times at which parameters
characterising the core plasma and energetic ion population were either measured or modelled.

Discharge 42772 comprises a tritium rich plasma with 9 percent minority heated
deuterium [(D)T]. The RF power was approximately 4 MW and the central hot
ion perpendicular tail temperature approximately 7' ,(0) =110 keV with anisotropy
T\n/TLn X 1/2. Discharge 41737 comprises an equal mixture of deuterium and tritium
with 6 percent minority heated helium [(He?)DT]. The RF power was 4.5 MW and the
perpendicular tail temperature approximately 7', = 220 keV with T, /T p 2 1/2.

The measured and modelled parameters for the bulk and minority plasma are used
in code which evaluates the separate components and collective response of Eq. (4.28).
For convenience however, the hot ion term involving B¢ is absorbed into the more
dominant toroidal term 5WT. The normalised potential energy components depicted
in Figs. 5.5 and 5.6 are evaluated for the parameters inferred from discharges 42772
and 41737 respectively and plotted against 1 and ¢o. Note that Figs. 5.5 and 5.6
only depict the real components of §W kp and 6W, and for convenience the notation
‘R{}’ is henceforth neglected.
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Figure 5.5: Computations of the toroidal JWT, shaping éf/VS, hot kinetic 6, and total
potential energy SW against r; and gqo for parameters inferred from discharge 42772. (a)
Showing separately 5WT, (Sf/Vs, 6Win. (b) Illustrating the real component of the total po-
tential energy in both a surface plot and a contour plot. Marginal stability (6W = 0) is clearly
marked on the surface plot by the blue contour. The arrow represents a possible trajectory of
r1 and ¢o during the sawtooth-free period. Destabilisation of the kink mode is indicated by
a change in the colour of the arrow from black to red. Note that the maximum ¢ = 1 radius
considered is 71 = 0.5m, which is not far exceeding the maximum radius of Fig. 5.3. In JET
r1 = 0.5 corresponds to the normalised radius r1/a = 0.4.
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Figure 5.6: Computations of JWT, 5I7VS, 8W r, and 6W against r1 and qo for parameters
inferred from discharge 41737. See Fig. 5.5 for additional information.

To assist in qualitative understanding, a trajectory in r1-go space is depicted. As
discussed in Section 5.3.1, it is expected that during the quiescent period, r1 and g
will evolve in a course similar to that shown in Figs. 5.5 and 5.6. Assuming this
to be the case, the following observations are found to be consistent in discharges
42772 and 41737. A modest rise in §W gy, is accompanied by much larger increases in

S oS . S . . .
|0W | and |6W |, the result being that éW changes sign from positive to negative.
Thus, the analysis is consistent with a scenario in which the ideal internal kink mode
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becomes unstable at a time corresponding roughly to the end of the sawtooth-free
period. A similar observation was also made by McClements et al [41] in a brief
account concerning the effects of the ¢ profile on éW. McClements explained that, in

addition to 5WT, one might expect that the shaping term 6WS of Eq. (A.3) should
increase with 71 since flux surface cross sections become progressively less circular
toward the plasma boundary (see Fig. 2.6).

This investigation illustrates the effects of the evolving ¢ profile on the ideal in-
ternal kink mode stability. The regime suitable for evaluating the marginal ideal kink
mode stability of JET ICRH discharges 42772 and 41737 requires flux surface shaping
effects and inclusion of the effects of hot ions on toroidal effects. The kinetic terms are
shown to contribute considerable stabilisation. However, by including the evolution
of ¢ and neglecting the pressure evolution, the ideal fluid terms are found to dominate
changes in the internal kink mode stability during the sawtooth quiescent period. It
is shown that the effects of the evolving safety factor on the ideal stability could be
an important contribution to the sawtooth trigger mechanism. These results appear
to be consistent with the observation that an increased inversion radius introduces
stronger sawtooth activity [36, 37].

5.4 Sawtooth Evolution during JET ICRH Pulses

The last section presented ideal stability calculations based on the evolving ¢ profile
during the quiescent phase of a unique sawtooth cycle. In contrast, this section
presents a more detailed study in which at multiple times during each pulse, the
evolution of the kinetic and fluid potential energy terms are calculated and compared
with the evolving sawtooth duration [72, 73]. This goes beyond previous tests [8, 37,
41] which concentrated on measurements of the threshold ICRH power for sawtooth
suppression.

The recent DTE1 campaign has yielded ICRH pulses during which both the saw-
tooth characteristics and the ICRH minority ion population both evolve substantially.
Figure 5.7 shows five such discharges. In each, the RF power was ramped up slowly,
thereby increasing the minority ion tail temperatures and correspondingly the saw-
tooth free periods of consecutive sawtooth cycles. Each discharge was heated with
relatively low concentrations (np/ne =~ 0.03) of minority protons, which, as mentioned
in Section 5.3, for the level of applied RF power, the perpendicular tail temperatures
were very high (up to 1.1 MeV) and the degree of anisotropy also large. Consequently,
the appropriate regime for modelling the kink mode stability of the discharges depicted
in Fig. 5.7 is described in Section 4.2.4.

Each vertical line in Fig. 5.7 denotes a time at which the parameters characterising
the plasma were either measured experimentally or modelled using the PION code.
The parameter values are then used to calculate the hot ion contribution §R{5Wh} of
Eq. (4.26) and in parallel, a measure of the destabilising toroidal MHD energy of the
plasma is provided by evaluating Eq. (4.30) for A’. To assist in these calculations,
the analysis outlined in Section 5.2 is employed.
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It was pointed out in Section 5.3 that the g profile is not usually known to a high
degree of accuracy in JET. However, each of the dotted lines of Fig. 5.7 correspond
approximately to the end of the quiescent period, and it is at this point in time when
r1 can be inferred easily from measurements of the inversion radius. Upon employing
Eq. (5.13), it is clear that the remaining parameter required to characterise ¢ is gp.
To deduce ¢g, a model inspired by the data shown in Fig. 5.2 is assumed. The model
is consistent with the general observation that go decreases with lengthening sawtooth
quiescent period, i.e. ¢o at times corresponding to the earlier dotted lines of Fig. 5.7
assume larger values than those of later times. Specifically, the model sets gy = 0.8
at the start of the sawtooth cycle and at the end of the largest sawtooth free period
qgo = 0.7. Intermediate values of ¢y throughout the discharge are calculated via a
simple linear interpolation.
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Figure 5.7: Time profiles of ICRH power and central electron temperature. Discharges
43145, 41514, 41515 and 41522 are (H)D plasmas. Discharge 41679 is a (H)DT plasma.
Vertical dotted lines correspond to times when internal kink calculations were computed (see
Fig. 5.8).

Both the real component of 6 and A’ are calculated and plotted in Fig. 5.8
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as a function of the sawtooth period 7,, at times corresponding to the vertical dotted
lines of Fig. 5.7 (note that unless otherwise stated, it will be assumed henceforth
that 5Wh represents the real part of the complex quantity). Figure 5.8 demonstrates
that in five separate JET pulses the stabilising effects associated with energetic par-
ticles and the destabilising effects of higher pressure both increase with lengthening
sawtooth period. Theory suggests [30, 31, 32] that, as the plasma pressure rises and
A increases during a pulse, continued stabilisation is possible if §W, increases suffi-
ciently. Thus, the systematic correlation between §Wj, A’ and 7 throughout Figure
5.8 is consistent with the premise that a sawtooth crash occurs when the ideal kink
mode is close to marginal stability. This is clear in pulses 41522, 41679 and 43145
and additional support is provided by pulses 41514 and 41515. The latter two are
similar, except that the RF wave orientation was reversed. As a result the central
perpendicular tail temperature of ions in 41514 peaked at 850 keV, but only at 350
keV in 41515 [74]. The sawteeth in 41514 are of a much longer duration than those of
41515, thus providing additional evidence for sawtooth stabilisation by populations of
energetic ions. Contrasting levels of stabilisation from the energetic ions, quantified
by calculating W during pulses 41514 and 41515, are shown in Fig. 5.8: data for
energetic ions in 41515 were only available at a single time.
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Figure 5.8: Computed values of A’ and (SWh and measured values of sawtooth duration 7

at multiple times during the discharges shown in Fig. 5.7.
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In summary, the JET DTE1 campaign included sawtoothing ICRH pulses in which
both the sawtooth characteristics and the energetic minority ion population evolved
substantially. For multiple times during several sawtoothing pulses, the evolution of
the kinetic and fluid potential energies have been calculated from measurements and
PION simulations of the energetic ions, and compared with the evolving sawtooth
duration. It is shown that minority ion stabilisation of the m = 1 internal kink mode
increases in parallel with destabilising toroidal effects, as expected from experimental
observations of increasing sawtooth duration. This is consistent with previous demon-
strations that ¢¢ usually remains below unity for the whole sawtooth period in JET
[12]. Despite this, long ramping times and giant sawteeth are observed, the latter
coinciding with strong kinetic stabilisation.

5.5 Summary and Discussion

A generalised energy principle has been used to examine the stability of the ideal
internal kink mode for plasmas with ITCRH heating. A key feature of the analysis
is the implementation of a new analytically tractable distribution function [39]. It is
shown that the model distribution function describes salient features of the pitch angle
dependence of ion populations heated with ICRH. In particular, the tail temperatures
are inferred from Stix’s [40] model and the distribution function is independent of the
poloidal angle, thereby satisfying the drift kinetic equation. Also in this chapter, and
in addition to the simple expressions obtained in Ref. [39] for 6W 4, the effects of the
hot ions are extended to allow accurate computation for A’.

In a study that compares theory with recent DTE1 experimental data it is shown
that the ideal sawtooth trigger is sensitive to the ¢ profile. The observed sawtooth
cycle and corresponding evolving safety factor is found to be consistent with compu-
tations of the ideal internal kink mode stability. This broadens the debate regarding
the possible mechanism behind what drives the sawtooth crash event.

In a further investigation, another ideal internal kink mode model is used to anal-
yse DTE1 discharges that include highly energetic ICRH minority protons. It is
consistently shown that the destabilising toroidal effects of these discharges increases
with sawtooth period. However, as reflected by the extended quiescent times of giant
sawteeth, the kinetic stability of the hot ions also increase. The consistency of the
stability calculations with sawtooth behaviour during each pulse enhances confidence
in applying the generalised collisionless energy principle [25, 28] to the modelling and
prediction of sawtooth phenomenology in present and future tokamak fusion experi-
ments involving energetic particles.

The effects of resistivity on the internal kink mode have not yet been consid-
ered. As discussed in Section 2.4.7 these are controlled by the parameter A =
—i [w(w — Gxe) (w — w*i)]l/3 /YR, Where @ye = wie(1+0.717¢), wie = dP./dr/(eneBor),
wyi = —dP;/dr/(en; Byr), ne = d1nT, /d1nn, and g is the growth rate of the resistive
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m = 1 mode. This last quantity varies as s}’", where s; is magnetic shear at the
g = 1 surface. The ideal limit is represented by |A| — oco. Solving the full dispersion
relation [30, 31, 32] could, in principle, enable further comparisons with observation to
be made. In practice, uncertainties in the g-profile preclude meaningful comparisons:
in particular, the transition between ideal and resistive behaviour is controlled by the
value of A, which itself is strongly dependent on s1, a parameter which could not be
measured directly in the JET pulses considered here. It should also be mentioned that
the imaginary component of the ideal dispersion relation at marginal stability, defined
by Eq. (5.7), typically defines a mode with w, > w.y,;. Hence, unlike Coppi et al [32]
and many other authors subsequently who, neglecting the contribution 3{6th} in
the ideal and marginally stable dispersion relation, obtain A = 0, it is found that
for suitable estimates of s, the solution of Eq. (5.7) gives A ~ 1. Although this
certainly does not mean that resistive effects are negligible, it does demonstrate that
by consistently accounting for the Landau resonance of barely trapped energetic ions
with the mode, a stronger case for neglecting resistive effects can be made.

We now turn to the question of toroidal plasma rotation, which in this chapter has
been assumed to be negligible. The effects of toroidal plasma rotation on the internal
kink mode for plasmas in the banana regime are considered in the next chapter,
particularly in the regime where the toroidal plasma rotation frequency €2 ~ wyy;.
Similar modifications in plasmas where the collisionless population are hot minority
ions requires Q ~ (Wyqgn). Such an ordering is easily possible in NBI discharges where
typically in JET € ~ 105 rad/s. However, for ICRH heating, the maximum value of
corresponds to about 10 - 20 percent of the plasma rotation observed with NBI heating
in similar experimental conditions [75]. In addition, the precessional drift velocities
of ICRH ions are generally much larger than those of NBI ions. These observations
justify neglecting the effects of plasma rotation in all the discharges considered in this
chapter.



Chapter 6

Toroidal Plasma Rotation and
the Stability of the Internal Kink
Mode in the Banana Regime

With the long term interest of nuclear fusion research turning towards ever larger
tokamaks and hotter plasmas, the kinetic effects of thermal ions has become an issue
of increasing importance. Perhaps most crucial is the question of extended sawtooth
quiescent periods in ‘next step’ devices, and the possible relationship to strong kinetic
stabilisation. Another particularly relevant issue is the effect that the equilibrium
electric field and toroidal plasma rotation may have on sawteeth. This is a neglected
area of research. Nevertheless, as mentioned in Section 5.5, in many experiments the
plasma rotation frequency is observed to be very large. The present chapter attempts
to tackle these important points.

The effect of toroidal plasma rotation on the internal kink mode is, for the first
time, evaluated in the banana regime. The plasma rotation caused by the equilibrium
electric field 1¢ is limited to an ordering where Q¢ ~ w.p;. This is well within the
regimes observed in experiments and furthermore Q¢ ~ w,p; ensures that the stability
of the internal kink mode is very sensitive to small variations in the toroidal plasma
rotation. In addition, and unlike many other studies, e.g. [44], the ideal collisionless
internal kink mode dispersion relation is solved exactly. To achieve this, SW ;i is first
reduced analytically and then the tractable numerical integrals are evaluated exactly,
rather than expanding § sz‘ about one of the many commonly used limits.

The impact of toroidal plasma rotation is analysed chiefly via evaluation of the
critical poloidal beta. This classical measure of the internal kink stability [15] is
chosen for two principal reasons. First, it provides useful information regarding the
ideal stability threshold. Indeed, the MHD critical value 5 = 0.3 provides an obvi-
ous benchmark relative to modifications that correspond to the kinetic effects of the
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thermal ions. Second, evaluating (7 only requires solving the dispersion relation at
marginal stability: the kinetic terms are greatly simplified for cases where the growth
rate is zero. However, in some cases, the sign and magnitude of growth rates are
computed close to threshold conditions.

This chapter is organised as follows. The leading order plasma flows are described
in Section 6.1. Following this, Section 6.2 contains a discussion relating the relative
sizes of various competing natural frequencies and an analysis that extends the disper-
sion relation of Eq. (4.19) to include the equilibrium electric field and induced plasma
rotation. In Section 6.3 the typical characteristics (including the plasma rotation
magnitude and profile) of sawtoothing discharges are described and represented in a
model that will be used to assess the effect of plasma rotation on the mode. Quanti-
tative results based on the theoretical extensions and models of Sections 6.2 and 6.3
are contained in Section 6.4. Finally, the results of this chapter are summarized, and
the implications on fusion research are discussed in Section 6.5.

6.1 Leading Order Equilibrium Flow in Tokamak Plas-
mas

This section is dedicated to a description of toroidal plasma rotation in tokamaks.
Potentially the largest contribution is caused by the equilibrium electric field. How-
ever, in this investigation, its size is limited to a scaling comparable with the ion
diamagnetic frequency. To include diamagnetic rotation, the equilibrium fluid veloc-
ity is resolved by considering the ideal limit of Eq. (2.50), i.e. ideal Ohm’s law with
the Hall term and electron diamagnetic effects. The perpendicular components are
identified as
U] = UP + Uyp;

with
Vo x B VP, x B

B2 » Wi = eZn;B? "’

E = —V® and @ the equilibrium electrostatic potential. Assuming as usual that P;
and ® are only radially dependent, and upon writing u ;e = u g9€p + uigpey, the
perpendicular fluid velocity components are simply

ud =

P/ P!
(q)l + ean;Bo) B¢ ((I>I + eanBo) Bg
Ulg= fE and uj 4= — 2z . (6.1)

where ' = 3/0r. Equation (6.1) suggests that the poloidal flow dominates over the
toroidal flow (since By ~ €By). However, it is well recognized that parallel viscosity
strongly damps the poloidal plasma rotation. The effect this has on the parallel
dynamics can be obtained via Eq. (6.1) and the constraint up = 0. The various
components of u are shown in Fig. 6.1.
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Ujo U

Figure 6.1: Typical fluid velocity components with the constraint ug = 0.

Setting up = 0 gives ujjg = —uy. From inspection of Fig. 6.1 it is also clear that
tany = uig/uip = u”g/qu,. Since ug = w4 + u1g one easily obtains the toroidal

fluid velocity:
2 2
ug = ——L8 (1 - (“ﬁ) ) . (6.2)
Ulg Ulg

Hence, using ¢ = rBy/RBg and Eq. (6.1), the toroidal plasma rotation frequency
Q) = uy/R is approximately given by:

Q= Qs + wapi (6.3)
with o P
q qr;

Qe = — d wep; = ———L—. 6.4

¢ Bor ANE Wapi eZn;Byr (6:4)

The components (26 and w,y; are the same sign providing the equilibrium electric field
is positive, or, to the contrary, the electrostatic and diamagnetic contributions are in
opposition if the electric field is negative.

The dispersion relation of Eq. (4.19) already accounts for the diamagnetic contri-
bution of plasma rotation. These effects enter the dispersion relation through W,
and the inertia. In the following section a new dispersion relation is derived which also
accounts for the plasma rotation caused by the equilibrium electric field. It will be-
come clear that for the general case where @' # 0, the dispersion relation is explicitly
dependent on both Q¢ and wyp;.
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6.2 Extensions of the Dispersion relation to Include fi-
nite Qq)

Before considering the effects of ¢ on the internal kink mode, it is important to
first consider the comparative sizes of the other frequencies often included in §Wy;.
In most of the regimes examined in Section 6.4 it is found that R{w} = w, ~ wep,
and in addition the thermal ion temperatures typically exceed 10 keV. Such enhanced
ion temperatures ensure that whilst w,,; is large, the effective collision frequency of
trapped thermal ions I/éi is, in comparison, relatively low. For many of the regimes
considered in Section 6.4 it is found that Véiﬂ-/w*pi ~ €1, thereby justifying the col-
lisionless limit. Throughout this chapter the collisionless limit is assumed even for
temperatures less than 10 keV. This assists in reducing the number of parameters and
clarifies the origin of the various trends observed in the results. Also note that the
effective electron collision frequency is so large (I/g%- ugff = \/m;/me, where m;/m,
is the ion-electron mass ratio) that electrons do not contribute to kinetic behaviour,
unlike thermal ions.

In this study the plasma rotation is limited to ¢ ~ wp;, or equivalently, F, ~
OP;/0r [ njeZ. In addition to setting up resonances between various natural frequen-
cies, such an ordering serves to simplify the formalism describing internal kink mode
stability. Indeed we have already seen that the external fluid potential energy term
OW§ does not depend directly on the diamagnetic contribution to the equilibrium flow
velocity. This is on account of u,,; being small, and furthermore since it is assumed
that Q¢ ~ wyp, it follows that the effects of the electrostatically induced flow uo
on 5W; can also be neglected. Even at higher velocities where centrifugal effects are
taken into account only small alterations to the MHD stability have been calculated
[76].

Upon considering the linearly perturbed MHD equations it is clear that the electric
field cannot appear explicitly in perturbed fluid potential energy terms, but only
indirectly through the equilibrium flow «. Whilst, in external fluid terms, the effects
of finite flow are very small (and therefore neglected), the effects of finite u,p; on the
singular layer term of Eq. (4.18) must be extended to include finite ug. For the
external kinetic term dW}; the situation is markedly different. Here it is found that
the dynamics of single particles are strongly modified by the radial electric field. In
particular, an electric field dominates over the magnetic field non-homogeneity effects
of trapped precessing particles. Since kinetic quantities constitute single particle and
collective resonances, perturbations of kinetic origin are also strongly modified by an
electrostatic potential. If no such potential exists the dynamics is somewhat simplified
and the standard perturbed kinetic distribution function of Eq. (3.51) applies.

At this point it is valuable to consider again the perturbed distribution function
of the external region for the case Q¢ = 0. It is useful to write Eq. (3.51) in the more
general and common form [45]:

; Ofi/0%]
W = N7 B, oE \i ofi

i 0T /09|
R 73 08 Iy

0fi =—€-Vfi+2

£(J), (6.5)
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where J = aBV - &, /2 — &, - k(1 — 3aB/2), n is the toroidal mode number and
9/0€ |, is a partial derivative with respect to € for constant ¢, where for circular
flux surfaces r Bodr = q(r) di. Inspecting the RHS of Eq. (6.5), the first term is
the convective component (which gives rise to fluid MHD quantities) and the other
term is the perpendicular compressional term (additional kinetic quantity). Kinetic
quantities can be recognised through the frequencies

_m; Ofi/0Y |g

m; \_mi 0T/0% |¢
M“zwwww”dww

= Ze 0J/0¢ |, (66)

We recall that the numerator of Eq. (6.5) contains the difference between the internal
kink mode frequency and the ion diamagnetic frequency. The denominator contains
the difference between the kink mode frequency and the magnetic precessional fre-
quency of trapped thermal ions. It is of interest to see how the electrostatic potential
modifies these fundamental resonances.
We now turn to the more general scenario where & # 0. The unperturbed particles
now have
K=&+ Zed/m, (6.7)

as a constant of equilibrium motion. Antonsen and Lee [25] developed a gyro kinetic
equation in terms of the slowly varying quantities u, K, J and solved the perturbed
equation for d f;. From Ref. [25] one can show that the only changes to Eq. (6.5) that
result from the inclusion of non-zero equilibrium electrostatic potential correspond to
the transformations 8/9¢€ |, — 0/0K |, and 8/0y |¢ —» 0/0% |x.. Hence Eq. (6.5)
is generalised to

w - B o,

;. 0T [00
w—nygt 27 /oK, oK Ly

fe=—£&-Vfi+2 E(J). (6.8)

Note that whilst the kinetic component of the perturbed potential energy is modified,
the fluid component is, as expected, unchanged. It is now necessary to explore in more
detail how the equilibrium electric field affects the kinetic component of the perturbed

distribution function and then relate these changes to the equilibrium plasma rotation
Q.

6.2.1 (W, and Modifications for finite (s

In this section we seek to obtain f{ and subsequently éW¢; as a function of Qg. We
begin by attempting to define Eq. (6.8) in terms of the ion diamagnetic frequency
and magnetic drift precession frequency.

Regardless of whether @ is finite, the longitudinal invariant

J:fwm
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is conserved and in general one can define the drift precession frequency [56] as:

_my aJ |y |1c

= Zeo7 oK1 (6.9)

(wai)

To evaluate (6.9) it is necessary to define the parallel velocity in terms of K rather

than &: /2
UH:\/i(K:—p,B—eZ@) .

%

thus giving

oJ f Rv,0¢ p OB eZ 0d 1 8J‘ 1
— = —— ———|dl—— — ¢ —dl and —| = ¢ —dl.
oY | ( q Y v 0y m; 0P J v oK |y Y|
Again using r By dr = ¢(r) di and referring to Egs. (3.10), (3.20) and (6.4) it is now
clear that 0T 10 |
N = M OJ Y Ik )+ Q 1
<wd’L> - Ze aj/alc |¢ <wmdz> + - (6' O)

Thus, upon including finite {2¢, the bounce averaged drift frequency of trapped ions
is modified in exactly the same way as the bulk toroidal plasma rotation 2. Recalling
that a poloidal damping model is used in the derivation of the toroidal plasma rotation,
whilst a single particle guiding centre approach is used to highlight the precessional
frequency result, the fact that a finite equilibrium electric field produces an identical
modification in both Q and (wg;) is surprising.

We now turn to evaluating the remaining quantity occurring in the numerator of
Eq. (6.8). For this application the Maxwellian distribution is required in terms of K:

- niexp (Ze®/T;) (—mﬂC)
fi= i e () (6.11)
Referring to Egs. (6.6) and (6.4) it can be seen that
m; 0fi/0Y |
AT = wyi + Qo. (6.12)

Since Eq. (6.12) contains both ion diamagnetic and electrostatic components with
scalings identical to Eq. (6.3) one can interpret Eq. (6.12) as the kinetic analogue of
the total toroidal plasma rotation € = wp; + 2s.

It is now possible to identify the modifications of the perturbed kinetic distribution
function which are attributable to finite Q3. By Egs. (6.10) and (6.12) and noting
ofi(r,€)/0E |, = 0fi(r,K)/OK |, when f; is Maxwellian, the kinetic component of
Eq. (6.8) becomes

w — Qcp(’f') — Wxg ) %5 <J> , (613)

Ok =2 (w " Qa(r) — {wmar)) 08

on setting n = 1.
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By comparing Eq. (6.13) with the kinetic component of Eq. (6.5) it is clear that
the finite ® corresponds solely to the simple transformations wyp; — wspi + Qo and
Windi = Wmdi + Q&. This transformation, which holds true throughout the analysis,
modifies Eq. (3.59) to

2 1 I2
SWE = =27 13m; (£—°> / drr? / dk? L
0 0 Ky

e G [ty ] 619

where K and I, are defined in Eq. (3.6()). Equation (6.14) appears again in Section
6.2.3 where it is required in the generalised dispersion relation.

6.2.2 The Singular Layer and Modifications for finite (¢

The effects of finite ¢ on the kinetic potential energy contribution to the external
region have now been calculated. In addition, it was shown that finite {2¢ has no effect
on the fluid contribution of the external region. In contrast, this section demonstrates
that in the singular layer, finite {24 modifies both fluid and kinetic terms.

In Section 6.2.1 it was noted that finite ® modifies kinetic quantities merely with
respect to the transformations wip; — wipi + Qe and wygi — Wi + Qs. It therefore
follows that we are at liberty to generalise the gyro kinetic equation of Eq. (3.40) as
follows:

'U||a((59fllcz —i(w — wmdi — R0)0 fri —i(w — wyi — )g‘f; [ i

An element of care is required when implementing the transformations w.p; —
Wipi + Qo and wpg; — Wmai + Qo in 6WE,. Specifically, in Section 4.1.1 it is argued
that wyi(r1) > wmdi(r1), and as a result the dependence of §f7; and éW}; on wpg;
was removed. To get around this minor obstacle we note that Eq. (6.15) suggests the
equivalent transformation w — w — Qg. Hence, Eq. (4.16) is modified to

=0. (6.15)

SW = —21°Ry / dr r(€5)2pA (@ — Qo) (w — wepi — Do) (6.16)
S

The remaining part of the dispersion relation that requires consideration is the
fluid contribution to the singular layer, i.e. (5W; + 0K%. The effects of finite Qg
are established by noting that the inertia 0 K¢ is most conveniently calculated in the
absence of an electrostatic potential [21]. This can be arranged by transforming the
eigenvalue w to a frame moving with the toroidal rotation g, i.e. w — w — g, and
thus modifying Eq. (2.56) to [21]:

7= —(w— Qo) (W — Wapi — Va),., - (6.17)

Aside form this transformation, W§ + 0K, o< 7 is unchanged, i.e. both 6W7 + 0K
and 0W}, are modified in exactly the same way. Consequently, Eq. (4.18) which
describes D® = 6W§ + 0K + 6Wy; is still valid, but now with 7; defined by Eq.
(6.17) above.
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6.2.3 The Generalised Dispersion Relation

The various components of the dispersion relation have now been modified to account
for the effects of finite Q. From Egs. (6.8), (6.14) and (6.17), it can be seen that the
dispersion relation of Eq. (4.19) is generalised as follows:

W(@ — Wapi)

3 . .
D(&) = —i 22 W+ W (@)| =0 6.18
(@) =~ ted e W +iW@)] =0, (619)

wA
T1

where the transformed eigenmode is defined,
@ =w-—Qs(r1), (6.19)

and dropping the ‘e’ superscript notation:

2 71 1 I2
Wi (@) = —27%73m; (6—0) / dr r2/ dk? -4
0 K,y

/ afz [w*i + Q<I>( ) - Q@(Tl)]
R Pt | B CE0

In Section 6.4 the above generalised dispersion relation is solved numerically for var-
ious regimes inferred from the models and parameters described in Section 6.3.

For the present it is of interest to bring to light some of the more obvious charac-
teristics regarding the generalised dispersion relation. Consider a case where Qg > @.
If Qg is large enough, the square bracket of Eq. (6.20) will approach unity and con-
sequently the dependence of SW i on Do, @, Wyp; and (wpmqi) Will be lost. This result
is identical to the Kruskal and Oberman limit [22] of @ — oo, which yields the rather
simple stability criterion of Eq. (2.2).

Now consider a case where the magnitude of {l¢ is comparable with @, wp; and
(wmai), but the radial profile of Qg is not sheared, i.e. Qg(r) = Q¢(r1). By inspection,
it can be seen that if Q¢ is not sheared, the dispersion relation D(®@) is independent
of the magnitude of Q¢. This result is intuitive, since it is clear that w = @ + Qg(r1)
represents the translation of a reference rigidly moving relative to the laboratory
frame.

In general however Qg is sheared. Experimentally it is found that Q¢ is peaked at
the plasma centre and drops off towards the plasma edge. For such an equilibrium it
can be seen from Eq. (6.20) that §Wj; and hence D(®) are sensitive to small changes
in Qg, particularly for the most interesting regimes in which @ ~ wypi ~ (Wndi) ~ Qs.

Understanding why the dispersion relation is sensitive to sheared toroidal plasma
rotation requires a reminder of the two major modifications to D. Single particles
are strongly affected by the equilibrium electric field. This is reflected by the local
dependence of dWj; on Q0¢. However, when considering the effects of {24 on the inertia,
it becomes clear that the internal kink mode is unique amongst ideal MHD modes
because the inertia only contributes to the dispersion relation within the singular layer,
and consequently the Doppler shift observed in K| (and JW; + 6W};) corresponds
to the equilibrium electric field located at 1. Therefore, since part of the dispersion
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relation is dependent on the local value of Q¢ and another part on Q4(r1), sheared
toroidal plasma rotation necessarily introduces non-trivial modifications with regard
to the stability of the internal kink mode in the banana regime.

6.3 Modelling the Effects of Plasma Rotation on Stabil-
ity

This section describes the models and choice of parameters used to obtain the nu-
merical results of Section 6.4. Such a discussion is required because the dispersion
relation of Eq. (6.18) involves a large number of parameters, and choices have to be
made regarding the best way to present the numerical results.

A convenient way to reduce the size of the problem is to determine internal kink
stability close to marginal threshold conditions. Whilst this does restrict information
concerning growth rates, it enables a thorough study of the ideal sawtooth trigger.

In response to this, the models described in this section and the numerical results of
Section 6.4 are based on conditions close to marginal stability.

6.3.1 Modelling dW;; at Marginal Stability

Appendix B describes various analytical reductions to dWy;. In particular, at marginal
stability (where S{w} = 0) the relatively simple expressions defined by Egs. (B.8)
and (B.11) represent R{6Wj;} and I{dWj;} exactly. The remaining pitch angle and
radial integrals have to be evaluated numerically.

Since a great deal of effort has been made to present a tractable means of inte-
grating Wy, exactly, it is appropriate to employ accurate representations of the pitch
angle dependent quantities I, and (wpq;)-

I,, defined in Eq. (3.60), is a rather complicated quantity. A two dimensional
fit in k? and ¢ is employed [77] which takes account of the logarithmic singularity in
pitch angle at the trapped-passing boundary k? = 1. It is accurate to within 0.01
percent for 0.5 < ¢ < 1 and 0 < k? < 1. Writing

1 /2
Iq = ;\/;Fq(% k2)a

the following fit is henceforth used [77],

4(1 — q) cos(mq)
1-4(1-q)?

~ (1+ cos(ma)) fu(a) | BOR) + (B = DK () +

Fy(q, k) = 2E(K*) - K(k*)] — [E(k?) + (K — 1)K (k*)]

2Bk -1 ]

~ (1 -+ cos(m)[B() ~ K(K)] - fol)1 — ) [~ & ] (6.21)
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with
filg) = g [1.0841 - 0.3193(1 — g)* - 0.0683(1 — ¢)*],

fa(g) = 5.1 (q - %) (1—¢)*[1—0.034(1 — g)].

For the cases where [ is relatively large it is appropriate to include the effects
of Shafranov shifted circular flux surfaces on the magnetic drift of trapped ions [78].
Unlike most other studies where the effects of finite pressure on trapped ion orbits
have been ignored, the definition of (wy,g4;) used in the computations of Section 6.4
reflect finite 8. Referring to Connor et al [78]:

qgm;€ 1 )]
——— |F] + 2sFy — — + F: .22
€ZB()ROT'|: 1+ 2sF9 C(4q2+ 3 ; (6 )

where Fj 93 are defined in terms of complete elliptic integrals of the the first and
second kind,

<wmdi> =

P = 2B(K*)/K(K*) -1,

F, = 2B(K*)/K(k*) +2(k* —1),
4
2l

By o= 2 (2k* — 1)EB(K?)/K (K*) + (1 — k%)) (6.23)

The modifications of (wy,q;) relative to the shifting of magnetic flux surfaces are
identified with the last term in the square brackets of Eq. (6.22) in which

_2Rpodp ,
B arl-

¢ = (6.24)

Setting ¢ = 0 obtains Eq. (3.61).

The kinetic potential energy terms R{dWy;} and S{dW};} of Egs. (B.8) and (B.11)
are evaluated in terms of the above definitions of I, and (wpqi). To facilitate the radial
integration, the profiles of various parameters are also required. Such quantities, most
of which are also required in fluid terms, are defined later.

6.3.2 Modelling the Internal Kink Mode Close to Marginal Stability

This section seeks to provide a means of analysing the stability of the internal kink
when the mode is close to the marginal boundary. The various models described
below are employed in Section 6.4.

At marginal stability, Eq. (6.18) describes two different modes. One of these
is embedded in the Alfvén continuum, which requires either & > w,p; or @ < 0.
Assuming this to be the case, the imaginary and real parts of Eq. (6.18) respectively
reveal

smm —%{WVM} = 0 (6:25)

3me? wa
71

(SWf + R {(5sz} = 0. (626)
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Equation (6.25) describes a balance between Alfvén continuum damping and the ion
Landau drive. In this respect the marginally stable mode embedded in the continuum
resembles the fishbone instability discussed by Chen et al [28]. The other mode, is
henceforth labelled the ‘gap mode’. This mode experiences no continuum damping,
since its frequency lies in the low frequency diamagnetic gap in the Alfvén continuum
0 < @ < wyp;- At marginal stability the gap mode is neither continuum or Landau
damped. Hence for 0 < @ < wyp;i, the imaginary and real parts of Eq. (6.18) yield:

s{own} = 0 (6.27)
33;:;;v6@i§i25 + oW+ R{oWu} = o (6.28)

1

In the case of Gap Modes, the effects of finite Larmor radius provides additional
internal kink stability through the positive definite inertial term in Eq. (6.28). Both
gap and continuum modes are observed in Section 6.4.

In this chapter the stability of the internal kink mode is gauged chiefly via evalu-
ation of the critical poloidal beta ;. This classical quantity is chosen partly because
the computation for 8; necessarily requires marginal stability, and partly for historical

reasons [15]. In line with this approach the fluid potential energy W 7 is henceforth
defined by Eq. (A.1) throughout the numerical evaluations of Section 6.4. However,
it is appropriate to point out that a unique value for §; cannot be obtained from a
dispersion relation that includes kinetic effects, since in addition to the pressure (and
hence 3;), 0Wj; also depends strongly on the ratio of central temperature with central
density and their respective profiles.

The uncoupling of the density and temperature from the pressure can be observed
in Egs. (B.8) and (B.11). It can be seen that R{dWj;} and I{6Wj;} depend on a
factor proportional to T;/[w — Q¢(r)]. The dependency of §Wy; on T;/[w — Qe (r)]
can be removed by assuming the Kruskal and Oberman limit [22] (w — Q¢ — 00) or
the limit used throughout Chapter 5 (w — Q¢ — 0). However, in this chapter the
regime of interest corresponds to @ ~ wipi ~ (Wmdi) ~ o, and as a result a model
must be assigned for the identification of ;. Throughout Section 6.4 3, is evaluated
by keeping the central density ny and the density and temperature profiles constant,
thereby satisfying the marginally stable dispersion relation by first evaluating the
unique critical mode frequency w® and the temperature 7if. Henceforth Ty = Tjo = Teo
will be assumed.

The model used to identify 37 follows from the fact that the central temperature
is the variable most commonly associated with the sawtooth trigger mechanism. This
point can be stressed in two ways. Firstly, as we have seen in Chapter 5 the central
temperature evolves considerably during the sawtooth cycle, and secondly 7 can be
amplified via auxiliary heating. The plasma density on the other hand does not evolve
by the same degree. In addition to identifying S, the internal kink mode trigger can
be analysed by evaluating perturbed growth rates for conditions close to the stability
boundary. To achieve this aim @ and Tj are perturbed about w® and 7§ as follows

Ty = T + 0T,



6.3 Modelling the Effects of Plasma Rotation on Stability 102

W=+ dw,

where @° is real and dw imaginary. Since the dispersion relation D(@,T§) = 0, one

obtains
oD
dw—

ow

oD
+ 0Ty +0(6%) = 0.
TS e ° o1, TS e ()

Although @ is now complex, 8/0@ |z can be chosen as an operation along a real path
in the complex plane. §W; can therefore be differentiated numerically as follows

OOW 1

Wi (@€ + 6h) — 6W s (@€ — 6h)
% = lim

. h—0 20h ’
w

with ${dh} = 0. The fact that éh can be chosen to be real means that Egs. (B.8)
and (B.11) can be employed when evaluating 06Wy,;/0@|ze. Restricting attention to
0y = ¥{éw}, the normalised quantity,

d (T()/TOC) WA BT() 0w TS e
is calculated using the following parameters,
sv1+A 2(:10—(,«)*1,2'
Acont = 6re2 —— 5
e | wc(wc - w*Pi)_ r.,T€
1o
svV1+A Wapi — 2W°
Agap = 6re2 - " ’
| wc(w*])i - wc)_ r1,T¢
1o
B = wAi [éR{éWki}]
a(:j Tg,a]c ’
cC = - (4),4i [%{(5[7[/]”}] )
a(:) TS,(DC
E = — (5Wf2 B+ 25Wf3/3;2)/3 e
0
0 A
F = —-Ty— ;
Vo7 [ROWi}] -
G = Toi [%{M;Vki}] :
Ty TS e
svV1+A W Wepi
Heone = 6mre2 \/ﬁ ’
WAL/ O (@€ — Wpi TS
H _ svV1+A jSw*pi
gap 6mre2 WA /G}c(w*pi — &°) ’
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where §W 72 and W 3 are defined by Eq. (A.2). Finding the imaginary component
of Eq. (6.29) yields the following results: in the continuum,

d(’Y/wA) . (Acont + C)(E + F) - B(G + Hcont)
d (TO/TOC) B (Acont + C)2 + B2 ’

(6.30)

and in the gap,

d(y/wa) C(E+F + Hyep) — (Agap + B)G (6.31)
d(To/T§) C? + (Agap + B)? | |

In Section 6.4 f; is calculated by solving the dispersion relation of either Egs.
(6.25) and (6.26) or Egs. (6.27) and (6.28). In addition, for some cases the sign and
magnitude of the growth rate is evaluated for conditions close to marginal stability
using either Eq. (6.30) or Eq. (6.31).

6.3.3 Experimental Observations and Parameter Value Assignment

Before the dispersion relation can be solved numerically some of the various quan-
tities that characterise the plasma must be defined. The plasma rotation profile is
considered first. Unfortunately, in most experiments the plasma rotation is only mea-
sured close to the edge and as a result the profile in the plasma core can only be
roughly estimated. However, in wall experiments at DIII-D [79] accurate measure-
ments of the rotation profile were required to explain how the resistive wall mode
can be destabilised by decreased plasma rotation at the ¢ = 3 surface. Values of the
toroidal rotation determined from the measured frequency of Mirnov oscillations are
found to agree remarkably well with the fluid rotation, especially in the plasma, core
[79]. Two profiles, originally depicted in Ref. [79], are shown in Fig. 6.2. In one,
the toroidal rotation at the ¢ = 2 and ¢ = 3 surfaces have been reduced through
the strong magnetic braking of an error correction coil, and correspondingly the wall
mode is destabilised. However, even in the discharge with weak magnetic braking,
the plasma rotation at the ¢ = 2 surface, which is located approximately at r = a/2,
was less than 15 percent of the central rotation. In addition, inside ¢ = 2, the profile
is observed to be approximately parabolic.

Henceforth in this chapter the profile of Qg (r) is modelled to reflect the charac-
teristics observed in Fig. 6.2. Specifically, we set

2r

Qa(r) = Qoo l1 - (;ﬂ , (6.32)

The fact that Eq. (6.32) admits a fairly high shear within 71 means that the effects
of finite Q¢ on the stability of the internal kink mode are likely to be more critical.
Furthermore, the sign of g is also important; in particular, if g > 0, then both
contributions of Q (Q¢ and w.p;) are in the same direction. Henceforth, Qs > 0 is
referred so as co-rotation and Q¢ < 0 as counter-rotation.
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Plasma Rotation Profile

Figure 6.2: Two sheared plasma rotation profiles observed in the DIII-D experiment [79].
This illustrates the parabolic approximation used for Qg (r).

Throughout the numerical results of Section 6.4 the independent variable is chosen
to be Q4(r1), and the central temperature Tp, which must necessarily satisfy the
marginally stable dispersion relation, is the dependent variable. However, the relative
profiles of the density and temperature are also varied from one plot to the next. It is
assumed that n; = n;o[1 — (r/a)?]"» and T; = To[1 — (r/a)?]*T, with n; = ne, To = T;
and T, = T;. Different values are assigned to the pressure profile index v, + v and

the parameter .
un dTZ dni N
= (W) , (6.33)

The following profiles and quantities, modelled on typical JET equilibrium, are
fixed throughout Section 6.4: Ry = 3m, a = 1.25m, By = 3T, n;o = 4 x 101m =2 and
Z = 1. The safety factor profile is ¢ = qo [1 + d(r/a)*] 1/0, where gy = 0.7, d = 9.09,
¢ = 1.33 giving 1 = 0.45m and ¢(a) = 5.

6.4 Numerical Results

It is now time to solve the dispersion relation numerically using the parameters de-
fined in Section 6.3.3. An effort is made to present the most important information
regarding the sensitivity of the ideal internal kink mode stability to toroidal plasma
rotation. In an attempt to reflect this the results are organised as follows. Section
6.4.1 contains a recipe used throughout the numerical analysis to solve the marginally
stable dispersion relation. The recipe is described step by step and a relevant worked
example is chosen. In Section 6.4.2 a stability window is found to exist. In forming
the stability window a rather obscure ‘damped mode’ is considered in association with
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the mode described in Section 6.4.1. In Section 6.4.3 attention turns to the mode most
strongly linked to the sawtooth instability. Here the role of n; and differing pressure
profiles are investigated in association with varying Qg (r1).

6.4.1 A Numerical Recipe and Application to Numerical Results

We are now in a position to evaluate the stability of the internal kink mode for chang-
ing Qg. The following recipe is used to do this:-

(1) Depending on whether the mode is embedded in the continuum or in the gap, the
root of either Eq. (6.25) or Eq. (6.27) is found respectively as a function of two inde-
pendent parameters Ty and Qg(r1). Subsequently a matrix of values of @ (Q¢(r1), 7o)
is obtained.

(2) The eigenmode matrix @ (g (r1),Tp) is substituted into the real kinetic potential
energy to give R{6Wy; (Qa(r1),T0)}

(3) Depending on whether the mode is embedded in the continuum or in the gap, either
Eq. (6.26) or Eq. (6.28) is solved respectively using (1) and (2) above. Keeping Q4 (1)
as a free parameter the critical central temperature can be identified T} (¢ (71)).
(4) It is then straightforward to evaluate 3 (Qg(r1)) and @¢(Qe(r1))

(5) Using the quantities w® (Qg(r1)) and T§ (e (r1)) it is then possible to calculate
d(y/wa) [d(To/T§) as a function of Qg (ry).

To illustrate steps (1) - (5) above, and to demonstrate the sensitivity of the in-
ternal kink mode stability to changes in Q4(r1), an example is chosen. We choose to
investigate a mode satisfying @ > w,y; in an equilibrium with v, +v7 = 3 and n; = 2.
First let us inspect Fig. 6.3. In this figure R{6W;}, S{6W;} and the layer term
—3{D*} are plotted against & for Qg(r1) = 0 and Ty = 10 keV, where we define:

L s+ A2 B(@ — wep) (6.34)

= —4
3me2 wa ’
T1

>

such that D* + §W = 0. The solution to @(0,10) described in step (1) occurs where
${0W i} = —S{D*}, which is shown by the dotted line in Fig. 6.3. This corresponds
to one element in the matrix of & (Qg(r1),Tp) values.

From step (2) and the dotted line of Fig. 6.3 it is clear that §R{5Wki (0,10)} < 0.
The single element @(0,10) is not a self consistent solution of Eq. (6.26) (the real
component of the dispersion relation) but it does however highlight the sharp peak
and trough of ?R{(SWM} and demonstrates how the problem is constructed. Figure
6.4 presents the modification to Fig. 6.3 corresponding to an increase in the toroidal
plasma rotation to Q4 (r1) = 28k r/s. On this occasion the solution for & correspond-
ing to the dotted line occurs at a peak in ?R{(SIA/VM} rather than a trough. Consequently
Fig. 6.4 suggests that for the particular choice of equilibrium, co-rotation (¢ > 0)
provides enhanced stability. The mechanism behind this is simple: the real and imag-
inary parts of §W; are shifted by a frequency Qo (r) — Qo(r1) as indicated by Eq.
(6.20), whereas the inertia term is not shifted.
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Figure 6.3: Plot of real and imaginary kinetic potential energy terms together with the
singular layer term D? as a function of the mode frequency for an equilibrium with v, +vy = 3,
7 = 2, Qa(r1) = 0 and Ty = 10keV. The solution to imaginary component of dispersion
relation (Eq. (6.25)) occurs for a value of @ corresponding to the dotted line.
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Figure 6.4: As Fig. 6.3 except that Qg (r;) =28 k r/s.

By going through steps (1) and (2), as shown in Figs. 6.3 and 6.4, for differing T}
and Qg(r1) it is possible to satisfy the real component of the dispersion relation of
Eq. (6.25). The solutions to steps (3), (4) and (5) are shown in Fig. 6.5.
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Figure 6.5: A plot of &°, wupi(r1), T, By and d (v/wa) /d(To/T§) for changing Qe (r1). The
mode corresponds to type @ > wupi(r1).

Figure 6.5 (a), (b) and (c) show that w¢, T§ and S5 respectively peak at approx-
imately 14 k r/s, whereas the minima approximately corresponds to Qg(r1) = 0. It
can be seen that counter-rotation (2¢(r1) < 0) corresponds to only a slight increase
in By, whilst co-rotation (Q2¢(r1) > 0) provides a much larger enhancement. This
enhancement in 7§ and f; coincides with increasingly stable R{0W};} (see Figs. 6.3
and Fig. 6.4). However, for Qg(r1) > 14 k r/s the magnitude of R{6W};} reduces
as it approaches the Kruskal and Oberman limit [22]. In addition, it should also be
noted that at the optimised rotation Q¢(r;) = 14 kr/s, the perturbed growth rate is
also peaked. The plot of d (y/wa) /d (To/T§) in Fig. 6.5 (d) indicates that the growth
rate will respond five times greater to perturbations about the critical temperature
when Qg (r1) = 14 kr/s than when Qg(r1) = 0. Hence, in this example, the desirable
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optimised f; is offset by a strong peak in the perturbed growth rate.

6.4.2 Damped Modes and the Stability Window

In Section 6.4.1 the marginal dispersion relation yielded a mode satisfying @® > wip;.
However, the dispersion relation of Eqs. (6.25) and (6.26) describe at least two
coexisting modes. A second mode is investigated in this section, which in conjunction
with the mode investigated in Section 6.4.1, can form a stability window in which the
plasma is absolutely stable to any ideal internal kink displacements.

The second mode is interesting from a theoretical point of view. At marginal
stability the mode must satisfy the imaginary component of the dispersion relation:

sVI+A \V (@ — Wapi) 3 {(WVM} '

3mwe? WA N

T1

The exact evaluation of kinetic terms used throughout this chapter demonstrate that
${0W 1} contributes significantly to the dispersion relation even for @ < 0. For such
a mode, with the assumption that Qg = 0, contributions from %{(5Wki} arise as a
result of the mode-particle resonance of reverse precessing ions. It is this contribution
that allows a mode to exist with @ < 0. The effect of non-zero Qg on S{0Wy;} is a
shift in the resonance to either more deeply reverse magnetically precessing trapped
ions or less deeply (even forward magnetically precessing) depending on the sign of
Q3.

The @° < 0 mode has a rather unexpected property, namely that it is increasingly
damped with respect to enhanced values of 3,. Upon assuming certain limiting ap-
proximations, Fogaccia and Romanelli [44] also identified a so called ‘damped’ mode.
One can demonstrate that a mode with ©¢ < 0 is a damped mode by considering the

perturbed growth rate
oD /oD
— Ty = /2
by =-4 O\S{BTO/ &:;}

Referring to Eq. (6.30) it is clear that if the weak dependence of B and C on dv is

ignored,
0 A 2w° — Wyps
s R / [ ] ,

e/ e o .
WD — Wapi) g

@e,TE

oy o 6Ty

where the modulus follows from E + F > 0. Hence, if ©° > wyp;, then dy o< +6T5 as
expected, whereas if @w¢ < 0, then §y x —d7Tp , i.e. the mode is damped with respect
to an enhancement in Tp, or equivalently 3.

Following the procedure outlined in Section 6.4.1, the dispersion relation can be
solved self-consistently for changing Q4(r1). For clarity the equilibria used in the
numerical results of Fig. 6.5 are employed again and the solutions are shown in Fig.
6.6.
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Figure 6.6: Using the equilibria employed in the numerical results of Fig. 6.5, this plot depicts

the characteristics of a ‘damped mode’ i.e. @ < 0. (a), (b), (c) and (d) show respectively &°,
15, By and d(y/wa) /d (To/T) for changing Qg (r1).

For increasing co-rotation (Q¢(r1) > 0), kinetic resonances arise from increasingly
deeply reversed magnetically precessing ions and as a result S{éWy;} and @° diminish.
In addition R{6W;} approaches the Kruskal and Oberman limit [22], which is smaller
than R{6Wy;} evaluated for 26 = 0. Consequently, a general trend is observed
whereby S is reduced for increasingly positive Qg (r1).

For small values of counter-rotation. peaks in 85 and |&¢| exist, which coin-
cides with an enhancement in S{0W};} due to the resonance of the more populous
forward magnetically precessing ions. In addition it can be seen that the sign of
d(y/wa) [d(To/T§) is always negative indicating that the mode is damped for an
enhanced 3, regardless of the magnitude or sign of Q¢.

Coupling the results of Figs. 6.5 (c) and 6.6 (c) provides a stability diagram. Figure
6.7 shows that a narrow stability window exists in which the plasma is absolutely
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stable to ideal internal kink displacements. It should be noted that the stability
window must necessarily close for sufficiently large Q¢. This is because for Q¢ —
00, both modes approach the Kruskal and Oberman limit [22], which we recall is
independent of &¢ and hence the particular mode in question.

0.5 ‘ ‘ | ‘ ‘
H ~C .
o 1 Growing Mode ( 0 > Wrpi )
0.4
0.3
2 Growing Modes -
0.2} Stability
Window
C (.C
0.1' 1 Growing — Bp (w°<0)
Mode (w®<0) | S Bg((:)c>(0[pi)

21 14 7 0 7 14 21 28
Qo(ry) (Kr/s)

Figure 6.7: Stability diagram collectively featuring the modes shown in Figs. 6.5 and 6.6.
A small stability window exists in which the plasma is absolutely stable to internal kink
displacements.

6.4.3 Sensitivity of the Ideal Internal Kink Mode Stability Boundary
to Changes in Qg(71), 7; and the Pressure Profile

Whilst the mode with @° < 0 is interesting, its role in an experimental plasma cannot
be explained. Indeed, as mentioned in Section 2.4.5, a mode that is unstable at low
Bp is likely to be suppressed by only the smallest amount of resistivity. Consequently,
interest will be focused on modes that follow the usual convention of becoming in-
creasingly unstable for enhanced 3,. This approach is consistent with the general
theme of this thesis, namely an investigation of the sawtooth trigger.

A true investigation of sawtooth stability would not be complete without careful
consideration of the effects of n;, which as shown in Eq. (6.33), characterises the ratio
of the temperature shear and the density shear. 7; can vary from one discharge to
another, and in addition can evolve greatly during the sawtooth cycle. In this section
the range of 7); is limited to typical measured values: 1/4 < n; < 4.

We begin by modifying Fig. 6.5 to include differing values of ;. Figure 6.8 shows
five solutions to the dispersion relation, each with vy + v, = 3. Fig. 6.8 (a) depicts
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the normalised mode frequency w°/wsy; verses the normalised plasma rotation
Q'IJ = Qs (Tl)/w*pi (7"1)

for differing n;. Figures depicted in terms of such normalised frequencies are inde-
pendent of the equilibrium pressure and thus provide more general information than
those of Figs. 6.5 and 6.6. In particular the boundary between the Alfvén continuum
and the gap is easily located in Fig. 6.8 (a) at @°/wspi(r1) = 1. Other fundamental
parameter values can also be identified in Fig. 6.8. For example at Qo = 1, the total
plasma rotation {2 at r; receives equal contributions from the pressure and electric

field, whilst at Qo = —1, the total plasma rotation is zero at r1.
2
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Figure 6.8: Depicting &°, R{0W;} and By verses Qa(r1)/wapi(r1) for five different assign-
ments of ;. In each plot the pressure profile is again controlled by vr + v,, = 3.

Since both R{§W};} and fB; are proportional to Tp, Figs. 6.8 (b) and (c) assume
a similar form. For each 7;, both 37 and R{6Wy;} are approximately minimised for
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Q¢ = 0, and we note that the minimised value of threslnlold beta corresponds to
R{6Wy;i} <0, whereas 8, and R{0W};} are maximised for {2¢ =~ 2. Within the range

—3 < Qg < 0 the threshold beta is only increased slightly for increased counter-
rotation.

Interestingly, Fig. 6.8 demonstrates that 7 is more sensitive to changes in Qg (r1)
for increased m;. This trend is amplified when the shear of the pressure profile is
reduced. Figure 6.9 illustrates the modifications of Fig. 6.8 corresponding to the
adjustment vy + v, = 3/2. In particular it can be seen that for 7; = 4, the magnitude
of 8, varies by a factor of two within the range 0 < Qs < 1.
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Figure 6.9: As Fig. 6.8 except that pressure profile is controlled by vr + v, = 3/2. Note that
R{D*} = 0 for modes embedded in the continuum. The dotted line indicates the transition
between the gap mode and the embedded mode for 7; = 1/4.

It is clear from Figs. 6.9 (a), (b) and (c) that for the case of n; = 4, the large
increases of R{6Wj;} and g correspond to a large change in &°/w.y; within a small
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range of Q. Figure 6.10 illustrates the mechanism behind this by plotting the imag-
inary components of the dispersion relation of Eq. (6.25) for two values of plasma
rotation. For Q¢ = 0.8, it can be seen that the solution @ to Eq. (6.25), satisfied by

& {ﬁs + Jf/Vk,} = 0, occurs where S{6W 1;(@)} is close to its maximum. However, as

shown in Figs. 6.3 and 6.4, a positive increase in €)(r1) has the effect of shifting the
kinetic potential energy curves to the left. Since the slope of ${0W y; } almost matches
the slope of the layer contribution —${D*}, only a very small change in the value of
plasma rotation to Qe = 1 dramatically reduces the eigenvalue solution @°/w.p;(r1)
from approximately 1.75 to slightly greater than unity. Subsequently, the reduction
in @°/w.pi(r1) gives rise to an increase in R{0Wy;} and S;.

0.12! \/&&(a_w*pi) Sy 1+A

w, 3me? r

1

Im{ oW, (Q0=08)}

7 - Im{ 6/\\/\/k|(/\Q¢, :1)}

Am{D} and Im{ 5w,
o
o
(o]

©
o
o)

©
o
=

©
o
V)

1.5 2

[]

w0/ w*pi (rl )
Figure 6.10: Showing how a small change in {0 results in a large reduction of @¢ /w.pi(r1) as
observed in Fig. 6.9 (a) for the case of ; = 4. Dotted lines indicate solutions to the imaginary
part of the dispersion relation.

For all but the case n; = 1/4, Fig. 6.9 illustrates that counter-rotation modifies
R{6W};} and B; only slightly. Indeed for these modes, the greatest variation of g
corresponds to changes in the plasma rotation relative to Qg (r1) ~ wypi(r1). However,
for n; = 1/4 with —2.4 2 Qo = — 0.5, the internal kink mode exists in a gap in the
Alfyén continuum, ie. 0 < &° < wyp;. For Qg < — 2.4 or Qg 2 0.6 the mode is
embedded in the continuum with respectively @¢ < 0 or @° > w,p;. As one can
see from Eq. (6.28), for gap modes the layer term R{D*} contributes to the real
component of the dispersion relation and has the effect of enhancing ;. For modes
with @° > Wiy, it is clear from Eq. (6.34) that R{D*} = 0, whereas, as confirmed in
Fig. 6.9 (a) and (b), for gap modes, R{D*} is maximised where W° Jwapi(r1) = 1/2.

The fact that the gap mode appears to be associated with small 7; and counter-
rotation is at first rather curious. At marginal stability gap modes satisfy S{éWy;} =
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0. Figures 6.3, 6.4 and 6.10 show that S{0Wj;} > 0 for all @, and hence a gap
mode cannot exist. However, it is possible that the condition I{éWy;} < 0 can be
satisfied for small 7);, thereby introducing the possibility of gap modes. Consider the
case where Qg = 0. At marginal stability the Landau resonance @ = (wp,q;) gives
rise to the imaginary component of §Wy;. In addition, the relative sizes of @ and
wy; can affect the sign and amplitude of I{6Wy;}. To see this we write the term
— (@ — wys) /wspi, which is proportional to the numerator of I{0Wy;}, as:

1+n (% -3) @
L+ _w*pz'.

(6.35)

Unless @/wsypi > 1, Eq. (6.35), and hence I{éWj;} are both positive. However Eq.
(6.35) can change sign for lower values of @/w,p; providing that 7; is sufficiently small.
Setting 1; = 0, Eq. (6.35) becomes

1_w

: 6.36
o (6.36)

Hence, for n; = 0, a change of sign requires @ > wyp;, which is at variance with the
definition of the gap mode.

It is possible to change the sign of the numerator within the gap regime 0 < & <
wypi if one includes finite plasma rotation. Equation (6.36) is then modified to

1 0+ Qa(r1) — Q<I>(7")_ (6.37)

Wips

Assuming that 0 < @ < wyp; and Qo(r) has a monotonically decreasing profile, a
change of sign in Eq. (6.37) can be obtained if Q¢ < 0, i.e. gap modes require
counter-rotation. These statements are illustrated in Fig. 6.11. Here the contrasting
dependence of ${éW};} with respect to & are shown for two different values of plasma
rotation. The dotted lines represent solutions to the imaginary component of the
dispersion relation and are therefore identified with the corresponding points on Fig.
6.9 (a) for the case of n; = 1/4. When Qg = 0, it can be seen that S{6W};} changes
sign only for @ > wyy;, and hence the dotted line corresponds to the solution of Eq.
(6.25). However, for Qg = —1, ${0W};} changes sign within 0 < & < w.p; and hence
the dotted line corresponds to the solution of Eq. (6.27), i.e. S{dWj;} = 0. This
mechanism arises as a result of shifts in the 6Wy;(@) curves produced by changes in
Qop.
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Figure 6.11: Depicting the dependence of ${6Wj;} on & for differing Q. Solutions to the
imaginary component of the dispersion relation for the case of 7; = 1/4 are indicated by dotted
lines. For (¢ = 0, the solution is embedded in the continuum (&° > w.pi(r1)), Whereas for
Qe = —1 the solution lies in the gap of the Alfvén continuum (0 < &° < Wapi(r1)).

Figures 6.8 and 6.9 demonstrate that the threshold poloidal beta is an increasingly
sensitive function of g for increasing 7;. Comparisons between Figs. 6.8 and 6.9
show that the pressure profile also influences ;. In particular, for a fairly flat profile
(vn+vr = 3/2), B, is most sensitive to changes in Qo about unity, whereas for a more
sheared profile (v, + vr = 3), larger values of Qg are required to produce a similar
degree of sensitivity. It has also been shown that if Qg < 0 and 7; < 1, the emergence
of a mode existing in a gap in the Alfvén continuum can also assist in increasing 3.

6.5 Summary and Discussion

The ideal sawtooth trigger condition has been modified to include the effects of
toroidal rotation. The latter, which includes a component Qs induced from the
electric field, is limited to an order similar to that of the thermal ion diamagnetic
frequency. The ideal internal kink mode calculations take into account the kinetic
response of thermal ions in both the singular layer (close to ¢ = 1) and the external
region. Modifications arising from the inclusion of {2 are shown to exist solely in the
external kinetic term.

If Qg is not sheared, there is no effect on the internal kink mode. If Q4 is sheared,
the enhancement to the total plasma rotation 2 = Q¢ + wsp; has the effect of locally
shifting §Wi;[@] to 0Wp;[@ + Qo (1) — Qo (r)]. For modes with @ ~ wyp; ~ (Wmai), the
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result of a frequency shift Q¢ (r) — Qe (r1) ~ wspi is to dramatically modify ;.

Various regimes have been investigated, and in each it is found that 37, the quan-
tity traditionally used to determine the threshold stability of the ideal internal kink,
depends sensitively on Q. In Section 6.4.2 the dispersion relation was shown to
yield two contrasting but coexisting modes. A narrow stability window was found
to exist in which both ideal modes are absolutely stable. However, whilst one of the
modes (@ > wyp;) was found to agree with the conventional internal kink modes, a
perturbation analysis revealed that the other mode (@ > 0) is increasingly unstable
for decreasing [3,.

In Section 6.4.3 attention turned to the effects of Q24 on the conventional internal
kink mode. This study was supplemented with an investigation into the additional
effects of density and temperature profiles on threshold stability. In general it was
found that g is an increasingly sensitive function of Q¢ for increasing 7;. Provided
7; is not much smaller than one, counter-rotation was shown to have little effect on
By, whereas co-rotation enhanced 7 by a factor of two. In particular, upon choosing
a relatively flat pressure profile (v, + vr = 3/2), 85 proved to be very sensitive to
small changes in Qg(r1) when Qg (r1) & wWipi.

Assuming a flat temperature profile, peaked density profile and counter rotation,
it has been possible to explore the stability of a mode existing in the gap of the Alfvén
continuum. The diamagnetic stabilisation of the observed gap mode is maximised for
Qo (r1) & —2wsp;. A sufficiently large increase in either counter-rotation or co-rotation
shifts the mode out of the gap.

This chapter has demonstrated that finite 2 has a profound effect on the ideal
internal kink stability of plasmas in the banana regime. Furthermore, the results
may explain some of the observed interaction between sawtooth stability and plasma
rotation. For example, in locked mode experiments a change in the RMP amplitude
and a corresponding change in the amplitude and shear of Q0 can remove sawteeth
altogether [38]. Moreover, in NBI experiments, a reversal in the direction of the
minority ion injection, and corresponding plasma, rotation direction, can significantly
modify the sawtooth period and amplitude.

The dispersion relation of Eq. (6.18) can easily be modified to include the effects
of an NBI population. The additional term 6W (@) is identical to Eq. (6.20) except
for the interchange of the thermal ion distribution function, diamagnetic frequency
and precessional drift frequency to fp, w«p and (wmqn) respectively. As mentioned
in Section 5.5, for NBI experiments the plasma rotation is somewhat larger than
that observed in ICRH experiments and the precessional drift frequency is smaller.
It is plausible that in many NBI experiments the plasma rotation could be ordered
such that Q¢(r1) ~ (wman), and this being the case, the effects of finite sheared
Q4 should be included when using internal kink models to interpret sawtooth and
fishbone behaviour in NBI discharges.



Chapter 7

Conclusions

The goal of this thesis has been to extend the analysis of the ideal internal kink mode
to represent more accurately experimental observation. Recent large experiments, e.g.
JET and TFTR, include populations of hot ions, and there has been a pressing need to
understand in greater detail the interaction between hot collisionless ion populations
and m = n = 1 internal kink mode behaviour.

From the comprehensive Historical Overview of Section 2.1 two particularly strik-
ing gaps appeared in previous work. One of these is a lack in the implimentation
of suitably representative ICRH minority ion distribution functions, and the other is
omission of the equilibrium electric field and induced plasma rotation from internal
kink calculations. Whilst the earlier chapters of this thesis provided a background
regarding the collisionless extensions of the internal kink mode, Chapters 5 and 6 re-
spectively accommodated some of the answers to the former and latter gaps pointed
out above.

In Chapter 5 ICRH heated JET DT sawtoothing discharges were compared with
a generalised energy principle which describes the ideal internal kink mode stability.
Hot minority ion contributions to the internal kink mode were calculated in terms of a
new distribution function which accurately represents the anisotropically distributed
population. In one study it was found that during the sawtooth cycle, the evolving ¢
profile modifies the stability of the ideal internal kink significantly, and may therefore
constitute an important element of the sawtooth crash mechanism. In another study,
the minority ion pressure was found to be so large that, together with the stabilising
kinetic contribution, the hot ions contributed strongly towards the toroidal desta-
bilisation of the internal kink mode. By carefully accounting for the evolving bulk
and minority plasma contributions, a strong correlation emerged between sawtooth
duration and both the kinetic stabilisation and toroidal destabilisation of the ideal
internal kink mode.

In Chapter 6 the analysis describing the ideal internal kink mode was, for the
first time, modified to include the effects of the equilibrium electric field and induced
toroidal plasma rotation. The numerical results of Section 6.4 concentrated on exact
stability threshold calculations for a plasma in the banana regime. Differing equilibria
were investigated, but common to each was the high degree of sensitivity that the
internal kink mode exhibited to variations in the sheared toroidal plasma rotation.

117
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This thesis has been successful in extending the analysis that describes the internal
kink mode, evaluating more accurately the effects of realistic equilibria, and in some
cases interpreting and predicting sawtooth behaviour. However, the models extended
and employed in this thesis could themselves be improved, and in so doing, more in-
depth investigations could be carried out in the future. For the interpretation of JET
sawtoothing discharges, the analysis could be extended to include resistivity. Whilst
this would invoke an additional degree of complexity, and perhaps uncertainty (see
Section 5.5), it would provide more realistic comparisons between theory and observed
sawtooth behaviour. The ideal model of Chapter 6 could be extended in a variety of
interesting ways. First, for cases where the thermal ion temperatures are not very
high, one could also consider the effects of ion-ion collisions. In addition, rather than
an analysis purely based on the marginally stable internal kink mode, the numerical
analysis of Section 6.4 could be extended to include the relationship between highly
unstable internal kink modes and finite toroidal plasma rotation. Such a study could
be particularly important to the experimental interpretation of fishbones, whereby, as
mentioned in Section 6.5, the effects of finite plasma rotation on kinetic terms that
describe the effects of neutral beam populations could easily be included.



Appendix A

MHD Toroidal and Shaping
Contributions to 6W

In this appendix the MHD toroidal and shaping contributions to §W are defined. In
contrast to the toroidal term of Eq. (2.34), the definitions and calculations defined
here are not restricted to a parabolic g profile.

Bussac’s [15] expression of the toroidal fluid term is

~ T . R .
OW" = (0W g1+ W 28, + W 1387)/3, (A1)
where
STV ot — o [%(b(Z) — 1)(1 — 0(2)) — 60’([)(2) — 1)(0(2) + 3) _ 40.2(0(2) + 3) (b(2) + 3)]
n=at [16(b(2) — ()] ;
SV ro = — (0(2) + 3)[3(b(2) -1+ 40-([)(2) +3)]
2= 8(b@ — @) )
. 2) ()
51y = — PO+ (T +3) )

4(b2) — @)
Restricting attention to only elongation (L) and triangular (T") contributions, Ed-
ery’s [43] shaping contribution to 6W has the from

sw® =o' oS (A.3)
with
sipSt_ L (L) = Ly/m] (b(?’) + 4) (0(3) + 4) [L4 + 3Ly /ri]? b DD
o 12¢? c3) —pB3) + =1 —p(-1)
and
5iv T 1 [ -2 /r)? (6(4) + 5) (0(4) + 5) A4
To12e2 @ _p@ (A4)
[T! + 4T} /r,]? (b<—2) - 1) <c(_2) - 1)
D 5D ’ (A-5)
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where, in Eq. (2.25), the loci of non-circular flux surfaces are defined in terms of the
elongation L(r) and triangularity 7'(r). Also, as usual ' = d/dr and the subscript ‘1’
denontes evaluation at .

The quantities 5™ and ¢(™) are defined as

yomy _ 7 dg™
—gm) g

nd o — T 4™

g , (A.6)

T=r1— r=ri1+

with functions ¢ (r < r1) and €™ (r > r;) being the solutions of the homogeneous
equation for the eigenfunction ¢:

d|s/1 1\%d¢ 5 1 1)\?

— -——] = - -1)({-—-— =0. AT

dr lr (q m) dr m )(q m) : (A7)
Permissible solutions are regular as r — 0 and r — 7o (where g(rg) = 2). The

boundary conditions [£(0) = 0, d¢(0)/dr = 1] are used to obtain ) and [¢(ry) =
1, dé(r2)/dr = 0] to obtain ¢,



Appendix B

Analytical Reduction of §W;

This appendix describes the analytical methods used to reduce the complexity of
R{OW 1; } and S{6W;}. The simplified but exact definitions of R{6W ;} and S{6W;}
are employed in the numerical results section of 6.4.

The kinetic perturbed potential energy term of Eq. (6.20) can be written in the
form,

ofi _ _q Ofi
wtOt 65 TWes 81‘1)

. (B.1
Kpwiot — Wimdi) (B-1)

SWis = —23 73 |&rol mz};/ drr? / d&S‘z/ dk? I

with wi(r) = w — Qa(r) = @ + Qa(r1) — Qe(r) and we; = eZBy/m;. The energy
integral can be evaluated analytically if the ions are distributed negative exponentially.
Such distributions describe ICRH and thermal ion populations:

fi(r,k,E) = N(r,k)exp(—b(r,k)E), (B.2)

where b =m;/T; and N = n;m 3/ % /(2nT;)3/? for a Maxwellian thermal ion population.
By substituting Eq. (B.2) into Eq. (B.1), 6W; contains energy integrals of the form,

o0 £3 exp(— g3 exp(—b&)
&> exp(=b¢) 4o / £2expl=b%) 4e B.3
/0 Wiot — 735 wiot — DE (B:3)

where (wpg4i) = D(r, k)E. At marginal stability

{/ Ezexp( bE)dg} _ \7/% Finy (),

wtot -D¢E 402 Wipy

o
R [FEIRCR el — T Fug(a),

0wt —DE 4b2 wyoy
S /0052 exp( bE)dg _ Fig(z)

0wt —DE Wioth? ’

o £3 exp(—b€) ™
R ——dE; = - Fny(z), B.4
\S{/O wiot — DE } Wiot : ) B4
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with £ = D/(bwter). For x > 0, trapped ions magnetically precess in the same
direction as wye giving

Fryy(z) = 4v7 7erﬁ(
i - s (el £ 3 34
Fng,(z) — x7 _ exp [_ﬂ

P = gmew |-,

where ‘+’ denotes = > 0,

erfi(z) = —ierf(iz) = % /Ox exp(2?)dz

and erf(x) is the standard error function [54].

For x < 0, the energy integral does not contain a residue. This follows from the
fact that the resonance condition wyy: = DE cannot be met for any energy or radius
if z « D/wier < 0. However, the principle parts of Eq. (B.3) do not vanish:

- = _4\/_( ;,;)% (\/1—_x>eXp(_%>_%_%_%’

o = _4f( ;,;)% (\/%_:z:)

an_ = 0,
Fn, = 0, (B.6)

where ‘—’ denotes z < 0 and erfc(z) = 1 — erf(z). From inspection of Egs. (B.5) and
(B.6), numerical difficulties are clearly envisaged at the pitch angle k2 for which the
magnetic precession drift of trapped ions is nullified; i.e. k2 is defined by z(k.) = 0.
However, one can show that in the limit z — 0 (or k¥ — k2), Fnz and Fny vanish
and Fn; and Fny converge. Specifically, Fnyy (k? = k2) = Fn;_ (k% = k%) = 15/2 and
Fnoy (k? = k2) = Fny_ (k? = k?) = 105/4. To remove the numerical difficulties that
arise from the cancellation of singular terms as £ — 0, Fn; and Fny are numerically
interpolated within the range —1 < z < 1 as depicted in Fig. B.1.
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Figure B.1: Showing the numerically interpolated functions Fn;(z) and Fny(z) against x
within the range —1 < z < 1.

The following normalised quantities are now used:
i = n;/10"° m=3
Ty = T; /1keV
Grot = wior/1k 18
Hence, referring to Eq. (6.22) for the definition of (wy,q;), yields

a(r)Ti(r) [FL(K) + 25(r) Fa(K2) — C(r) (gt + F3(k2))]

k?) =
z(r, k%) BoRoZ oy (r) ’

(B.7)

and recalling the normalisation §W = 672 RyB3&2e46W /g, one can now show that

~ 1 1 1

w — -3 5

%{(5 kz} =0.151 x 10 (W) / drr2
0¢1

T; . di; T T, dT;
X Hqif (T% 3n d ) +nZTT} Gi+ 55— qni —Gg] (B.8)

BOZ&)tOt ’ dr 2 ’ dr B()Zwtot dr
where 0.151 x 1073 = %721222, and
Gi( / = k2 —4~Fny dk* and Ga(r / = k2 —4~Fny dk?, (B.9)

with F, defined by Eq. (6.21).
The pitch angle integrals are arranged as follows,

O ke F? F?

_ [t g 2 Fn, dk2 /
G = | ga T g™ | ke

Fn;_dk?, (B.10)

where Fn; is interpolated between the limits k4 and k. which correspond to the interval
—1 < z < 1. Numerical values are assigned to the integral limits of Eq. (B.10) by
noting that (wy,q4;) (and therefore |z|) is in general a monotonically decreasing function
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of k? (at least for moderate values of ¢). For wy(r) > 0, the integration limits are
defined: k, = 0, z(ky) = z(kq) = 1, z(ke) = z(kf) = —1, kg = 1. For wiu(r) < 0,
the integration limits are defined: k;y = 0, z(k.) = z(ko) = 1, z(kg) = z(kq) = —1,
ky = 1.

Since z is a function of r and k2, then the limits kq, kp, kq, ke, k; and kg are
also functions of r. Depending on the type of mode and the direction of the toroidal
rotation, the sign of wyy(r) may change with respect to r and hence the definitions
of the pitch angle integral limits must change appropriately throughout the radial
integration.

The normalised imaginary kinetic potential energy is

- 1 1 1
— -3 3

qTi ~dn; 3. dT; o qnzT dT;
x |4 = (12 St ) e s Gy 4+ et G, |(BuL
l{BoZG)mt ( L I - o el e

where —1.071 x 1073 = M, and G3 and G4 are defined as follows. For

3v/m
wiot(r) > 0:
ke F? ke F?Z
Gs(r) = ; K(kZ)Fn?’dk and Gy(r) = ; K(k )Fn4dk (B.12)
and for wy(r) < 0:
1 F2
Go(r) = | iz Fs dk” and Gar / RipFma  (B13)

The latter definitions of G3 and G4 emerge from the resonance of reverse magnetically
precessing particles and thus tend to be small.

The radial and pitch angle integrals contained in Egs. (B.8) and (B.11) are eval-
uated numerically. Examples of numerical results for various choices of equilibrium
are used in Section 6.4.
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Glossary

Distribution Functions

fn Hot (h) minority ion distribution function

fi Thermal ion (i) distribution function (Maxwellian)

dfin Perturbed (6) thermal ion or hot ion (4, k) distribution function

dff  Perturbed distribution function corresponding to external (e) region
0ff  Perturbed distribution function corresponding to singular (s) layer

Terms Appearing in Dispersion Relation

D Dispersion relation D = §K + éW =0

0K Perturbed inertia

oW Perturbed potential energy

oWy Perturbed potential energy satisfying §W, ~ €*, with ¢ = r/Rq

W Normalised potential energy §W = §W/(6m> Ry B3¢t /o)

oW, Perturbed potential energy term corresponding to core (c)
plasma (thermal ions and electrons)

Wy Perturbed potential energy term corresponding to fluid (f) effects

oW, Perturbed potential energy term corresponding to the total
contribution of hot minority ions (kinetic and fluid effects)

0Wpin Perturbed potential energy term corresponding to the kinetic (k)
effects of thermal ions or hot minority ions (i, h)

WS Perturbed potential energy term corresponding to shaping (S) effects

SWT  Perturbed potential energy term corresponding to toroidal (T') effects

Frequencies

v Mode growth rate defined by §f ~ exp(~yt)

yr Ideal MHD growth rate satisfying vy o« —dW

w Mode frequency defined by w? = —y2 or 6f ~ exp(—iwt)

@ Shifted mode frequency @ = w — Q¢(r1)

wa Toroidal Alfvén (A) frequency wa = va/Ry

Wi h Diamagnetic (%) frequency (energy dependent) of thermal ions or hot

minority ions

Wapi Pressure (p) weighted ion diamagnetic frequency (energy independent)

Wdi b Drift frequency wg = wmq + Qe

(Wmdi,n) Bounce averaged (<>) magnetic (m) drift frequency

Q Toroidal plasma rotation satisfying Q = Qg + w.p;

Qo Toroidal plasma rotation caused by equilibrium electric potential (®)

Qs Normalised electrostatic toroidal plasma rotation defined

Q@ = Q@(’I‘l)/w*pi(rl)
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Special Functions

w/2
K(K*) = / dx / \/1—k2sin?z Complete elliptic integral of the first kind
0

/2
k%) = / dr /1 — k2sin’z Complete elliptic integral of the second kind
0

o
= / dz 2° " exp(—2) Gamma function
erf(z / dz exp Standard Error function
erfc(z ) = 1 —erf(z Complementary Error function
erfi(z / dz exp Imaginary Error function with property

erfi(z) = —ierfi(ix)
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