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default

Free boundary evolution modeling

Section 1

Free boundary evolution modeling
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default

Free boundary evolution modeling

’Forward’ Grad-Shafranov equilibrium problem

• In previous lectures we saw how to solve the Grad-Shafranov
equation for equilibrium (re)construction problems. We
distinguished

• the inverse problem (FBT) where we seek an equilibrium that
minimizes a cost function based on the ’desired equilibrium
properties’ in terms of LCFS location, strike points, etc

• The reconstruction problem (LIUQE) where we seek an equilibrium
that minimizes a cost function based on measurements.

• Now consider the forward problem of finding an equilibrium given:
• External currents Ie(= [Ia; Iu])
• The total plasma current Ip
• Other constraints equations on moments of the internal plasma

profiles (e.g. βp,qA, `i )
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default

Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• Given Ie, Ip, co, we seek a plasma current distribution vector Iy and
basis function coefficients ag such that:

Fy(Iy , Ie, Ip,ag, co) = 0 residual related to the GS equation (1)

Fg(Iy , Ie, Ip,ag, co) = 0 residual of the Ip and constraint equations
(2)

• How to compute Fy :
1 Given I[n−1]

y = j [n−1]
φ /∆S from a previous iteration, compute boundary condition

ψb = Mby I[n−1]
y + MbeIe

2 Compute new flux by inverting Laplace operator: ∆∗ψ[n] = −2πRµ0I[n−1]
y ∆S with

boundary condition ψb

3 Find plasma boundary and domain where I[n]
y 6= 0

4 Compute mapping between plasma current and basis function coefficients Tyg , by
evaluating basis function expressions on ψ[n]: p′ =

∑
i bi (ψ

[n])ai
g ,

TT ′ =
∑

j bj (ψ
[n])aj

g

5 Compute new plasma current distribution I[n]
y = T [n]

yg ag

6 Return plasma current distribution residual Fy = I[n]
y − I[n−1]

y
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default

Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• Residual equations are computed directly from the equilibrium at
the present iteration, for example if imposing Ip, βp, `i :

Fg =

 Ip,ref −
∑

y Iy
βp,ref − βp,eq(Iy , Ie,ag)
`i,ref − `i,eq(Iy , Ie)

 (3)
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default

Free boundary evolution modeling

Forward Grad-Shafranov equilibrium problem

• We have a problem of the form

F(x) = 0 (4)

with unknowns x =

[
Iy
ag

]
.

• Solve using Newton method, iterating

x [n] = x [n−1] −
(
∂F
∂x

)−1

F(x [n−1]) (5)

• Construct full Jacobian by Finite Differences or analytical
expressions

• Jacobian-Free Newton-Krylov method [1]: Find Newton step
direction by approximating the column space of the Jacobian.

• This is implemented in the FGS code in the MEQ suite
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default

Free boundary evolution modeling

The plasma equilibrium response matrix

• Once the solution is found, we can construct the plasma
equilibrium response matrices

∂Iy
∂Ie

response to variation in external currents (6)

∂Iy
∂Ip

response to variation in plasma current (7)

∂Iy
∂co

response to variation in internal constraints (8)

• These can be obtained by finite differences, or if Jacobians are
known, by solving

0 =
[

∂F
∂Iy

∂F
∂ag

] [ δIy
δag

]
+
[

∂F
∂Ip

∂F
∂co

∂F
∂Ie

] δIp
δco

δIe

 (9)
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default

Free boundary evolution modeling

Free-boundary Grad-Shafranov evolution

• So far we assumed Ie, Ip are given: this makes this a static
problem.

• In reality Ie, Ip will evolve in response to voltages, following
Farday/Ohm’s law

• Add a circuit equation, and discretize

Mee İe + ReeIe + Mey İy = Ve (10)

• Add a plasma current evolution equation

IT
y

Ip
Myy İy +

IT
y Mye

Ip
İe + RpIp = 0 (11)

• Discretize:

Mee(Ik
e − Ik−1

e ) + ∆tReeIk
e + Mey(Ik

y − Ik−1
y ) = ∆tVe (12)

IT
y

Ip
Myy(Ik

y − Ik−1
y ) +

IT
y Mye

Ip
(Ik

e − Ik−1
e ) + ∆tRpIk

p = 0 (13)
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default

Free boundary evolution modeling

Free-boundary Grad-Shafranov evolution

• Extended system
F(xk) = 0 (14)

with unknowns xk =


Ik
y

ak
g

Ik
p

Ik
e

.

• Solve using similar JFNK or other techniques (Stabilized Picard,
etc)

• This is done using the FGE code in the MEQ suite
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default

Free boundary evolution modeling

Linearized deformable plasma evolution model

• Recall the circuit equation with a generic induction term due to the
plasma:

Mee İe + ReeIe + ψ̇ep = Ve (15)

with ψep = d
dt (Mey Iy) = Mey

d
dt (Iy). This expression works for any

time-varying change of plasma current, not only rigid ones.

• In part III, we parametrized the plasma current distribution using
the rigid body assumption as Iy = Iy(Rp,Zp, Ip).

• Instead, we now keep the general form Iy = Iy(Ie, Ip, co) where Ie
are the external currents, Ip the plasma current, and co any
externally imposed profile constraints (e.g. βp,qA,`i ).

• We can again linearize using the plasma response matrices (6)-(8)

İy =
∂Iy
∂Ie

δİe +
∂Iy
∂Ip

δİp +
∂Iy
∂co

δċo (16)
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default

Free boundary evolution modeling

Linearized deformable plasma evolution model

• Similarly to the rigid model, we realize that because we assume
İy0 = 0, this implies ∂Iy

∂Ie
İe0 = 0. Hence

∂Iy
∂Ie
δİe =

∂Iy
∂Ie

(İe0(t) + δİe) =
∂Iy
∂Ie

İe
• Collecting terms yields:

(Mee + Xee)İe + (Mep + Xep)İp + Xeoδċo + ReeIe = Ve (17)

where:
• Xee = Mey

∂Iy
∂Ie

• Mep = Mey
∂Iy
∂Ip

= Mey
Iy0

Ip0

• Xep = Mey
∂Iy
∂Ip

• Xeo = Mey
∂Iy
∂co
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default

Free boundary evolution modeling

Generalized rigid plasma evolution model

• Now consider the circuit equation for the plasma current:

ψ̇y + Ryy Iy = 0 (18)

with
ψ̇y = Myy İy + Mye İe (19)

• Again parametrizing Iy = Iy(Ie, Ip, co), linearizing as in (16),
multiplying from the left by IT

y0/Ip0, and assuming plasma
resistance does not change with plasma position, yields:

IT
y0

Ip0
Myy

Iy0

Ip0︸ ︷︷ ︸
Lpp=ITy0Myy Iy0/I2p0

İp+
IT
y0

Ip0
Myy

∂Iy
∂Ip︸ ︷︷ ︸

1
2

∂Lpp
∂Ip

Ip0

İp+
IT
y0

Ip0
Myy

∂Iy
∂Ie︸ ︷︷ ︸

1
2

∂Lpp
∂Ie

Ip0

İe+
IT
y0

Ip0
Myy

∂Iy
∂co︸ ︷︷ ︸

1
2

∂Lpp
∂co

Ip0

ċo+
IT
y0

Ip0
Mye︸ ︷︷ ︸

=Mpe

İe+
IT
y0

Ip0
Ryy

Iy0

Ip0︸ ︷︷ ︸
Rpp

Ip = 0

(20)
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default

Free boundary evolution modeling

Generalized rigid plasma evolution model

• Hence:

(Lpp + Xpp)İp + (Mpe + Xpe)İe + Xpoδċo + RppIp = 0 (21)

with
• Lpp = IT

y0Myy Iy0/I2
p0

• Xpp =
IT
y0

Ip0
Myy

∂Iy
∂Ip

• Mpe =
IT
y0

Ip0
Mye

• Xpe =
IT
y0

Ip0
Myy

∂Iy
∂Ie

• Xpo =
IT
y0

Ip0
Myy

∂Iy
∂co

• Rpp =
IT
y0

Ip0
Ryy

Iy0

Ip0
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default

Free boundary evolution modeling

Generalized rigid plasma evolution model

• We obtain the complete dynamic model or a rigid plasma(
(Mee + Xee) (Mep + Xep)
(Mpe + Xpe) (Lpp + Xpp)

)(
İe
İp

)
(22)

+

(
Ree 0
0 Rpp

)(
Ie
Ip

)
=

(
Va

0

)
(23)

• This model has exactly the same structure as the RZIP model, just
with more general expressions for X∗∗ terms owing to the
deformable plasma response matrix.

• Removing the X∗∗ terms yields the model excluding the effects
due to the plasma motion and deformation.

• We can combine this with a measurement equation as shown in
part II.
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default

Free boundary evolution modeling

Summary of plasma equilibrium evolution models
We have seen:
• Conductor-only models. No plasma
• Fixed-plasma models:

Iy = Iy(Ip) (24)

• Rigid-plasma linearized model:

Iy = Iy(Rp,Zp, Ip) (25)

• Deformable-plasma linearized model:

Iy = Iyo +
∂Iy
∂Ie

Ie +
∂Iy
∂Ip

δIp +
∂Iy
∂co

δco (26)

• Full evolution model-plasma model:

Iy = Iy(Ie, Ip, co) (27)
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default

Free boundary evolution modeling

Examples of equilibria using MEQ
addpath ~/matlab/meq/ % adjust to suit your needs
addpath ~/matlab/meq/genlib % adjust to suit your needs

%% RZP model
[L,LX,LY] = rzp(’ana’,shot,time,’izgrid’,true,’cde’,’OhmTor_rigid’);
meas = {’zIp’,’rIp’,’Ip’}; % measurements from model
Ts = 0; % sample time: 0=continuous
sys = fgess(L,0,meas); % linearized model for rzp
fprintf(’RZP unstable pole growth rate: %2.2f [1/s]\n’,max(real(esort(pole(sys)))));

%% FGE: Free boundary Grad-Shafranov Evolution
[L2,LX2,LY2] = fge(’ana’,shot,time,’izgrid’,true,’cde’,’OhmTor_rigid’);
meas = {’zIp’,’rIp’,’Ip’}; % measurements from model
Ts = 0; % sample time: 0=continuous
sys = fgess(L,0,meas); % linearized model for fge
fprintf(’FGE unstable pole growth rate: %2.2f [1/s]\n’,max(real(esort(pole(sys)))));

%% Plot equilibrium
figure(1); set(gcf,’position’,[0 0 600 500]); clf;
meqplotfancy(L,LY);
title(sprintf(’Anamak shot #%d’,shot))
set(gca,’box’,’on’);
set(gcf,’paperpositionmode’,’auto’);
print(’-depsc’,’anamak_eq_2’);

%% Plot eigenmode structures
figure(2); set(gcf,’position’,[0 0 800 400]); clf;
subplot(121), fgeploteig(L)
subplot(122), fgeploteig(L2)
set(gcf,’paperpositionmode’,’auto’); print(’-depsc’,’anamak_growth_rates’);
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default

Free boundary evolution modeling

Examples of equilibria using MEQ
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default

Free boundary evolution modeling

Examples of equilibria using MEQ

unstable mode, =49.40
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default

Plasma shape control

Section 2

Plasma shape control
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default

Plasma shape control

Shape description

• We want the plasma to have a particular shape, since shape
affects plasma confinement and stability.

• We also want to avoid part of the plasma touching the wall, so we
should stay away from the wall.

• We have seen some parameters of the shape: elongation

κ =
Zmax − Zmin

Rmax − Rmin
(28)

• Similarly we can define a ’triangularity’

δ =
Rmax + Rmin − (Rup + Rlow )

Rmax − Rmin
(29)

• Similarly higher-order moments: squareness etc.
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default

Plasma shape control

Flux control
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• More generally, we want to

prescribe the plasma boundary.

• This can be done by requiring that
all points on the boundary have
the same flux ψ.

• ×-point locations can be
prescribed by requiring that
|∇ψ| = 0 there.

• More general constraints on
magnetic field values, field angle
can similarly be prescribed
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default

Plasma shape control

Gap control

• Another approach is to define a set of gaps. Distance between
LCFS and wall at selected points.

• This has an easy physical interpretation
• These gaps have to be held close to a given reference value

(MIMO problem)

Figure: Gaps in JET (left) and ITER (right). From [2].
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default

Plasma shape control

Control-oriented models for shape control

• Linear controllers are usually designed based on linearized
models.

• How do we obtain these linearized models?
• Linearize Grad-Shafranov equation w.r.t. coil currents

• Obtain sensitivity matrices i.e. ∂Iy
∂Ie

• Derive sensitivity to control parameters, e.g. ∂Br,xpoint

∂Ie
,
∂Bz,xpoint

∂Ie
• Pack everything in output matrix yielding static relation between

currents and shape errors

eshape = Cshape,eIe + CIpδIp (30)

• Optionally combine this with linearized plasma evolution model
above to include coupled coil-plasma dynamics effects

• Yields linear state-space model
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default

Plasma shape control

Control for overdetermined MIMO systems

• In shape control, there are typically more controlled outputs
(control points, gaps) than controlled variables (coil voltages).

• y = Pu where P(s) is a ny × nu transfer function, with ny > nu.

• Error can not be controlled to zero for all quantities.
• Instead, control only a particular linear combination of errors:

• Take SVD of P(0) to determine steady-state input-output relation

USV T = P(0) (31)

• Using the properties of the SVD, U = [U1,U2] where U1 ∈ Rny×nu is
the basis for the steady state output values that can be reached by
some u ∈ Rnu , and U2 ∈ Rny×(ny−nu) is the basis for the output
values that can not be reached.

• We design our controller to only control the component of y that is
in the column space of U1. For details, see [2, pp 65-75]
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default

Plasma shape control

Common scheme for combining shape and position
control

• Close a feedback loop on the vertical position acting on voltages
of specific coil sets.

• Close a feedback loop on the PF coil currents.

• Result: Closed-loop stable system with as inputs the PF coil
reference currents.

• Close other feedback loops on plasma current as well as and
shape acting of current references directly.

• Figure pending
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default

Plasma shape control

Common scheme for combining shape and position
control

Figure: Scheme for shape control on TCV. Figure: F. Pesamosca
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default

Plasma discharge evolution

Section 3

Plasma discharge evolution, from breakdown to
plasma termination
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default

Plasma discharge evolution Plasma breakdown

Subsection 1

Plasma breakdown
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default

Plasma discharge evolution Plasma breakdown

Plasma breakdown conditions
• Plasma breakdown occurs when the gas in the torus chamber

ionizes.
• A single electron is accelerated and collides with a neutral atom,

ionizing it.
• This liberates more electrons
• These accelerate and collide with other atoms
• This results in an ionization “avalanche” that quickly ionizes a large

part of the gas.
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default

Plasma discharge evolution Plasma breakdown

Setting up the field at breakdown

• Plasma breakdown requires:
• An electric field to accelerate the electrons.
• A large connection length: distance for electrons to travel along the

magnetic field to allow ionization of other atoms.
• An appropriate pressure (not too many, not too few particles)

• The first two conditions are created by a combination of coils.
• TF coils generate a toroidal magnetic field.
• The OH (or CS) coils are ramped to induce a loop voltage (electric

field).
• PF coils are used to create a point with 0 poloidal field at the

desired breakdown location and time. The resulting B field is locally
almost exclusively toroidal - large connection length.
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default

Plasma discharge evolution Plasma breakdown

Example: JET breakdown field

JET poloidal flux at breakdown
from: Albanese et al, 2012 Nucl. Fusion 52 123010
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem
Desiderata for (Ohmic) breakdown
• Field evolution:

• Before breakdown: vertical field to avoid breakdown.
• At breakdown: null field maximizing connection length
• After breakdown: Ramping vertical field to maintain radial force

balance + positive curvature for vertical stability.

Bp = Bz(t)ez + nullfield(t) (32)

• Loop voltage evolution:
• Sufficient loop voltage at t = 0 and later, to breakdown,

burn-through, and ramp Ip
• Low loop voltage otherwise to avoid consuming Ohmic coil flux.

• Coil evolution
• Pre-charge OH coils to have maximum flux swing
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem

• We have linear relations between circuit/passive current evolution
and vacuum fields/loop voltage (excluding plasma)

Br ,x(t) = BrxaIa(t) + BrxuIu(t) (33)

Bz,x(t) = BzxaIa(t) + BzxuIu(t) (34)

Vr ,x(t) = Mxa İa(t) + Mxu İu(t) (35)

• Also linear model linking the circuit current evolution and passive
structure evolution

Muu İu(t) + RuuIu(t) + Mua İa(t) = 0 (36)
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem

• By discretizing the problem in time and writing out the transfer
functions explicitly, we can relate the time-history of fields and
fluxes (at spatial points of interest) to time-history of circuit
currents:

Br ,k=1

Br ,k=2
...

Br ,k=N

 = Tr ,a


Ia,k=1

Ia,k=2
...

Ia,k=N

 ,


Bz,k=1

Bz,k=2
...

Bz,k=N

 = Tz,a


Ia,k=1

Ia,k=2
...

Ia,k=N


(37)

Vk=1

Vk=2
...

Vk=N

 = TV ,a


Ia,k=1

Ia,k=2
...

Ia,k=N

 (38)
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem

• Constraints on power supply capabilities can also be formulated:

Muu İu(t) + RuuIu(t) + Mua İa(t) = 0 (39)

Iu(s) = −(sMuu + Ruu)−1MuasIa(s) = 0 (40)

(Maas + Raa)Ia(s) + MausIu(s) = Va(s) (41)

(Maas + Raa − sMau(sMuu + Ruu)−1Muas)Ia(s) = Va(s) (42)

• Discretizing, one derives
Va,k=1

Va,k=2
...

Va,k=N

 = TVa,Ia


Ia,k=1

Ia,k=2
...

Ia,k=N

 (43)
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem

• This ultimately allows us to define a constrained least-squares
problem (see also [3]):

min
x

J(x) s.t. Cx ≤ d (44)

with J(x) = + νr‖Br,target − Tr ,ax‖22 Radial field evolution target

+ νz‖Bz,target − Tz,ax‖22 Vertical field evolution target

+ νV‖Vtarget − TV ,ax‖22 Loop voltage evolution target

+ νx‖x‖22 Regularization term minimizing coil currents

and C =

[
TVa,Ia
−TVa,Ia

]
, d =

[
Va,max

−Va,min

]
Power supply voltage constraints
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default

Plasma discharge evolution Plasma breakdown

Breakdown design an optimal control problem

• Quadratic constrained optimization problem: convex problem and
fast solvers exist (e.g. matlab quadprog, fmincon)

Figure: Example of optimized TCV breakdown
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default

Plasma discharge evolution Ramp-up phase

Subsection 2

Ramp-up phase
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Plasma discharge evolution Ramp-up phase

Example: EAST ramp-up phase

• Start with low-current, limited plasma sitting against the wall
• Ramp up current, increase shape and create x-points
• Fully developed shape at start of flat-top.

Figure: EAST ramp-up shape evolution, from [4]
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Plasma discharge evolution Ramp-up phase

Control issues for plasma ramp-up

• Switching from feedfoward-controlled breakdown to feedback
control of plasma position and current

• Switching from R,Z control only to full shape control

• Well-timed formation of x-point.

• Obtain desired q profile, β, `i at the start of the flat-top

• Remain within engineering and physics constraints all the time.
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Plasma discharge evolution Flat-top

Subsection 3

Flat-top
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default

Plasma discharge evolution Flat-top

Magnetic control issues for plasma flat-top

• Maintain required position, shape and Ip.

• Compensate from disturbances due to change in β, `i ,...

• Compensate for changing stray field due to central solenoid ramp.
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Plasma discharge evolution Flat-top

Air core vs. iron core tokamaks

• Iron core: iron transformer yoke around tokamak, ’guides’ field
generated by Central Solenoid.

• Air core: no iron, OH gives ‘stray’ vertical field. OH coils designed
to minimize this field.
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Plasma discharge evolution Flat-top

Air core vs. Iron core tokamaks

Air core Iron core
Adv: Circuit equations are

LTI, easier reconstruc-
tion of fields

Smaller stray field

Disadv: Need to compensate
OH stray field during
shot

Field depends on
iron magnetization:
nonlinear and time-
dependent equations.

Examples: ITER, TCV, AUG, DIII-D JET, Tore Supra
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Plasma discharge evolution Ramp-down

Subsection 4

Ramp-down
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Plasma discharge evolution Ramp-down

Ramp-down: open research questions

• Ramp down Ip, decrease shape, etc in a controlled way.

• Ip ramp-down tends to peak current density profile, bad for vertical
position stability

• Complex optimisation problem to find optimal timing of Ip
rampdown and heating changes.

• Open research field, but very important for ITER & other large
tokamaks: safe plasma termination following unexpected events.
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Plasma discharge evolution Ramp-down

Magnetic control - summary

• Dynamics of PF coils + vessel, controllers for PF coils -> Ia control

• Added plasma current model keeping fixed position -> Ip control

• RZIP model -> Rp,Zp,Ip control

• Linearized and nonlinear deformable Grad-Shafranov model ->
shape control
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default

Plasma discharge evolution Ramp-down
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