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Introduction

This talk aims to
• give an overview of the ASDEX Upgrade tokamk and its control system.

• illustrate how continuous control in combination with decision logic is enabling
plasma operation.

• introduce dynamic pulse scheduling which can be used to implement

• exception handling
• advanced disruption avoidance schemes
• more sophisticated physics studies

I P P B . S I E G L I N F E B R UA RY 1 6 , 2 0 2 3 DY N A M I C P U LS E S C H E D U L I N G 3



ASDEX Upgrade
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ASDEX Upgrade

AxialSymmetrisches DivertorEXperiment Upgrade or short ASDEX Upgrade

• Located in Garching near Munich (Germany)

• Operational since 1991 with a fully digital
control system.

• Demonstration of a reactor relevant design of
the coil system.

• First tokamak to demonstrate operation with all
tungsten plasma facing components.

Figure: The inside of ASDEX Upgrade.
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ASDEX Upgrade - Main Parameters

Major plasma radius R0 1.65 m
Minor plasma radius a 0.5 m
Plasma height b 0.8 m
Plasma elongation κ = b/a 1.6
Plasma aspect ratio A 3.3
Plasma volume Vplasma 13 m3

Plasma surface Splasma 42 m2

Plasma current Iplasma 0.4 − 1.6 MA
Pulse duration tD < 10 s
Heating Paux up to 32 MW
Ohmic heating POH 1 MW
NBI heating PNBI 20 MW
ICR heating PICRH 6 MW
ECR heating PECRH 6 MW
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Discharge Control System (DCS)
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Discharge Control System (DCS)

ASDEX Upgrade is operated using the Discharge Control System (DCS).

• DCS is not a monolithic system but is implemented using modular micro services
(both rt and non-rt).

• DCS is a distributed system, e.g. it is not limited to one control computer.

• The majority of custom services are implemented in C++.
Core DCS has 260k lines of code.
AUG DCS has 200k lines of code.

• The concept is to define its behaviour via configuration.
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(Dynamic) Pulse Scheduling
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Pulse Scheduling

A plasma discharge requires a timed sequence of events /
actions to be executed.

• Configuration of the plant prior to the discharge.

• Initialization/startup of plant systems (e.g. fly wheel
generators) and diagnostics.

• Control of the plant (coils, power supplies, gas system,
heating systems, etc) before, during and after the pulse.

• Transition of the plant to a safe state after the pulse.
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Pulse Scheduling

At ASDEX Upgrade the discharge sequence is described in a so called
discharge program (DP).

• The DP defines the complete discharge sequence, including
• plant setup and shutdown.
• the nominal path.
• exception handling and alarms.

• The DP is part of the DCS configuration, set by the session leader
prior to the discharge.

• The DP itself is defined using XML.
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Pulse Scheduling

Segments contain
• trajectories which specify control targets (control modes, references, etc).
• conditions on which to execute another segment, enabling exception

handling.

Trajectories contain
• data points (segment time, value). The value passed from the previous

segment is used as start value, if no point at time zero is defined.
• an execution rule which specifies the interpolation type (linear, step,

pulse).
• an exit rule. This specifies which value is passed to the next segment.

Last: The last evaluated value is passed on.
Revert: The value that was passed to the current segment is passed on.
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Dynamic Pulse Scheduling

• Dynamic pulse scheduling, e.g. the control system decides
which path to take, is available and used in every discharge on
ASDEX Upgrade.

• The graph on the right illustrates the segment sequence of a
typical ASDEX Upgrade discharge.

• Ellipses represent segments. BZ505 is the main segment
containing the plasma discharge after breakdown.

• The arrows indicate possible segment transition.
• The labels at the arrows indicate conditional segment

changes.

Init

BZ155/Start TF Gen/OH-Kond.laden

BZ205/Start TF Strom

Generator ready

BZ900/Ende Schuss-Programm

BZ303/Start PF Stroeme

BZ404/Start Plasmaentladung

BZ505/Start Lagereg.+ Flattop

BZxxx/APE (incl. VPE)

Alarm OH range low
Alarm Plasma VPE
Alarm Coil Ranges

Alarm OH2 Thyristor
Alarm high delta Ip*Bt

BZ802/Ende TF Flattop

VPE done

STOP
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Dynamic Pulse Scheduling

A simple example: The sequence during ramp-up and flat top is static.
Lageregelung - DP_1MA_standard.xml : 1.40
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Dynamic Pulse Scheduling - Exception Handling

• The capability to act on events during a discharge is important for current fusion
experiments and will only gain importance / be essential for larger devices such as ITER.

• On ASDEX Upgrade exception handling is implemented using segments in combination
with condition for segment changes.

• Exception handling provides the capability to
• react on unwanted events that pose a potential risk.

• Disruption avoidance.
• Handling of e.g. NTMs.
• Plant failures.

• react on expected events in order to
• control the desired discharge sequence
• aid the experiment (scenario setup, physics investigations, ...)
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Examples: Disruption Avoidance
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Disruption Avoidance

• Disruptions, a sudden loss of plasma confinement, induce significant thermal and
mechanical loads onto the device.

• Disruption mitigation techniques such a scattered pellet injection (SPI) are
foreseen for ITER to mitigate the impact of a disruption.

• Disruption avoidance aims to prevent the plasma from becoming disruptive via
• continuous control.
• exception handling.
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Disruption Avoidance

• Both disruption avoidance and mitigation require
• an observer which detects a critical state.
• a suitable actuator.
• a decision logic which can issue the correct response.

• In case of continuous control a suitable controller is required.
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Examples: Disruption Avoidance
H-Mode Density Limit

I P P B . S I E G L I N F E B R UA RY 1 6 , 2 0 2 3 DY N A M I C P U LS E S C H E D U L I N G 2 0



Disruption Avoidance - H-Mode Density Limit

• H-Mode (High Confinement Mode) discharges exhibit a
disruptive operation limit at high densities.

But: Operation at high density is required for a fusion reactor.

• The H-Mode density limit (HDL) is commonly preceeded by a
radiative phenomenon the so called X-Point Raditor (XPR) /
MARFE. (See green area in the illustration).

• The location of the XPR/MARFE is reconstructed in real time
using the mesaurements from fast photo diodes (red lines).
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Disruption Avoidance - H-Mode Density Limit

• The measurements can be
used for continuous control
and as input for the decision
logic.

• For disruption avoidance
different actuators have been
tested, avoiding the disruption,
once the XPR/MARFE position
exceeded a certain threshold.
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Disruption Avoidance - H-Mode Density Limit

• The measurements can be
used for continuous control
and as input for the decision
logic.

• For disruption avoidance
different actuators have been
tested, avoiding the disruption,
once the XPR/MARFE position
exceeded a certain threshold.

• Validated actuators:
• Auxiliary heating.
• Gas flow.
• Upper triangularity.
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Examples: Disruption Avoidance
H-Mode Density Limit - Multiple Experiments
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Disruption Avoidance - H-Mode Density Limit
OverView Pellet and Heating - DP_0MA8_HDL_high_delta_pellet_nGW_scan.xml : 1.7
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XPR Critical

• Avoiding the disruption
allows multiple
experiments within one
discharge.

• The example shows the
planned schedule for
multiple gas ramps with
increased constant
fuelling via pellets.

• The critical XPR threshold
is always set to 5 cm.

• Avoidance is performed
via auxiliary heating in
this case.
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Disruption Avoidance - H-Mode Density Limit
OverView Pellet and Heating - DP_0MA8_HDL_high_delta_pellet_nGW_scan.xml : 1.7
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Disruption Avoidance - H-Mode Density Limit
OverView Pellet and Heating - DP_0MA8_HDL_high_delta_pellet_nGW_scan.xml : 1.7
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• Discharge was executed as planned. Duration was
shorter then the nominal length due to dynamic segment
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• Detection of the XPR and avoidance is robust.
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Examples: Disruption Avoidance
H-Mode Density Limit - Triangularity
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HDL - Influence of triangularity on XPR: Intro

• Strong influence of upper
triangularity on tolerable
gas flow observed.

• Less gas needed to reach
the HDL at high
triangularity.

→ Investigate upper
triangularity as actuator.

V1o

V3s

V3s
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HDL - Influence of triangularity on XPR: Pulse Schedule

Step wise scan of upper triangularity.

5 identical gas ramps.

Reshaping via V1o and V3s

V1o

V3s

V3s
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HDL - Influence of triangularity on XPR: Pulse Schedule

Step wise scan of upper triangularity.

5 identical gas ramps.

Reshaping via V1o and V3s

Init

BZ155/Start TF Gen/OH-Kond.laden

Watchdog @ 1 s

BZ205/Start TF Strom

Generator ready

BZ900/Ende Schuss-Programm

Watchdog @ 600 s

BZ303/Start PF Stroeme
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BZ404/Start Plasmaentladung

Watchdog @ 3.425 s

BZ505/Start Lagereg.+ Flattop

Watchdog @ 1.054 s

BZxxx/APE (incl. VPE)

BZ802/Ende TF Flattop

Watchdog @ 3.7 s
VPE done

Watchdog @ 49.462 s

STOP

Watchdog @ 12 s

GasRamp00

Recovery00
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HDL-XPR critical

Delay00
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PreDelay
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HDL - Influence of triangularity on XPR: Pulse Schedule

Step wise scan of upper triangularity.

5 identical gas ramps.

Reshaping via V1o and V3s

Delay00

Watchdog @ 0.3 s

GasRamp01

Recovery01

Watchdog @ 1.1 s
HDL-XPR critical

Watchdog @ 0.3 s

Watchdog @ 0.2 s

HDL-XPR critical

Timed

Segment

Change

Dynamic

Segment

Change
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HDL - Upper triangularity as actuator

• Start with high upper
triangularity.

• Gas ramp until XPR is
critical.

• Freeze gas and reduce
upper triangularity.

• XPR becomes uncritical
→ disruption avoided.

V1o

V3s

V3s
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Examples: Disruption Avoidance
H-Mode Density Limit - Automated setup
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H-Mode Density Limit - Automated scenario setup

• The onset of the H-Mode density limit depends on
the actual machine conditions (impurity content,
wall conditioning, ...).

• In case no feedback control is established yet an
automated scenario setup is desired to increase
reproducibility.
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H-Mode Density Limit - Automated scenario setup

1. Gas ramp until HDL (e.g. XPR) is detected.

2. Pass last value of gas and heating reference to the
avoidance segment.

3. Avoidance segment:
• applies heating and reduces gas.
• passes references it got from the previous

segment to the next.

4. Next segment contains no trajectory points
→ Dynamically determined gas flow for HDL is set.
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Examples: NTM Studies
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Example - NTM Studies

• Neoclassical tearing modes (NTMs) appear at
sufficiently high β and are detremental to the
confinement.

• Robust triggering of NTMs is desired to enable
experimental studies.

• Triggering on ASDEX Upgrade by application
of sufficient heating power.

• Reaction on mode appearance to avoid a
disruption.

Figure: F.Felici, PhD thesis, 2011
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Example - NTM Studies - Pulse Plan

1. Trigger NTM

2. Stabilize NTM at reduced heating power.

3. Increase ECRH heating to slow the mode.

4. Replace ECRH by NBI to increase mode rotation if
• mode has locked.
• maximum ECRH power has been reached.

5. Suppress NTM using gas puff.

6. Retrigger NTM to compare influence of current
profile.

Overview NTM - DP_0MA834_IH_NTM_disavoid.xml : 1.31
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Example - NTM Studies - Pulse Plan

1. Trigger NTM

2. Stabilize NTM at reduced heating power.

3. Increase ECRH heating to slow the mode.

4. Replace ECRH by NBI to increase mode rotation if
• mode has locked.
• maximum ECRH power has been reached.

5. Suppress NTM using gas puff.

6. Retrigger NTM to compare influence of current
profile.

Init

BZ155/Start TF Gen/OH-Kond.laden

BZ205/Start TF Strom

Generator ready

BZ900/Ende Schuss-Programm

BZ303/Start PF Stroeme

BZ404/Start Plasmaentladung

BZ505/Start Lagereg.+ Flattop

StabilizeDischarge

NTM 21 critical dynamic ForceNTM

Ramp Down NBI

Detected Locked Mode

BZxxx/APE (incl. VPE)

BZ802/Ende TF Flattop

VPE done

STOP

RecoverMARFE

CreateNTM

GASramp

HDL-XPR critical

NTM 21 clear dynamic

Detected Locked Mode

NTM 21 critical dynamic

Detected Locked Mode

PrepGASramp

ECRH Step Up 2 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Up 2 NI 2 ECRH

ECRH Step Up 2 NI 4 ECRH

ECRH Step Down 3 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Up 2 NI 6 ECRH

ECRH Step Down 3 NI 2 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 3 NI 4 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 4 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 4 NI 2 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 5 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode
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Example - NTM Studies - Plan vs Reality

Overview NTM - DP_0MA834_IH_NTM_disavoid.xml : 1.31
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ASDEX Upgrade - #41417

• The real discharge matches closely to the planed behaviour.
• Real pulse path is not known before the pulse.
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Example - NTM Studies - Plan vs Reality
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• 2/1 NTM triggered and mode rotation influenced as planned.
• NTM suppression via gas puff.
• Different NTM behaviour during retriggering → Influence of relaxed current profile.
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Examples: Runaway Electrons
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Example - Runaway Electrons

• During disruptions electrons can be accelerated up to relativistic energies.
These electrons decouple from the main plasma and can form a runaway electron
(RE) beam.

• For large fusion devices, like ITER, these RE beams are predicted to be up to
several MA which poses a significant risk to plasma facing components.

• Stabilization and control of runaway electron beam desired to study e.g. benign
termination.
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Example - Runaway Electrons

• On ASDEX Upgrade RE beams
are triggered using massive gas
injection (MGI) during the
current ramp up of a circular
limiter plasma.

• Disabling vertical displacment
event (VDE) detection is
required to allow stabilization of
RE beam.

• Position, current and shape of
RE beam can be controlled.

• Controlled current ramp down
possible.

0.0
0.2
0.4
0.6
0.8
1.0

Cu
rre

nt
 [M

A] request
measurement

1.3

1.4

1.5

1.6

R-
Po
sit
io
n 
[m

]
0.0 0.5 1.0 1.5 2.0 2.5

Time [s]

0.0

2.5

5.0

7.5

z-
Po
sit
io
n 
[c
m
]

ASDEX Upgrade, #40441
MGI @ 1.0 s
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Example - Runaway Electrons

• Sustained control of the RE beam allows study of benign
termination.

• Non benign termination leads to high electron energies
(see synchrotron radiation) and localised loads onto the
first wall.

• Benign termination aims to de-confine the RE
isotropically to avoid localised heat loads.

#40361: Stabilized RE Beam

#40361: Non benign termination.
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Example - Runaway Electrons

• RE beam (reduced Rcurr request).
• Feedback control of the neutral gas pressure during RE phase.

#40361: Non benign termination.

#41336: Benign termination.
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Conclusions and Lessons Learned
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Conclusions

• Dynamic pulse scheduling is a powerful tool combining
• exception handling.
• continuous control.

and enabling
• disruption avoidance.
• more complex experiments.

• The combination of segments and conditions allows
complex pulse schedules using simple building blocks.
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Lessons Learned

• Complex pulse schedules require
• time and expert knowledge for the development.
• good visualisation / tools.

• Robust discharges can be achieved by putting
exception handling at the critical phases.

An all knowing decision logic is not essential.

Init

BZ155/Start TF Gen/OH-Kond.laden

BZ205/Start TF Strom

Generator ready

BZ900/Ende Schuss-Programm

BZ303/Start PF Stroeme

BZ404/Start Plasmaentladung

BZ505/Start Lagereg.+ Flattop

StabilizeDischarge

NTM 21 critical dynamic ForceNTM

Ramp Down NBI

Detected Locked Mode

BZxxx/APE (incl. VPE)

BZ802/Ende TF Flattop

VPE done

STOP

RecoverMARFE

CreateNTM

GASramp

HDL-XPR critical

NTM 21 clear dynamic

Detected Locked Mode

NTM 21 critical dynamic

Detected Locked Mode

PrepGASramp

ECRH Step Up 2 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Up 2 NI 2 ECRH

ECRH Step Up 2 NI 4 ECRH

ECRH Step Down 3 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Up 2 NI 6 ECRH

ECRH Step Down 3 NI 2 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 3 NI 4 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 4 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 4 NI 2 ECRH

Uloop over Threshold
Detected Locked Mode

ECRH Step Down 5 NI 0 ECRH

Uloop over Threshold
Detected Locked Mode

Uloop over Threshold
Detected Locked Mode

I P P B . S I E G L I N F E B R UA RY 1 6 , 2 0 2 3 DY N A M I C P U LS E S C H E D U L I N G 5 0



Discharge Control System (DCS)

ASDEX Upgrade is operated using the Discharge Control System (DCS).

• DCS is not a monolithic system but is implemented using micro services.

• The system uses both off the shelf solutions as well as custom components.

• The majority of custom services are implemented in C++.
Core DCS has 260k lines of code.
AUG DCS has 200k lines of code.

• Aims to define its behaviour via configuration.

• Provides mechanisms for modular extensions.
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Interconnection overview (not complete, DCS internals not shown)

• DCS is connected to various
systems of ASDEX Upgrade.

• Many connection types are
required / supported.

• Slow control (e.g. state
information).

• Event notifications.
• Real time connections (e.g.

heating requests).
• Configuration

management.
• Offline storage.
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Dynamic Pulse Scheduling

A simple example: The sequence during ramp-up and flat top is static.
• The dynamic part of the pulse schedule here is used to

• start the toroidal and poloidal field sequence once the
flywheel generator are ready.

• trigger the automated ramp down in case of an Alarm.

• indicate the completion of the automated ramp down.

• Dynamic pulse scheduling enables more sophisticated
discharges including exception handling.

Init

BZ155/Start TF Gen/OH-Kond.laden

BZ205/Start TF Strom

Generator ready

BZ900/Ende Schuss-Programm

BZ303/Start PF Stroeme

BZ404/Start Plasmaentladung

BZ505/Start Lagereg.+ Flattop

BZxxx/APE (incl. VPE)

Alarm OH range low
Alarm Plasma VPE
Alarm Coil Ranges

Alarm OH2 Thyristor
Alarm high delta Ip*Bt

BZ802/Ende TF Flattop

VPE done

STOP
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DCS - Control Task

• The control task aims to keep the plasma in the
desired state (e.g. position, shape, density, etc.).

• DCS operates with control cycles (t ∼ 1 ms) during
which

• the diagnostics publish their latest
measurements.

• the plasma state is reconstructed (e.g.
equilibrium, position, . . . ).

• control requests are calculated and issued to
the actuators.

• the actuators act onto the plasma.
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