EPFL, Advanced QFT, January 2025

AQFT Written Exam

The written part of the exam consists of two problems. Provide detailed written solutions
and return them by the deadline.

Those marked by * are bonus questions: if you skip them you can still get the top grade
by answering properly to the other questions, while a wrong answer to them won’t be “held
against you”

Problem 1: Supercurrent and Goldstino Theorem

Let’s consider a QFT with the following local operators

J (), tha(2) (1)

where 1 and o are, respectively, a Lorentz 4-vector index and a left-handed spinor index.!
We are interested in finding the spectral representation of the time-ordered 2-point function
(0|TJ* (2)1s(x)|0) and extract some general lesson on the particle spectrum. To this end,

answer the following questions.?

(a) By inserting a complete set of states in (0]J*,(z)1s(x)|0), what are the possible values

taken by (j, o) for the intermediate massive states

Ol () [kjos q) - (kjosqldp(y)|0) #0 = (j,0) =7 (2)
to contribute non-vanishingly to the 2-point function?

Likewise, what values are allowed for the helicity A in the intermediate massless states

(O] J o (@) [EA; @) - (A qlibs(y)|0) 20 = A =7 (3)

that contribute non-trivially to the 2point-function?

!The p-index is an actual 4-vector index, not just up to gauge transformations. In the following, right-
handed spinor indices will be represented with the dotted-index convention.

2We also adopt the convention where |kjo;q) and |k);q) represent, respectively, massive and massless
Poincaré-irreps of 4-momentum k*. The massive states carry spin-j and its projection o, whereas the massless
states are labelled by the helicity A. Possible internal-Poincaré invaraint— quantum numbers are collectively
denoted by the “charge” q. The CPT-image of those states carries charge §. The |0) represents the vacuum
state which is, as usual, annihilated by translation and Lorentz generators, and invariant under CPT.



(b) Restricting for now to the massive case and to values of j determined in the previous
point, there are two (why?) tensors (with respect to Lorentz and little-group indices)
that solve all kinematic constraints demanded by Poincaré symmetry for (0|.J* (0)|kjo; q)
Determine such a tensor structures (up to overall Poincaré-invariant factors z1 2(m?, ¢))

in terms of Pauli-matrices ¢* ., momentum k*, and the usual wavefunctions® uZ (k) and

. op’

v (k).

Hint: you may find convenient to organize the search of the structures in terms of in-
creasing number of insertions of Pauli matrices. Alternatively, you can try to write
down tentative local operators in terms of free 1 and/or ', their derivatives, and Pauli
matrices, so that they would give rise to such non-vanishing matriz elements, whose
structure is after all dictated by kinematics, rather than the dynamics that enter only
through the z;(m?,q).

(c) Restrict now the previously found tensor structures for (0|J*,(0)|kjo; ¢) by demanding

the additional condition of J* () being conserved, namely
0yl () = 0. (4)
We referred to such a conserved operator as the “supercurrent”.

(d) In order to simplify further the expression for (0|J*, (z)1s(x)|0) which can be obtained
by inserting intermediate massive states, determine the explicit expression of the the
spin sums of the wavefunctions

STo Pk (k) =2, Y ug (k) (k) =7 (5)

o
(up to an overall phase in the second sum, which is somewhat conventional (related to
a phase in the CPT transformation).

Hint: you may perhaps find convenient to determine these spins sum first at a refer-
ence momentum k = (m,0,0,0), and then go to a generic momentum with a canonical

transformation Lu”l%,, =k,.

(e) Defining the momentum space time-ordered* 2-point correlator

(L% (K)u(—)) = [ dac (T (2)us(0)). ©)

3We recall that the wave-functions uZ (k) and v (k) are tensors transforming, under Lorentz and little-
group, respectively, like the matrix elements (0], (0)|kjo; q) and (01T %(0)|kjo; q) of a free theory. In par-
ticular, they solve the Dirac equation k,0*v° = mu and k,5"u’ = mv°. The analog wave-functions u (k)
and v (k) of massless states solve instead the Weyl equations.

4We recall that time-ordering of fermions A(z) and B(0) is defined with a relative minus sign, that is as
TA(x)B(0) = 0(z°)A(x) B(0) — 0(—x°) B(0) A(z), where §(z) is the Heaviside step function.



determine its spectral representation

o

(T (Kya(—k)) = / dim?

M2 k? —m? + e

S—{ 7 Y (7)
assuming both the mass spectrum is gapped, i.e. k* = m? > M? > 0, and J,, is
a conserved supercurrent, Eq. (4). (Note the relative phase between the two spectral
densities will be completely fixed by current conservation).

Hint: you may want to use CPT invariance: there is an anti-unitary operator Ucpr
such that

Uaprtha(0)Ucpr = 950),  Ughdua(0)Ucpr = —J},(0) (8)
Ucpr|kjo;q) = |kj — ;@) (=1 x 0,  UcprlkA;q) = [k — N @) (=12 xn (9)

where and n’s are o- and \-independent conventional phases.

(f) * Coming now to intermediate massless states denoted as |k\;¢), what are the tensor
structures, consistent with Lorentz and little-group transformations, for the matrix
elements (0]J*, (0)|kA; q), compatibly with a non-vanishing product (0|J* (z)|kX;q) -
(EA; als(x)[0) # 07

Does requiring (super)current conservation (4) enforce further constraints?

(g) * Repeat items (d) and (e) including now intermediate massless states as well in the
spectral decomposition. That is, assume now the spectrum is instead gapless, m = 0 is

allowed.

(h) * Finally, let’s consider the following interesting limit® for the 2-point function of the

conserved Supercurrent:

lim k(T J¥, (k)4s(—k)) = (0]at)3]0) - (10)

k—0
Show that whenever the limit is non-vanishing, (0]0,15|0) # 0, the spectrum of the

theory must necessarily contain [kA = 1/2;¢), that is a massless helicity 3 particle, with

non-vanishing overlap with the supercurrent, i.e. (0|JualkA =1/2;¢q) # 0.

This massless particle goes under the name of “Goldstino”, and its existence under the

conditions stated is known as the “Goldstino theorem”, in analogy with the familiar

Goldstone theorem.®

5Tt corresponds to an integrated Ward identity limy_o [ d*ze™**0, (T J*, (x)15(0)).

6For your own knowledge, the (10) is an integrated Ward identity associated to the so-called supersymmetric
transformation generated by exponentiating the supercurrents Q. = [ d®xJ°,, contracted with a Grassmanian
spinor {* which plays the role of Lie parameters. In fact, (0|0,%5|0) = i(0|{Qaq,¥s}|0) so that spontaneous
supersymmtry breaking, i.e. Q,|0) # 0 # QL|O> implies the existence of a Goldstone fermion, according to
the Goldstino theorem.



Problem 2: Renormalization of Complex Scalar Field Theory

Consider a 4D QFT of two complex scalar fields ¢; and ¢, with Lagrangian (here on, when
we write a Lagrangian, we mean the renormalized Lagrangian for some choice of the renor-

malization scale p)
i=2 \,
e~ {Sout00,- ntvro. - Yo} - ratsionteion + £ Gt rhe)

a) Discuss the global symmetries and renormalization (for instance: are terms not appearing

in the eq. (11) necessary for renormalization?). Derive the full set of RG equations at 1-loop.

b) Consider adding to the above lagrangian a small perturbation of the form
Ui 77* *
AL ="t + gyt (12
with 74 a complex coupling.

e Discuss the symmetries and, taking them into account, discuss what changes in the

renormalization? Which new counterterms, if any, are needed? ”
e Compute the full set of 1-loop RG equations

e Compute the (in principle matrix) anomalous dimension for the set of fields (¢1, @1, @2, ¢3)

at the lowest non-trivial order.

c) Consider adding instead to eq. (11) a small perturbation of the form
2 M (o
AL="Lot+ B g (13)
with 7y a complex coupling.

e Discuss the symmetries and, taking them into account, discuss what changes in the

renormalization? Which new counterterms, if any, are needed?

e Compute the matrix anomalous dimension for the set of fields (¢1, @7, P2, ¢5) at the

lowest non-trivial order.

"Here and later you may find it useful to assign to the new couplings transformation properties under the
original symmetry in such a way that AL remains formally invariant.



d*) Consider finally the addition of three Dirac fermions ¢4, 1y and 3, such that the
starting Lagrangian is given by the sum of eq. (11) and

a=3
Ly= $a(id — m)e + [ydo(th1ths + wibstis + w Psipy) + hoc.] (14)
a=1
with w = €™™/3 is the cubic root of the identity and y a complex Yukawa coupling.

e Discuss symmetry and renormalization in general. Which counterms are needed?

e Derive the RG equations at 1-loop.



