
EPFL, Advanced QFT, January 2025

AQFT Written Exam

The written part of the exam consists of two problems. Provide detailed written solutions

and return them by the deadline.

Those marked by ∗ are bonus questions: if you skip them you can still get the top grade

by answering properly to the other questions, while a wrong answer to them won’t be “held

against you”

Problem 1: Supercurrent and Goldstino Theorem

Let’s consider a QFT with the following local operators

Jµα(x) , ψα(x) (1)

where µ and α are, respectively, a Lorentz 4-vector index and a left-handed spinor index.1

We are interested in finding the spectral representation of the time-ordered 2-point function

⟨0|TJµα(x)ψβ(x)|0⟩ and extract some general lesson on the particle spectrum. To this end,

answer the following questions.2

(a) By inserting a complete set of states in ⟨0|Jµα(x)ψβ(x)|0⟩, what are the possible values

taken by (j, σ) for the intermediate massive states

⟨0|Jµα(x)|kjσ; q⟩ · ⟨kjσ; q|ψβ(y)|0⟩ ≠ 0 =⇒ (j, σ) =? (2)

to contribute non-vanishingly to the 2-point function?

Likewise, what values are allowed for the helicity λ in the intermediate massless states

⟨0|Jµα(x)|kλ; q⟩ · ⟨kλ; q|ψβ(y)|0⟩ ≠ 0 =⇒ λ =? (3)

that contribute non-trivially to the 2point-function?

1The µ-index is an actual 4-vector index, not just up to gauge transformations. In the following, right-

handed spinor indices will be represented with the dotted-index convention.
2We also adopt the convention where |kjσ; q⟩ and |kλ; q⟩ represent, respectively, massive and massless

Poincaré-irreps of 4-momentum kµ. The massive states carry spin-j and its projection σ, whereas the massless

states are labelled by the helicity λ. Possible internal–Poincaré invaraint– quantum numbers are collectively

denoted by the “charge” q. The CPT-image of those states carries charge q̄. The |0⟩ represents the vacuum

state which is, as usual, annihilated by translation and Lorentz generators, and invariant under CPT.
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(b) Restricting for now to the massive case and to values of j determined in the previous

point, there are two (why?) tensors (with respect to Lorentz and little-group indices)

that solve all kinematic constraints demanded by Poincaré symmetry for ⟨0|Jµα(0)|kjσ; q⟩
Determine such a tensor structures (up to overall Poincaré-invariant factors z1,2(m

2, q))

in terms of Pauli-matrices σµ
αβ̇
, momentum kµ, and the usual wavefunctions3 uσα(k) and

vα̇σ(k).

Hint: you may find convenient to organize the search of the structures in terms of in-

creasing number of insertions of Pauli matrices. Alternatively, you can try to write

down tentative local operators in terms of free ψ and/or ψ†, their derivatives, and Pauli

matrices, so that they would give rise to such non-vanishing matrix elements, whose

structure is after all dictated by kinematics, rather than the dynamics that enter only

through the zi(m
2, q).

(c) Restrict now the previously found tensor structures for ⟨0|Jµα(0)|kjσ; q⟩ by demanding

the additional condition of Jµα(x) being conserved, namely

∂µJ
µ
α(x) = 0 . (4)

We referred to such a conserved operator as the “supercurrent”.

(d) In order to simplify further the expression for ⟨0|Jµα(x)ψβ(x)|0⟩ which can be obtained

by inserting intermediate massive states, determine the explicit expression of the the

spin sums of the wavefunctions∑
σ

vσβ̇(k)v∗σβ(k) =? ,
∑
σ

uσα(k)v
∗σ
β (k) =? (5)

(up to an overall phase in the second sum, which is somewhat conventional (related to

a phase in the CPT transformation).

Hint: you may perhaps find convenient to determine these spins sum first at a refer-

ence momentum k̄ = (m, 0, 0, 0), and then go to a generic momentum with a canonical

transformation L ν
µ k̄ν = kµ.

(e) Defining the momentum space time-ordered4 2-point correlator

⟨TJµα(k)ψβ(−k)⟩ ≡
∫
d4xeikx⟨TJµα(x)ψβ(0)⟩ , (6)

3We recall that the wave-functions uσα(k) and vα̇σ(k) are tensors transforming, under Lorentz and little-

group, respectively, like the matrix elements ⟨0|ψα(0)|kjσ; q⟩ and ⟨0|ψ† α̇(0)|kjσ; q⟩ of a free theory. In par-

ticular, they solve the Dirac equation kµσ
µvσ = muσ and kµσ̄

µuσ = mvσ. The analog wave-functions uλα(k)

and vα̇λ(k) of massless states solve instead the Weyl equations.
4We recall that time-ordering of fermions A(x) and B(0) is defined with a relative minus sign, that is as

TA(x)B(0) = θ(x0)A(x)B(0)− θ(−x0)B(0)A(x), where θ(x) is the Heaviside step function.
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determine its spectral representation

⟨TJµα(k)ψβ(−k)⟩ =
∫ ∞

M2

dm2 i

k2 −m2 + iϵ
{ ? }µαβ (7)

assuming both the mass spectrum is gapped, i.e. k2 ≡ m2 ≥ M2 > 0, and Jµα is

a conserved supercurrent, Eq. (4). (Note the relative phase between the two spectral

densities will be completely fixed by current conservation).

Hint: you may want to use CPT invariance: there is an anti-unitary operator UCPT

such that

U−1
CPTψα(0)UCPT = ψ†

α̇(0) , U−1
CPTJµα(0)UCPT = −J†

µα̇(0) (8)

UCPT|kjσ; q⟩ = |kj − σ; q̄⟩(−1)σ+j × η , UCPT|kλ; q⟩ = |k − λ; q̄⟩(−1)λ+1/2 × η (9)

where and η’s are σ- and λ-independent conventional phases.

(f) * Coming now to intermediate massless states denoted as |kλ; q⟩, what are the tensor

structures, consistent with Lorentz and little-group transformations, for the matrix

elements ⟨0|Jµα(0)|kλ; q⟩, compatibly with a non-vanishing product ⟨0|Jµα(x)|kλ; q⟩ ·
⟨kλ; q|ψβ(x)|0⟩ ≠ 0?

Does requiring (super)current conservation (4) enforce further constraints?

(g) * Repeat items (d) and (e) including now intermediate massless states as well in the

spectral decomposition. That is, assume now the spectrum is instead gapless, m = 0 is

allowed.

(h) * Finally, let’s consider the following interesting limit5 for the 2-point function of the

conserved supercurrent:

lim
k→0

kµ⟨TJµα(k)ψβ(−k)⟩ ≡ ⟨0|δαψβ|0⟩ . (10)

Show that whenever the limit is non-vanishing, ⟨0|δαψβ|0⟩ ̸= 0, the spectrum of the

theory must necessarily contain |kλ = 1/2; q⟩, that is a massless helicity 1
2
particle, with

non-vanishing overlap with the supercurrent, i.e. ⟨0|Jµα|kλ = 1/2; q⟩ ≠ 0.

This massless particle goes under the name of “Goldstino”, and its existence under the

conditions stated is known as the “Goldstino theorem”, in analogy with the familiar

Goldstone theorem.6

5It corresponds to an integrated Ward identity limk→0

∫
d4xeikx∂µ⟨TJµ

α(x)ψβ(0)⟩.
6For your own knowledge, the (10) is an integratedWard identity associated to the so-called supersymmetric

transformation generated by exponentiating the supercurrentsQα =
∫
d3xJ0

α, contracted with a Grassmanian

spinor ξα which plays the role of Lie parameters. In fact, ⟨0|δαψβ |0⟩ = i⟨0|{Qα, ψβ}|0⟩ so that spontaneous

supersymmtry breaking, i.e. Qα|0⟩ ̸= 0 ̸= Q†
α̇|0⟩ implies the existence of a Goldstone fermion, according to

the Goldstino theorem.
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Problem 2: Renormalization of Complex Scalar Field Theory

Consider a 4D QFT of two complex scalar fields ϕ1 and ϕ2 with Lagrangian (here on, when

we write a Lagrangian, we mean the renormalized Lagrangian for some choice of the renor-

malization scale µ)

L =

{
i=2∑
i=i

∂ϕ∗
i∂ϕi −m2

iϕ
∗
iϕi −

λi
4
(ϕ∗

iϕi)
2

}
+ λ12(ϕ

∗
1ϕ1)(ϕ

∗
2ϕ2) +

1

3!

(
λϕ1ϕ

3
2 + h.c.

)
(11)

a) Discuss the global symmetries and renormalization (for instance: are terms not appearing

in the eq. (11) necessary for renormalization?). Derive the full set of RG equations at 1-loop.

b) Consider adding to the above lagrangian a small perturbation of the form

∆L =
η1
4!
ϕ4
1 +

η∗1
4!
(ϕ∗

1)
4 (12)

with η4 a complex coupling.

• Discuss the symmetries and, taking them into account, discuss what changes in the

renormalization? Which new counterterms, if any, are needed? 7

• Compute the full set of 1-loop RG equations

• Compute the (in principle matrix) anomalous dimension for the set of fields (ϕ1, ϕ
∗
1, ϕ2, ϕ

∗
2)

at the lowest non-trivial order.

c) Consider adding instead to eq. (11) a small perturbation of the form

∆L =
η2
4!
ϕ4
2 +

η∗2
4!
(ϕ∗

2)
4 (13)

with η4 a complex coupling.

• Discuss the symmetries and, taking them into account, discuss what changes in the

renormalization? Which new counterterms, if any, are needed?

• Compute the matrix anomalous dimension for the set of fields (ϕ1, ϕ
∗
1, ϕ2, ϕ

∗
2) at the

lowest non-trivial order.

7Here and later you may find it useful to assign to the new couplings transformation properties under the

original symmetry in such a way that ∆L remains formally invariant.
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d*) Consider finally the addition of three Dirac fermions ψ1, ψ2 and ψ3, such that the

starting Lagrangian is given by the sum of eq. (11) and

Lψ =
a=3∑
a=1

ψ̄a(i/∂ −m)ψa +
[
yϕ2(ψ̄1ψ2 + ωψ̄2ψ3 + ω2ψ̄3ψ1) + h.c.

]
(14)

with ω = ei2π/3 is the cubic root of the identity and y a complex Yukawa coupling.

• Discuss symmetry and renormalization in general. Which counterms are needed?

• Derive the RG equations at 1-loop.
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