
A simple model for aging and the dynamic glass transition: the trap model

We consider a phenomenological model for the dynamics of a spin glass which we will show to reproduce the aging
phenomenon typical of these systems. Aging means that the dynamics, or typical response times, get slower the longer
the system has been in the glassy phase. Each valley in configuration space (a cluster of low energy configurations
that are connected by low energy moves) is represented as a trap, of which there are N in total.

FIG. 1: Schematic representation of the configuration space of the trap model. The threshold free energy f0 is the minimal
energy required to go from one metastable state to another one. In general, to reach more distant states, or taking different
routes between two states, one may encounter higher threshold values for f . The present model neglects such subtleties.
Moreover, there is no geometry or notion of phase space distance between the traps. The traps represent valleys of low energy
around a local minimum. These are considered the possible states visited in the course of a stochastic activated evolution in
a high-dimensional phase space. The traps are like energy holes, drilled from f0, their depths representing the free energy
difference between the local minimum and the threshold f0. This model emphasizes the activation/exiting step: the probability
to jump to a new trap depends only on the energy of the trap from which the system exits, but not on the energy of the trap
into which it falls.

The dynamics is described by jumps from trap to trap. We suppose that once the system reaches a given trap it
stays there for a time which is exponentially distributed, with a characteristic time τi, that depends on the trap i.
This is equivalent to assuming a rate 1/τi of exiting the trap i. That is, if the system is still in the trap at time t, the
probability of exiting from it between t and t + dt is dt/τi. Once the system exits trap i, it jumps towards another
trap j, which is chosen uniformly at random among all N traps (for simplicity we assume that one may fall back into
the same trap as well). In order to model the heterogeneity of the system and the fact that the dynamics is activated,
we suppose that, in order to exit from a trap, an activation energy Ei > 0 is necessary to reach a threshold energy
where large rearrangements become possible, and that these activation energies are distributed according to

P (E) =
1

E0
exp(−E/E0), E ≥ 0. (1)

Thus, deeper traps with larger Ei are exponentially less abundant, on the other hand they trap the system for
exponentially longer times

τi = τ0 exp(Ei/T ). (2)

Here τ0 is a microscopic time representing the minimal time to move between very shallow traps. An exponential
decrease of the abundance of ”metastable states” (configuration valleys) is indeed found in mean field models, especially
in structural glasses (while spin glasses have usually a more complex valley structure). It is particularly relevant at
temperatures close to the ’dynamical glass temperature’ Td where relatively long-lived metastable configurations (i.e.
traps) start appearing. To be more precise, Td is reached when the resulting dynamics gets slow, which, as we will
see, requires that T ≤ E0 ≡ Td. We saw that 1-step replica symmetry breaking predicts a family of pure states whose
number grows exponentially with energy. We are now interested in the threshold states that are barely stable. Now
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we assume that there is a maximal energy, which we take as reference, E = 0, above which there are no stable states,
and such that once the system reaches that level of energy, it can pretty freely explore phase space before it falls into
a local minimum again. The distribution of minima with energy close to E = 0 is then exponential with 1/E0 given
by dΣ(f)/f |f=fth .

1. Derive the distribution of trapping times τi, ρ(τ), from the above distribution of activation energies Ei.

Solution: We have to set ρ(τ)dτ = P (E(τ))dE, with E(τ) = T ln(τ/τ0).

ρ(τ) = P (E(τ))dE/dτ =
T

E0

1

τ

(τ0
τ

)T/E0

= µ
τµ0

τ1+µ
(3)

where µ = T/E0.

2. After the first escape the system chooses a new trap randomly. What is the expected time it spends in the next
trap? What happens for µ ≡ T/E0 ≤ 1, i.e., for T < E0? From your result, argue that the temperature Td = E0

marks a dynamical glass transition.

Solution: The expected time spent in a trap is

τ =

∫ ∞

τ0

dττρ(τ) =

{
µ

µ−1τ0 for µ > 1

∞ for µ ≤ 1.
(4)

Thus for µ > 1 the expected time is finite and the system jumps steadily from trap to trap, the number of traps
visited per unit time being proportional to 1/τ0. Instead for µ ≤ 1 the expected trapping time diverges. The
system tends to spend increasingly long times in deep traps. It actually does not reach the stationary state in a
time proportional to the number of traps, N . The time to reach the stationary state thus becomes exceedingly
long in the large N limit. More precisely: The time to reach stationarity in a system of N traps grows faster

than N . In that case the sum over all trap times
∑N

i=1 τi is not governed by the central limit theorem (but
rather tends to a Lévy distribution). It is dominated by the largest time τM which can be estimated from∫ ∞

τM

dτρ(τ) = 1/N → τM = τ0N
1/µ, (5)

which grows super-linearly with N indeed.

3. Write down a differential equation for the time evolution of the probability Pi to find the system in trap i, and
find the stationary distribution Pi.

Solution: The time evolution of probabilities follows the differential equation

dPi/dt = −Pi

τi
+

1

N

N∑
j=1

Pj

τj
. (6)

The stationary state requires dPi/dt = 0, and thus Pi ∝ τi, with a proportionality constant which is equal for
all states. Normalizing the probabilities yields

Pi =
τi∑N
j=1 τj

(7)

4. Compute the probability that at any given time, when the system has reached a stationary state, the system is
found in a trap of escape time τ . What happens in the limit of an infinite number of traps, when µ ≤ 1?

Solution: In the stationary state, the probability to find the system in a trap with τi = τ is

Pstat(τ) =
∑
i

Piδ(τ − τi) =

∑
i τiδ(τ − τi)∑

j τj
. (8)
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Since ρ(τ) is the pdf of trap times, in the limit of a large number of traps we may replace
∑

i → N
∫
dτρ(τ),

and obtain

Pstat(τ) =
ρ(τ)τ∫∞

τ0
ρ(τ ′)τ ′dτ ′

(9)

=
τ−µ∫∞

τ0
τ−µdτ

. (10)

Note that the denominator becomes divergent for µ ≤ 1, as we saw in point 2. The probability distribution
Pstat(τ) for an infinitely large system is thus not normalisable, which in turn means that no stationary state
is reached. In contrast, the system gets trapped for increasingly long times as time progresses. In the case
of a finite number of traps, as the system eventually reaches a stationary state, the system spends the largest
fraction of the time in the deepest trap with τ ∼ τM ∼ N1/µ determined above.

For a system with a large number of traps N → ∞ one can say that for µ > 1, the distribution of trap times
encountered in the dynamics will soon converge to Pstat. In contrast, for µ ≤ 1, the tail of the distribution of
encountered trap times continues to grow and never becomes stationary: The rare traps with trapping times
τ ≫ τ0 will typically only be visited at times of order τ itself.

5. Consider the dynamical evolution starting from one of the traps chosen uniformly at random at t = 0. What is
the statistics (mean and variance) of the time elapsed after M jumps,

TM =

M∑
a=1

τa, (11)

in the limit M ≫ 1? What is the difference between the cases µ ≤ 1, 2 ≤ µ > 1 and µ > 2? Explain why for
µ ≤ 1 aging is displayed. Hint: Determine first how the largest term in the sum scales with M . Then use this
as an effective cut-off on ρ(τ), and estimate mean and variance of the sum for TM by using the thus truncated
ρ(τ).

Solution: The variable TM is a sum of independent random variables. The outcome of the sum then depends
on whether the mean of the distribution is finite or not. In the case where the mean is finite (µ > 1) the mean
of the sum of random variables is simply M⟨τ⟩. How much do values of TM vary around this mean? If µ > 2
the variance is also finite and therefore one can use the central limit theorem and conclude that the standard
deviation scales as M

1
2 . However, for 1 < µ < 2, while the distribution still has a finite mean, the variance

is divergent! We can then estimate the variance of a sum of M random variables by computing it with ρ(τ),
truncated at the largest value, τM ≈ τ0M

1/µ, as estimated in part 2. The variance of the sum can thus be
estimated as

M⟨τ2 − ⟨τ⟩2⟩ ≈
τM∫
τ0

ρ(τ)
(
τ2 − ⟨τ⟩2

)
dτ (12)

= Mµτµ0

[
1

2− µ

(
τ2−µ
M − τ2−µ

0

)
− ⟨τ⟩2

]
(13)

≈ µ

2− µ
τ20M

2
µ , (14)

which is dominated by the cut-off. Therefore, we find the standard deviation to scale as M
1
µ and we can write

TM ≈ M⟨τ⟩+O(M
1
µ ) . (15)

It is interesting to note that the standard deviation is proportional to τM and therefore is determined by the
largest τ sampled. This is a characteristic of Lévy flights: the largest jumps remain visible on the scale of the
standard deviation, even in the limit of a very large number of steps.

When the mean diverges (µ ≤ 1), using the same truncation method as above, the sum TM can be estimated as

⟨TM ⟩ = M⟨τ⟩trunc ≈
µ

1− µ
τ0M

1
µ . (16)
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Therefore, in this case the sum TM is proportional to τM and is thus dominated by the largest contribution

TM ∼ Max1≤i≤M [τi] . (17)

Hence, the system spends more and more time in deeper and deeper traps as time progresses. At long times t,
the trap with the longest τi visited scales as t itself. Moreover, with a probability O(1) this deepest trap is the
last trap that has been visited, and the remaining time to escape from it will still be of order τi ∼ t. This is the
aging phenomenon: the age of the system, t, sets the time scale to be expected for the escape from the last trap
the system fell into: The system’s dynamics gets slower and slower as time progresses. This would also reflect on
the autocorrelation function, which retains its large intra-valley value as long as the system remains in the trap,
and only decays essentially to zero once the system manages to jump out. Note that all this phenomenology
only occurs for µ ≤ 1, i.e. for T ≤ Td.

Solution: As in the aging case, the time remaining until the walker comes back scales like t, for the same
reasons. In this case you would hardly say though that a random walk is ”aging”. It’s just that the longer you
wait, the longer walks the walker will undertake, and so the longer you will have to wait for him/her to come
back, because it is rather likely that the longest walk undertaken is just the last one.

For a broader perspective on aging dynamics you may read the review by G. Biroli, https://www.arxiv-
vanity.com/papers/cond-mat/0504681/.

https://www.arxiv-vanity.com/papers/cond-mat/0504681/
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