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This paper reviews the progress made in the last several years in understanding the properties of disordered
electronic systems. Even in the metallic limit, serious deviations from the Boltzmann transport theory and
Fermi-liquid theory have been predicted and observed experimentally. There are two important ingredients
in this new understanding: the concept of Anderson localization and the effects of interaction between elec-
trons in a disordered medium. This paper emphasizes the theoretical aspect, even though some of the
relevant experiments are also examined. The bulk of the paper focuses on the metallic side, but the authors
also discuss the metal-to-insulator transition and comment on problems associated with the insulator.
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. INTRODUCTION

A. Scope of the paper

Crystalline materials have been studied intensively by
physicists since the beginning of quantum mechanics.
The periodicity of the crystal permits the classification of
electronic wave functions as Bloch waves, so that the
band structures of rather complicated crystalline materi-
als can be calculated. However, in real life, the crystalline
state is the exception rather than the rule. Disorder exists
in varying degree, ranging from a few impurities or inter-
stitials in an otherwise perfect crystalline host to the
strongly disordered limit of alloys or glassy structures.
The weak-disorder limit is traditionally described by the
scattering of Bloch waves by impurities. In a metal, this
leads to a Boltzmann transport equation for the quasipar-
ticles, so that the low-temperature resistivity has the form

p(T)=py+ AT" . (1.1a)
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In terms of conductivity, this can be written, at sufficient-
ly low temperature, as

o(T)=0q—AodT", (1.1b)
where o, is the residual conductivity due to impurity
scattering. As the temperature is raised, the amount of
scattering usually increases due to the excitation of pho-
nons or electron-electron collisions, so that A is positive
and n is a positive integer usually greater than or equal to
two (n=2 if electron-electron scattering dominates). On
the other hand, if the disorder is strong, as in the case of
alloys where two types of atoms randomly occupy lattice
sites, the traditional approach is to force some average
periodicity on the system and then apply the familiar con-
cepts of ordered systems. The coherent-potential approxi-
mation (CPA) (Elliott, Krumhansl, and Leath, 1974) is an
example of this approach.

In the past few years there has been a growing realiza-
tion that disordered materials cannot be understood by
evading the issue and forcing them into the mold of or-
dered systems. Instead, new concepts must be introduced
which treat the disorder from the beginning. One conse-
quence of the recent advances is that today we know, both
experimentally and theoretically, that even in the weak-
disorder limit, basically all aspects of the Boltzmann
description of Eq. (1.1) are wrong. The coefficient 4 may
be positive or negative, and n is typically % for three-
dimensional systems. A certain universality is also
emerging in that if the proper questions are asked, the
behavior of granular metals or Si-MOSFET (metal-
oxide-semiconductor field-effect transistor) inversion
‘layers are the same, even though their electron density
may differ by several orders of magnitude.

The new understanding is based on advances in two dif-
ferent areas of the problem. The first is the problem of
Anderson localization, which deals with the nature of the
wave function of a single electron in the presence of a
random potential. A scaling description of the Anderson
localization problem is now available that has greatly
deepened our understanding. The second aspect of the
problem is the interaction among electrons in the presence
of a random potential. It turns out that the simple fact
that electrons are diffusive instead of freely propagating
leads to a profound modification of the traditional view
based on the Fermi-liquid theory of metals.

In this paper we shall review the progress made on
these two aspects of the problem. The bulk of the paper
will deal with the weak-disorder limit, where the theory is
on firm ground and quantitative comparison with experi-
ments can be made. We try to emphasize the physical
concepts involved, at the expense of technical details and
completeness in our references. The strongly disordered
regime is discussed qualitatively, with a view towards
raising more questions rather than providing answers.
Our coverage of the experimental situation is brief, and
the reader is referred to a forthcoming article by Bishop
and Dynes for a more detailed treatment. Other excellent
reviews can be found in the Taniguchi symposium
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proceedings edited by Nagaoka and Fukuyama (1982) and
in the papers by Fukuyama (1984), Altshuler and Aronov
(1984), and Bergmann (1984).

B. Basic concepts of Anderson
localization and the mobility edge

In this section we briefly review the basic concept of lo-
calization introduced by Anderson in 1958 (Anderson,
1958) and the concept of the mobility edge and metal-
insulator transition. Prior to the development of the scal-
ing theory to be described later, a substantial literature
had developed on this problem, and there exist excellent
reviews by Mott and Davis (1979) and Thouless (1979).

In 1958, Anderson pointed out that the electric wave
function in a random potential may be profoundly altered
if the randomness is sufficiently strong. The traditional
view had been that scattering by the random potential
causes the Bloch waves to lose phase coherence on the
length scale of the mean free path /. Nevertheless, the
wave function remains extended throughout the sample.
Anderson pointed out that if the disorder is very strong,
the wave function may become localized, in that the en-
velope of the wave function decays exponentially from
some point in space, i.e.,

| (1) | ~exp(|T—1o| /E) (1.2)

and & is the localization length. This is illustrated in Fig.
1. The existence of the localized state is easily understood
if we go to the limit of very strong disorder. Then a
zeroth-order description of the eigenstate would be a
bound state or a localized orbital bound by deep fluctua-
tion in the random potential. We could then consider the
admixture between different orbitals as a perturbation.
The main point is that such admixtures will not produce
an extended state composed of linear combinations of in-
finitely many localized orbitals. The reason is that orbi-
tals that are nearby in space, so that the wave functions
overlap significantly, are in general very different in ener-
gy, so that the admixture is small because of the large en-
ergy denominator. On the other hand, states that are
nearly degenerate are in general very far apart in space, so
that the overlap is exponentially small. Thus, in the
strongly disordered limit, the wave function will be ex-
ponentially localized. Indeed, it is easier to establish the
existence of localized states than to establish that of ex-
tended ones. For example, in one dimension it can be
shown rigorously that all states are localized, no matter

(a) (b)

FIG. 1. Typical wave functions of (a) extended state with mean
free path [; (b) localized state with localization length &.
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how weak the disorder (Mott and Twose, 1961; Borland,
1963). On the other hand, the existence or nonexistence
of an extended state in two dimensions has been a point of
contention for many years and forms an important part
of this paper.

Now that we understand the two limits of weak and
strong disorder, the interesting question is what happens
for intermediate disorder. Instead of varying the amount
of disorder, we can also consider varying the energy of the
eigenstates. We expect the states deep in the band tails to
be localized, since these are states that are formed from
localized orbitals bound in deep potential fluctuations.
The states in the center of the band have the best chance
of remaining extended for a moderately disordered sys-
tem. Thus, as a function of energy, the states must
change their character from being localized to being ex-
tended. The critical energy at which this change occurs is
called the mobility edge (Mott 1967). It is so named be-
cause, if the Fermi energy lies in a region of localized
states, the conductivity at zero temperature would vanish,
whereas extended states give rise to a finite zero-
temperature conductivity. Thus the mobility edge marks
the transition between a metal and an insulator. This is
illustrated in Fig. 2. The next question is whether the
transition is continuous. Mott (1973) has argued for a
discontinuous transition based on the idea of Ioffe and
Regel (1960) that the lower limit for the mean free path in
a metal is the interatomic spacing or k7. Assuming that
the Boltzmann transport or weak scattering theory for
conductivity is still adequate, one has for an electron den-
Sity n

6’2

#

2
o=—

#

n
ki

n

(kpl) > — 1.3

Thus the minimum metallic conductivity, or the size of
conductivity jump at the disorder-induced metal-insulator
transition, is

e’

#

where a is some microscopic length scale in the problem,
such as the inverse of the Fermi wave number, a ~kg 1
For many years, experimental support for the existence of
Omin has been found for a large variety of systems, as
summarized in Mott and Davis (1979). The concept has

3D
O min~=

1 , (1.4)
a

1
37?2

o(T=0)

Omin —>

E

FIG. 2. Schematic illustration of the mobility edge E,., which
separates localized and extended states. The two possibilities of
a continuous or discontinuous transition with o n;, are shown.
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also been extended to two dimensions, where
o2 ~0.1e%/#% . (1.5)

The interesting observation is that, just on dimensional
grounds, the length parameter a in Eq. (1.4), which varies
from material to material, is now absent, and one expects
O min for two dimensions to be universal (Licciardello and
Thouless, 1975). The scaling theory of localization to be
reviewed in the next section (Sec. II) calls into question
the existence of o, in both three and two dimensions. It
predicts instead that the metal-insulator transition is a
continuous one in three dimensions, and that all states are
localized in two dimensions. The concept of o, may
provide a useful parameter for understanding experimen-
tal data taken at relatively high temperatures, but there is
increasing experimental evidence that it does not describe
the true zero-temperature limit. This will be reviewed in
Sec. VI. It is to be emphasized that the above concepts
were all developed for noninteracting electrons. It is
known that Coulomb correlation in an ordered system
may lead to a metal-to-insulator transition as well (Mott,
1949). There have been many qualitative discussions of
the interplay between disorder and interaction, but until
recently very few quantitative results were known. In the
last few years a quantitative theory of the interacting
disordered systems has begun to emerge, at least in the
weakly disordered limit. This development is reviewed in
Sec. 111

1l. SCALING THEORY OF LOCALIZATION

A. Early formulation of scaling

In the mid-seventies, Thouless and co-workers, in a
series of papers, began to formulate a scaling description
of the localization problem. (For a review see Thouless,
1974.) The conceptual framework is important for the
subsequent development. Thouless envisioned building a
sample of size (2L)? in d dimensions by putting squares
or cubes of size L? together. It seems reasonable that the
nature of the eigenstates of the (2L)? sample will be dic-
tated by the nature of the states of the L?¢ samples, but
the question is whether the description can be summa-
rized by one or a few parameters. The eigenstate of the
(2L)? sample is a linear combination of the eigenstates of
the L samples, and the amount of admixture depends on
the overlap integral and the energy denominator. The en-
ergy denominator is typically the spacing 8 W between the
energy levels in the L sample, i.e., 8W =(N,L?) ~! where
N, is the density of states. To estimate the overlap in-
tegral, Thouless observed that if a given L¢ sample is re-
peated in one direction to form an infinite periodic chain,
the individual eigenvalue will broaden out to form a band,
and the bandwidth will be a good estimate of the overlap
integral. The bandwidth just corresponds to the variation
in energy AE of the eigenstate of the L9 sample subject to
periodic or antiperiodic boundary conditions. In particu-
lar, if the eigenstate is localized, AE will be insensitive to
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the boundary condition and therefore exponentially small.
In that case AE/8W is exponentially small, so that the
eigenstate of the (2L)? sample will be localized mainly in
one of the L? samples. On 'the other hand, if AE /8W is
large, the eigenstate of the (2L)¢ sample will reside in all
the L4 samples and is therefore extended. Thus sensitivi-
ty to boundary conditions, or the ratio AE/SW, appears
to be the single parameter that controls the nature of the
eigenstate as the system doubles in size.

Thouless further noted that the conductance G (not
conductivity) of the L? sample is a dimensionless quanti-
ty when expressed in units of e?/%. Introducing the di-
mensionless conductance

g=G/(e*/h), y @

Thouless argued that G/(e?/#) is linearly related to
AE /8W. While it was subsequently shown (at least in
one dimension) that g is proportional to (AE /8W)? (An-
derson and Lee, 1981), the essential point is that
G /(e?/#) is a physically measurable quantity, directly re-
lated to (AE /8W), and is the single parameter that con-
trols the behavior of the system as it doubles in size.
Wegner (1976) developed the scaling idea further by
casting it in the language of the scaling theory of critical

phenomena. He found that for a one-parameter scaling

theory to hold, the metal-to-insulator transition must be
continuous, such that

o(T=0)=(E —E_)*, (2.2)

where E, is the mobility edge and u is the critical ex-
ponent. It was also clear that d=2 is a marginal dimen-
sion and therefore special because in two dimensions the
conductivity has the same dimension as the conductance.
These ideas were developed further by combining the scal-
ing idea with perturbation theory (Abrahams, Anderson,
Licciardello, and Ramakrishnan, 1979) and will be dis-
cussed next.

B. Scaling theory

1. Introduction

In scaling theory one tries to understand localization by
considering the behavior of the conductance g as a func-
tion of system size L, or of other scale variables. We first
describe this idea qualitatively and then construct the
scaling function B(g)=d(Ing)/d(InL) using asymptotic
forms, perturbative corrections, etc. The predictions for
conductivity behavior of disordered systems of different
dimensionality are then discussed. Finally, assumptions
and results of scaling theory are critically reviewed.

Consider an electron moving in a disordered medium.
The phase of its wave function changes randomly. The
distance over which it fluctuates by about 27 defines the
mean free path /. Beyond I/, the electron motion is not
ballistic but is diffusive, so that, upon averaging over the
impurity configurations, the averaged one-electron propa-
gator (G (r)) is ~exp(— |r|/l). The mean free path [ is
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the microscopic length scale of interest in the localization
problem. It is the lower length cutoff for diffusive
motion. The conductance g, at this length scale is a mi-
croscopic measure of disorder, being small if disorder is
large, and conversely. We now show that g(L) has two
very different asymptotic forms for L >>I depending on
the degree of microscopic disorder.

When the random potential is small, or the scattering
concentration low, the electron wave function is extended
and is nearly plane-wave-like. The mean free path / be-
tween collisions is large compared to atomic spacing or to
the Fermi wavelength kz'. Conventional transport
theory, which relies'on weak scattering, i.e., ( kgl ) lecd,
as an expansion parameter, leads to a conductivity
o=ne*r/m =ne’l /#kp, as given in Eq. (1.3). Here n is
the electron density, and 7=1[/vr is the relaxation time.
Equation (1.3) is correct to leading order in (kzl)~!. The
conductivity o is an intensive quantity, independent of
scale size L, provided the system is large enough to have
a well-defined mean free path, i.e., provided L >>I. The
conductance of a bigger piece of metal is given by Ohm’s
law, which for a d-dimensional hypercube of linear extent
L >>1 states that

g(L)=cL%2, A (2.3)

If states near the Fermi energy £ are localized, howev-
er, dc transport occurs by an electron’s hopping from an
occupied state to an unoccupied state of nearly the same
energy. As mentioned in the Introduction, localized
states very close in energy are very far apart in space, so
that the hopping matrix element between them is ex-
ponentially small, the relevant length scale being the lo-
calization length £. The localization length is in general
larger than the mean free path I. One expects that in this
regime, for L >>¢&,

g(L)c<exp(—L/E) . (2.4)

This is clearly a very non-Ohmic scale dependence.

For a particular disorder, g (L) evolves smoothly from
go as L increases beyond [, going over finally to either of
the forms Eq. (2.3) or Eq. (2.4). The limiting behavior
reached depends on microscopic disorder, i.e., the conduc-
tance go at scale I, as well as on dimensionality. The
latter is obviously significant, since for example, in one
dimension, all states are known to be localized with locali-
zation length & of the order of the mean free path ! (Mott
and Twose, 1961). In this case there is no sizable length
scale over which Ohm’s-law behavior [Eq. (2.3)] is valid,
and the only relevant asymptotic form is Eq. (2.4). The
objective of a scaling theory is to describe how g (L)
changes with L for all L > I, in various dimensions.

Abrahams, Anderson, Licciardello, and Ramakrishnan
(1979) argued that the logarithmic derivative pB(g)
=dIng/(d InL)=(L /g)(dg /dL) is a function of conduc-
tance g alone. The idea is that the change in effective dis-
order when the system becomes a little bigger is deter-
mined by its value at the previous length scale, the only
measure of this effective disorder being the conductance.
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Such a picture is suggested by thinking about the energy
levels of a block (2L)? in terms of the energy levels of the
24 constituent blocks with dimension L. The energy lev-
els of the former differ from those of the latter, due for
example to interfacial perturbation caused by putting the
blocks together. If this is the principal effect, it then ap-
pears plausible that sensitivity to boundary perturbations
for the larger block, i.e., the Thouless ratio (AE /8W),;,
is a function of (AE /8W);. Using the association of this
ratio with conductance, a scaling behavior for the latter is
indicated. While the initial formulation of the scaling
theory relied on this suggestive though tenuous line of ar-
gument, it has received further support from perturbation
theory (Anderson, Abrahams, and Ramakrishnan, 1979;
Abrahams and Ramakrishnan, 1980; Gor’kov, Larkin,
and Khmel'nitskii, 1979) as well as the renormalization
group analysis of an equivalent field theory (Wegner,
1979).

2. Scaling function

We now discuss the scaling function f3(g) for various
regimes.

a. Large conductance g >>g.

Here g, is a characteristic dimensionless conductance
that turns out to be of order 7—2. In this regime, Ohm’s
law, i.e., Eq. (2.3), is valid for the conductance.” This
leads to the asymptotic form

Blg)=(d —2)

for g >>g.. In two dimensions, [3(g) tends to zero; this re-
flects the fact that g and o have the same physical dimen-
sion for a planar system, i.e., the conductance of a square
does not depend on its size.

(2.5)

b. Small conductance g <<g.

Electronic states are localized, so that the scale depen-
dence of g(L) is described by Eq. (2.4). This means that
B(g) is given by

B(g)=In(g/g.)

independent of dimensionality. [(g) is negative, corre-
sponding to a decrease in g as length scale increases. .

(2.6)

c. Perturbative regime

For weak disorder, i.e., for (kpl)~!<<1, it is possible to
calculate corrections to the Boltzmann transport theory
result for o using diagrammatic perturbation theory (Sec.
IL.C). It turns out that to higher order in (kgl)~! there
are significant scale-dependent corrections to conductivity
arising from singular backscattering. These terms contri-
bute a correction going as g ~!, so that for large g

B(g)=(d —2)—a/g . (2.7
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For an electron gas (Fermi gas with spin-% particles),
a=g,=(7w"2). B(g) is thus always less than its Ohm’s-
law value, so that conduction in a disordered electronic
system is never quite Ohmic. The conductance always in-
creases more slowly with scale size than is suggested by
Eq. (2.3).

The scaling curve can be constructed using the form
Eq. (2.7) for large g and Eq. (2.6) for small g, and the as-
sumptions that 3(g) is continuous and monotonic. 3(g) is
expected to be continuous because it describes how the
conductance of a finite system evolves as a function of
scale size. As g decreases, one tends to a more localized
behavior, so the conductance should decrease more
strongly with increasing scale size. The monotonic
behavior appears quite plausible, even though we shall
later encounter exceptions to this. The scaling functions
B(g) constructed this way for d=3, 2, and 1 are shown in
Fig. 3 as a function of conductance g. Their implications
for conductivity behavior of disordered systems at T=0
are discussed below. ’

3. Consequences of scaling theory

a. Three dimensions

Since B(g) starts at a positive value equal to unity,
moves downwards for large g, and is negative for very
small g (localized regime), it must pass through zero at a
certain conductance, say g;. Suppose the state of micro-
scopic disorder in the system is such that the conductance
8o at the microscopic cutoff length / is larger than gj.
One thus starts somewhere on the positive part of the 3
curve, the exact location depending on the value of gj.
On slightly increasing the length scale from I, g increases,
and one moves up a little on the 3(g) curve. Continuing
this, at asymptotically large length scales the limit
B(g)=1 is reached, i.e., the system is an Ohm’s-law con-

B=d£n(g)/dLn(L) B

9=6/(e2/h)

/|

‘FIG. 3. The scaling function B(g) vs the dimensionless conduc-
tance g for different dimensions. If o, exists in 2D, the
behavior of B is shown by the dashed lines.
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ductor. On the other hand, for g, <g3, B(g) is negative.
Increasing the length scale from [/ decreases g, so that one
moves downwards on the scaling curve. At large enough
length scales, B(g) corresponds to the scaling function for
localized states. A system with conductance g,>g; at
the microscopic length scale / is a metal, while one with
g0 < g3 is an insulator.

Critical disorder is characterized by a conductance g;
at length scale I. The critical point 5(g)=0 is an unstable
fixed point, i.e., for small departures from it, the scaling
of conductance takes one asymptotically to qualitatively
different regimes. The scaling trajectories move away
from the point B(g)=0 which marks a change of regime.
We identify it with the mobility edge in the following
sense. Since current is transported by electrons with Fer-
mi energy €r, go refers to the conductance at this energy.
Now, for example if disorder is kept fixed and e is
varied, g, will change smoothly and, for some €7 equal to
the mobility edge energy €., will coincide with the critical
value g;. Thus the conductivity behavior of the system
for small deviations of e from g, can be described by
considering what happens when g, deviates proportional-
ly from g3. One has

goler)=go(e.)+(er—e.)g0
or

(go—g3)=(ep—e.)g0 » (2.8)

where gy =(dgo/der) at ep=¢,. Thus to study critical
behavior near the mobility edge, one considers predictions
of scaling theory for g, close to g;. This is done below.

Near the fixed point 3(g)=0 suppose [(g) has a slope
(1/v), so that

8 —83
83

_ b (2.9)
%

Blg)=L
k%

for 8g << 1. Consider first the case of 6g>0. Using Eq.
(2.9) and integrating from g =g, at / out to B(g)~1 at
large length scales L, we find that g(L)=o0L where

o=(Ag,/1)(8g)” (2.10)

and where A is a constant of order unity. The conduc-
tivity is reduced from its microscopic value (gq/l)
~(Ag; /1), and there is no minimum metallic conductivi-
ty. On approaching the mobility edge, the conductivity
goes to zero with a universal exponent v. The exponent v
can be calculated by perturbation theory, which is accu-
rate for (2+¢) spatial dimensions with € small. The re-
sult is that v=¢~!, so that, extending this to three dimen-
sions, the critical exponent v is unity. [We discuss below
the theory for (2+¢) dimensions.]

A diverging correlation length £ can be identified from
Eq. (2.10) by writing the conductivity as

0=g3/§ . (2.11a)
Clearly,
l —v
&= |- |(®) (2.11b)
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so that & diverges with the conductivity exponent. In
terms of the scaling function, starting from the critical re-
gime SB(g) >0 at length scale /, one gets to the Ohmic re-
gime B(g)~d —2 on scaling out to a length of order &.
Conduction is characteristically non-Ohmic for length
scales L less than £, and Ohmic with a conductivity
o=(g3/&) [Eq. (2.11a)] for L larger than £. £ is thus the
correlation length as in other critical phenomena.

On the localized side of the fixed point, B(g) <0. Start-
ing from the critical regime with small negative 8g, and
using the form Eq. (2.9) for B(g), one crosses at large
enough length scales to the exponentially localized re-
gime, where we find

g(L)=gsexp(—B |5g |"L /D), (2.12)

where B is a constant of order unity. The system is thus
characterized by a localization length

Eloc=(1/B)(8g) 7" . (2.13)

The localization length diverges at the mobility edge.
Further, as in any critical phenomenon with a single
correlation length, the conductivity length £ on the metal-
lic side and the localization length on the insulating side
diverge with the same exponent v.

b. 2+ & dimensions

The perturbative 8 function describes the localization
transition accurately in (2 +¢€) dimensions for € << 1. The
Ohmic limit given by Eq. (2.3) depends on dimensionality,
so that

Blg)=e—= . (2.14)
g
The critical disorder [B(g)=0] occurs at
8rye=(a/e), (2.14")

which is a larger conductance for small €. Since g5, is
large, the perturbative form Eq. (2.14) is accurate in the
critical regime, the slope of B(g) there being v~!=¢. On
the metallic side, using Eq. (2.14) and integrating out to
B(g)~¢, and combining with Eq. (2.3), one finds that

o=(Ag5 . /IF)(6g)*, (2.15)
where u=ve. To lower order in ¢, we find u=1. Equa-

tion (2.15) corresponds to a critical conductivity of the
form

o=Ags, /€, (2.162)
where the correlation length £ diverges as
E=1(5g)7". (2.16b)

Extending these results to d=3, i.e., e=1, implies v=1.
However, since e=1 is not small, estimates of g; and of v
using a 2 + € expansion can only be approximate.



Lee and Ramakrishnan: Disordered electronic systems 293

c. Two dimensions

In two dimensions, [3(g) <0 always, so that, at large
enough length scales, only localized behavior is possible.
If the system is weakly disordered, with large conduc-
tance go at length I, one starts at the point g =g, on the
scaling curve and moves downwards along it as length
scale increases, until asymptotically B(g)~In(g/g.).
Thus one predicts that there are no truly extended states
in two dimensions. At a large enough length scale, even
for small microscopic disorder, electronic states are local-
ized. An estimate of the localization length can be made
as follows. On integrating the perturbation theory result
Eq..(2.7), i.e.,

(dIng/dInL)=—a/g (2.17a)
between length scales / and L, one has
e? L
g(L)=go—§ln 7 s (2.17b)

where g is the conductance at the lower cutoff /. In con-
ventional transport theory, go={(e2/27#)(kpl). The con-
ductance decreases logarithmically with size, and this
scale-dependent reduction becomes comparable to the
Boltzmann conductivity for L =£{2, which is

(2)

(2) I exp(km?go/e?) =1 exp 12’—kF1 ) (2.18)

This is the perturbative estimate of the localization length
in two dimensions. It depends exponentially on the mean
free path, and consequently the localization effects are
difficult to observe experimentally for weak disorder.
Another striking consequence of the scale dependence
equation (2.17b) for g is that a two-dimensional system is

non-Ohmic at all length scales. We shall see later that -

this leads to characteristic “nonmetallic” resistance in-
creases as temperature decreases.

d. One dimension

In one dimension, B(g) is less than unity and decreases
further with decreasing conductance, so that one rapidly
goes over into the localized regime. In perturbation
theory, using the form Eq. (2.7) for B(g), one finds that in
strictly one dimension, the scale-dependence corrections
to g become comparable to the Boltzmann transport term
at a length scale of order /. This is the perturbative esti-
mate of the localization length. As mentioned earlier, in
one dimension, all states are known to be localized due to
repeated backscattering (Mott and Twose, 1961; Lan-
dauer, 1957,1970), and the localization length is indeed of
the order of the backscattering mean free path. A very
detailed and illuminating analysis of the conductance of a
one-dimensional random system at all length scales has
been made recently by Anderson, Thouless, Abrahams,
and Fisher (1980) using the Landauer connection (Lan-
dauer, 1970) between the conductance and the scattering
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properties of the system.

These authors emphasized that since the resistance of a
given sample varies exponentially with its length, its value
can fluctuate wildly and its distribution function becomes
increasingly broad as the length increases. Consequently,
the average resistance becomes very different from the
typical resistance. Thus the choice of a scaling variable
requires some care. Anderson et al. showed that the
quantity In(1+g~!) has a well-behaved distribution as
the length goes to infinity. This quantity has an additive
mean when two sections of wires are joined together, so
that (In(14+g~!)) =aL and a has the natural interpreta-

. tion of the inverse localization length. Furthermore, by

writing g ~'=exp(aL —1), one can compute the B func-

tion by simple differentiation to obtain

dlng _ -1
dinl = (1+g)In(1+4g~ ")
1 1
-4 2.19
22 6g2+ (2.19)

This has the form postulated in Eq. (2.14), but the coeffi-
cient of the g ! term is different from that calculated in
a (2 + €)-dimension expansion using diagrammatic tech-
niques (see Sec. II.C). The difference probably arises
from the fact that, in perturbative calculations, it is al-
ways the average conductance that is being calculated,
which is not the same as the typical conductance.

The picture that emerges is that the conductance in one
dimension has a very skewed distribution, and that there
exists a small but significant probability of finding con-
ductance close to unity. These highly unlikely conduc-
tances will dominate the mean conductance. The impor-
tant question remains: Under what physical conditions is
the measured conductance the mean conductance or the
typical conductance? The discussion is brought into
sharp focus by the work of Lifshitz and Kirpichenkov
(1979) and Azbel (1983), who point out that resonance
tunneling is -a specific mechanism for producing large
conductances. Resonance tunneling requires that the in-
cident energy be resonant with a localized state that hap-
pens to be localized near the center of the sample, in
which case the transmission coefficient is of order unity
[as opposed to exp(—2L /£)]. The optical analog of such
resonances was observed by Schultz at La Jolla in the late
1960s in experiments in microwave transmission through
a long waveguide with randomly placed dielectric slabs
inside. - DiVincenzo and Azbel (1983) further considered
the possibility of thermal activation into these resonance
energies. However the effect of inelastic processes present
at finite temperature on the resonant tunneling process it-
self has to be considered (Stone and Lee, 1985). Many in-
teresting questions must be addressed before one can satis-
factorily interpret a number of intriguing experimental
observations (Fowler, Hartstein, and Webb, 1982;
Kwasnick, Kastner, Melngailis, and Lee, 1984; Lee,
1984).
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e. Minimum metallic conductivity

The scaling analysis of localization does not bear out
the Mott minimum-metallic-conductivity hypothesis
(Mott, 1973; Mott and Davis, 1979). In two dimensions
there is no metallic state, while in three dimensions the
minimum conductivity is zero. However, in three dimen-
sions there is a minimum metallic conductance g;. This
corresponds to a conductivity (g3/l)~0,;, at the lower
cutoff length scale. Thus o,,;, marks, microscopically, a
change of regime. Experiments performed at relatively
high temperatures may never probe length scales much
larger than /, and a rapid drop in the conductivity when it
falls below o, may be observed. A true test of the o,
concept requires very-low-temperature data and careful
extrapolation to zero temperatures. Such data have be-
come available in the past few years and will be reviewed
in Sec. VI. The Mott o, idea treats quantum interfer-
ence effects asymmetrically. They are assumed to be ab-
sent in the metallic phase, even close to critical disorder,
but for disorder slightly larger than critical, they lead to
localization with a diverging localization length. In the
scaling theory, these effects lead to identically diverging
correlation lengths as the transition is approached from
either side. If indeed there is a o, for a metal but a
diverging localization length on the insulating side, then
within the framework of the one-parameter scaling
theory, the corresponding B(g) in two dimensions has the
form shown in Fig. 3 (dotted lines). In three dimensions a
discontinuous jump of the B function will be required.
This appears quite implausible, and is not supported by
theory. A number of recent experiments, carried out at
low enough temperatures actually to probe large effective
length scales, confirm in detail the predictions of scaling
theory (Sec. VI), interaction effects being equally signifi-
cant (Sec. III). '

C. Perturbation theory

The conductivity of a noninteracting electron gas weak-
ly scattered by rigid random impurities can be calculated
from first principles (Kohn and Luttinger, 1956). The
conductivity can be expressed as a current-current corre-
lation function (Kubo formula), and this can be evaluated
using Feynman diagrams to represent the scattering pro-
cess (Edwards, 1958; see also Abrikosov, Gor’kov, and
Dzhyaloshinskii, 1969). The Kubo formula for static
conductivity o is

et

_ Py
d
2oL® ;5

m

14
n+— | Py

pp’

0yy(0) , (2.20)

where GI,I;'”L_ is the two-particle Green’s function describ-
ing the propagation of an electron-hole excitation at the
Fermi level from a momentum state p to a momentum
state p’. Three typical diagrams for GPIII,'*' are shown in
Fig. 4.

The upper electron line has a frequency (0 + in) with
respect to the Fermi level with 1 a positive infinitesimal,
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FIG. 4. Examples of diagrams for the particle-hole propagator.
Dashed line with cross denotes impurity scattering.

i.e., it is retarded, while the lower electron line has a fre-
quency (0—in). The cross represents an impurity, and
the dotted line represents scattering. On averaging over
random positions of impurities, one finds that electron
momentum is conserved. Diagrams of the type of Fig.
4(a) modify separately the propagation of the electron and
the hole, while Fig. 4(b) describes the interference between
their propagation due to impurity scattering. For a zero-
range potential, contributions of diagrams in which the
scattering [Fig. 4(b)] occurs once or is repeated vanish on
averaging over electron momentum, and one has, from di-
agrams of the type Fig. 4(a)

2

e2 py ) _
Uyy’(0)=87y,—2ﬁLd § '—n;- Gp(0+ )G,,(O ) (2.21a)
_nelry (2.21b)
- m YY .

where G,(0%) [G,(07)] is the retarded (advanced) elec-
tron propagator and
§=27r |v | %p(ep)n; (2.22)
to lowest order in the scattering potential v. Here n; is
the density of impurities and p(ef) is the density of states.
Langer and Neal (1966), in attempting to go beyond the
lowest-order perturbation theory in the impurity density,
noticed that the diagram Fig. 4(c), for example, contri-
butes (in three dimensions) a term of order n/In(n;) to the
conductivity. They also noted that a maximally crossed
diagram of arbitrary order in n;, e.g., Fig. 5(a), also con-
tributes a term n’lnn;. This clearly means that the entire
infinite set of such processes has to be considered together
(Anderson, Abrahams, and Ramakrishnan, 1979; Abra-
hams and Ramakrishnan, 1980; Gor’kov, Larkin, and
Khmel’nitskii, 1979). On summing the geometric series
of maximally crossed diagrams, the amplitude for this
process is seen to be

Wipp))= — (2.23)
PP o i '

2 & B, B B B
S E oy % g

T v F P OF T3
(a) (b) (c)

FIG. 5. (a) Example of maximally crossed diagram. (b)
Redrawing of (a). (c) A particle-hole propagator derived from
(b) using time-reversal symmetry.
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We note that the amplitude is divergent for p+p’'~0,
which can be interpreted as a singular backscattering due
to the random potential. This is an interference effect, of
higher order in the random potential or impurity concen-
tration, and is the crucial localizing process. To under-
stand Eq. (2.23) it is instructive to turn the hole line
around in Fig. 5(a); we thereby obtain the ladder diagram
contribution to the particle-particle propagation shown in
Fig. 5(b). If time-reversal symmetry is satisfied, the value
of this diagram is unchanged if the electron line is turned
into a hole line with opposite momentum, as shown in
Fig. 5(c). This diagram is more familiar because it de-
scribes density fluctuations. Due to the conservation of
particles, density fluctuations are diffusive, and Fig. 5(c)
is known to be proportional to the diffusive form
(—iw+Dyg?)~"! where Dy=vpr/d is the diffusion con-
stant, o is the frequency, and q is the momentum of the
density fluctuation. In Fig. 5(c), q=p+p’, @®~0, thus
explaining the form of the amplitude given in Eq. (2.23).
The connection between the diffusion pole and the
particle-particle propagation is discussed in detail by

Vollhardt and Wdélfle (1980b). Because of this connec- -

tion, we expect that even in a higher-order calculation, the
form Eq. (2.23) will survive, with bare coefficients
corrected. Further, perturbations that break time-reversal
invariance, e.g., magnetic fields or magnetic impurities,
will affect the scaling behavior of conductivity (see Sec.
ILE).

It is clear that the singular backscattering Eq. (2.23)
will reduce the conductivity. Including only this process,
the conductivity o is

ne’r 2e? 1 1

m  hmr
The lower Q cutoff for a system of length L is ~(1/L),
the upper cutoff being Q, ~/ 1. One thus has the follow-
ing forms for the scale-dependent conductivity:

(L) —oo— 2 |[L_ L (2.250)
3D —0Uo ﬁ7T3 I L ’ .
L) =oo— Lot | £ (2.25b)
2D =—0do ﬁ17-2 1 ’ .
2
o1p(L)=0g— ——(L —1) . (2.25¢)
A
The corresponding 3 function has the form
B(g)z(d——2)——;— (2.26)

for all dimensions d, with g defined as o(L#7)? ~2 [o(L )¢
for d =2+¢]. In order for scaling to hold, the next-order
term in (kzl)~! should not have a part going as 1n? ie.,
for two dimensions, in an expansion

o(L)=0g[1—cy(kgl)~In(L /1)
+ea(kpl) "X L /D + - - - ]

the coefficient ¢, should vanish. Otherwise d Ing/dInL
will depend explicitly on L. That this is so was first
shown by Gor’kov, Larkin, and Khmel’nitskii (1979).

(2.27)
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We see explicitly from Eq. (2.25) that, due to quantum
interference, there are characteristic and significant devia-
tions from Ohm’s law [o(L)=0,] in disordered electron
systems (at absolute zero). The size of these deviations de-
pends on the intrinsic disorder characterized by the
Boltzmann transport conductivity oy, or equivalently by
the dimensionless ratio (kx/). In one and two dimensions,
perturbation theory fails at sufficiently large length scales
because the reduction in conductivity due to backscatter-
ing grows as L increases. As discussed earlier, the length
scales are £]D~l and ER0~] exp(mkpl/2). These are the
perturbative estimates of the localization length. In three
dimensions, the backscattering reduction is of relative or-
der (kzI)~2 for an infinite system.

Thus, in three dimensions, conventional transport
theory is accurate for weak disorder. The leading correc-
tion- goes as (1/L). This is small but significant, since
statistical finite-size fluctuations in the conductivity go as
L~3’? and are qualitatively smaller. Mott (1976,1981)
has discussed the effect of statistical fluctuations on the
conductivity near the mobility edge, in a model where the
localization length & diverges with an exponent v on the
localized side, while on the metallic side there is
minimum metallic conductivity. Suppose a sample is just
on the metallic side of the mobility edge .. We have to
consider the possibility that statistical fluctuations pro-
duce volumes in which the disorder is stronger than aver-
age, so that states are localized within that volume. If
this happens with high probability, the mobility edge will
be smeared. Statistical fluctuations within a volume L¢
give rise to local disorder, which can be represented as a
local energy fluctuation de=(e—eg,)/gy, and typically
8e~L %2 Such fluctuations can produce localized
states with localization length £~ |8¢| =Y. Consistency
requires § <L, or v <2/d, leading Mott to suggest that if
v <2/d, the conductivity jump will be smeared into a con-
tinuous transition. These arguments are very similar to
the Harris criterion (Harris, 1974), which estimates the ef-
fect of statistical fluctuations due to randomness on the
critical point. Thus, in order that statistical fluctuations
be irrelevant, one needs vd /2> 1, i.e, v> % in three di-
mensions. The perturbative estimate of v=(d —2)~'=1
in three dimensions is consistent with this condition. It is
interesting to note that, in perturbation theory, since
v=(d —2)~, finite size fluctuation effects can become
important for d>4. This suggests that there could be a
change of regime at d.=4. Suggestions that the upper
critical dimension for localization d, is 4 have been made
by Kunz and Souillard (1983).

In the discussion above, disorder is assumed to be on
the scale of an electron wavelength, i.e., on a scale of or-
der kgp. A classical percolation model is a widely used
idealization for systems in which inhomogeneity is on a
much larger length scale. For example, if pieces of metal
with linear dimension b >>kz ' are randomly removed so
that a fraction p remains, the system would go insulating
for p <p., where p, depends on dimensionality, etc.
However, even in the classically metallic regime, p > p,,
quantum interference can lead to localization, depending
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on p and on the resistance R, at length scale. An approx-
imate phase diagram in the (R,,p) plane for d=3 has
been constructed by Shapiro (1982a,1983) using a real-
space renormalization group method (see also
Khmel'nitskii, 1981). There is a quantum insulator
domain for high Rj, bounded by a curve terminating at
the classical percolation limit R, =0, p =p,. The form of
the percolation-localization crossover has been discussed
by Shapiro. A more restrictive model is the Anderson
tight-binding model, in which a fraction p of the bonds
are randomly removed (quantum percolation model).
Here, there is no well-defined classical regime, quantum
interference is the dominant effect, and the localization
transition occurs at p, =pi..(d,n)>p.(d), where n is the
electron density (or band-filling factor). This model has
been investigated numerically by Raghavan and Mattis
(1981) and analytically by Shapiro, Aharony, and Harris
(1982). These authors find that in general p,>p,., the
difference decreasing as dimensionality d increases. In
two dimensions, p, seems to be close to unity, consistent
with the absence of a metallic state for a random two-
dimensional system. The quantum percolation model on
a lattice has an unusual feature, first pointed out by Kirk-
patrick and Eggarter (1972), namely that localized and ex-
tended states can coexist. This is because some localized
states exist on subclusters of the infinite cluster and are
therefore orthogonal to extended states. The lack of mix-
ing clearly requires the special symmetry of a lattice, and
is not expected to hold in the general percolation-
localization problem.

D. Inelastic cutoffs of scaling

The scaling theory discussed so far is applicable at zero
temperature and for finite length scales. On the other
hand, experiments are carried out at nonzero temperatures
and usually for samples of macroscopic size. These two
limits need to be connected. Thouless (1977) has argued
that inelastic scattering introduces random fluctuations in
the time evolution of an electronic state. Such fluctua-
tions limit quantum interference necessary for localiza-
tion. Suppose an electron in a particular energy eigenstate
of the static random potential has a lifetime 7. If
Tin >>T, the elastic scattering time, the electron diffuses a
distance

LThz(DTin)1/2 (228)
between dephasing inelastic collisions. Here D =(v3r/d)
is the diffusion constant. Scale-dependent quantum in-
terference or localization effects are cut off beyond L.
Thus the T=0 theory with Lyy,(T) as cutoff describes the
localization effect on conductance at a nonzero tempera-
ture 7.

The above consideration can also be cast in the form of
an energy uncertainty relation. The single-particle energy
levels of a block L? have an energy uncertainty
AE;,~(#/7y). If this is larger than the boundary pertur-
bation shift AE (Sec. II.A), the block is effectively uncou-
pled from other such adjacent blocks, and consequently
its conductivity is scale independent. This criterion also
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leads to Eq. (2.28).

We have implicitly assumed 7;,(E,T) to be the lifetime
of an exact eigenstate of the random potential, with ener-
gy E and at temperature 7. Altshuler, Aronov, and
Khmel'nitskii (1981,1982) have emphasized that under
certain conditions the inelastic scattering time is not the
appropriate time to enter Eq. (2.28). If the energy change
AE during an individual collision is small compared with
7!, the phase change AET;, after time 7;, is small com-
pared with 27r. It will take many collisions for the phase
to drift by 27. This time is denoted T, and estimated
by Altshuler et al. to be 7,~(AET,)~*"r, For
electron-phonon scattering, AE7;, is usually not small.
However, in one and two dimensions, for electron-electron
scattering or for electrons interacting with fluctuating
electromagnetic fields, AET;, can become small, and spe-
cial care must be taken. The question is discussed further
in Sec. III.

The inelastic scattering time depends on temperature,
increasing as temperature decreases. Suppose T; o T 7
where p is an index depending on scattering mechanism,
dimensionality, etc. We then have Ly, =aT ~?/2, so that
scale-dependent effects will be more evident at lower tem-
peratures. For example, with this as the length cutoff for
the scale-dependent conductivity o(L) of Eq. (2.25), we
have

2
0'3])( T):Uo+ e—:;"l—jﬂp/2 ’ (2293)
fm’ a
(D=t 2 1n | L (2.29b)
2D ot P Ty |’ .
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We notice that the conductivity decreases with decreasing
temperature. This is a signature of localization; as tem-
perature decreases, the relevant scale size Ly, over which
quantum interference is effective increases, so that locali-
zation behavior is progressively evident. The temperature
dependences are characteristically different in different
dimensions.

In Fig. 6 we show the first experimental demonstration
of a InT rise in resistivity in thin metallic films (Dolan
and Osheroff, 1979). The order of magnitude of the ef-
fect is consistent with Eq. (2.29b). However, it is now
known that electron-electron interactions also give rise to
a InT correction to the conductivity very similar to Eq.
(2.29b) (see Sec. III). A fuller discussion of the experi-
mental situation is given in Sec. VI.

The effective dimensionality of the system is the num-
ber of dimensions for which the system size is larger than
the inelastic length. For example, a wire of cylindrical
cross section (radius a) is three dimensional if Ly, <a; it
is one dimensional in the opposite limit. Since Ly, is a
function of temperature, one can cross over from three- to
one-dimensional behavior for a given wire on cooling.

The temperature dependence of the inelastic rate due to
electron-phonon collisions depends on whether the
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FIG. 6. Resistivity rise plotted vs InT for PdAu film (from Do-
lan and Osheroff, 1979).

thermal phonon wavelengths Ay, are larger than one or
more dimensions of the system (phonon dimensionality)
and on whether Aty >/ (dirty limit) (Thouless, 1977). The
former affects the phase space available, while in the
latter limit momentum is not conserved in an electron-
phonon collision. For example, in a wire of diameter a
such that Ap, >>a, and A, >>1, 7"« T~2. We note that
there is no diffusion enhancement of these rates, i.e., no
enhancement due to diffusive electron motion (Schmid,
1973; Sec. IIL.F). In contrast, as discussed in Sec. IIL.B.,
quasiparticle decay rates due to electron-electron col-
lisions are greatly enhanced by disorder. This means that
L1y, and therefore the size of localization effects, is
greatly reduced.

In experiments on thin films, non-Ohmic behavior is
observed at low temperature, so that I/V contains a InV
component. This can be explained as heating of the elec-
tron gas (Anderson, Abrahams, and Ramakrishnan,
1979). The electron-phonon time TE’]’ becomes very long
at low temperatures, so that the electron gas gains an
average energy ~eVL, between collisions with phonons,
where L, = (D772, The electron gas temperature then
becomes eVL,, which could be larger than T, thus ex-
plaining the InV¥V instead of InT behavior. The electron-
phonon scattering rate can be extracted from the non-
Ohmic behavior and is in agreement with theoretical ex-
pectations. A number of authors have suggested that a dc
electric field can provide a cutoff length without heating
the electron gas (Tsuzuki, 1981; Mott and Kaveh, 1981).
This conclusion has been disputed by Altshuler, Aronov,
and Khmel’nitskii (1981), who show by explicit calcula-
tions that only an ac electric field can affect quantum in-
terference. We return to this point later.

E. Relevant perturbations: magnetoresistance
and spin-orbit scattering

We have seen in Sec. IL.C that a particular set of
scattering processes leads to a length-scale-dependent con-
ductivity. It is useful to draw the diagram in spatial rep-
resentation as in Fig. 7(a), from which we see that the im-
portant process is one in which the electron and hole
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(a) (b)
FIG. 7. (a) Maximally crossed diagram which corrects the con-

ductivity, drawn in a spatial representation. (b) A redrawing of
(a) to emphasize the particle-particle channel.

created by the electromagnetic field are scattered by the
same impurities located at r; to r, but in precisely the re-
verse order.

Furthermore, r; and r, must be within a mean free
path of each other because they are near where the
particle-hole pairs were created. It is instructive to draw
Fig. 7(a) in an alternative way, shown in Fig. 7(b), which
shows the correlation between a pair of electrons (made
up of the electron and a hole moving backwards in time)
that are scattered by the same impurities in sequence, so
that they experience the same potential in space, but at
different times. This picture is very reminiscent of the
theory of superconductivity, even though here we are dis-
cussing noninteracting electrons. It is not surprising,
then, that perturbations that affect superconductivity
(pair-breaking terms) will affect the localization diagram
as well. The first example of this was worked out by Lee
(1980), who showed that magnetic impurities destroy the
coherence, so that on a length scale longer than
L,=(Dr,)"?, where 7, is the spin-flip time, the conduc-
tivity is no longer length dependent. This effect apparent-
ly has to do with the destruction of time-reversal symme-
try by the spin-flip Hamiltonian. A uniform magnetic
field also destroys time-reversal symmetry and provides a
length cutoff (Altshuler, Khmel’nitskii, Larkin, and Lee,
1980). This is because the electron pair acquires a phase
Ap=2 f A-dl upon completion of the contour which
equals @/@y, where @ is the enclosed magnetic flux and
@o=hc /2e is the flux quantum. Since we must average
over all possible contours, there will be destructive in-
terference when the typical ¢/@o~1. This occurs when
the Thouless length L, becomes comparable to the Lan-
dau orbit size, Ly =(eH /#ic)~'/?. Since a magnetic field
suppresses the localization effect, this picture always
predicts a negative magnetoresistance. Furthermore,
since Ly, can be quite large, the characteristic magnetic
field can be very small, of the order of tens of gauss. In
two dimensions the following formula for the magne-
toresistance is obtained (Altshuler, Khmel’nitskii, Larkin,
and Lee, 1980; Hikami, Larkin, and Nagaoka, 1980):

2

: 1 1
(H,T)—0(0,T)=—% — 4= |+Inx |, :
o o el L0 Rl RIS (2.30)
where 1 is the digamfna function and
x =L%,4eH /#c . (2.31)
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Here LT, is the dephasing length discussed in Sec. II.D.
For fields such that Ly <<Ly,, x >>1, and Eq. (2.30)
predicts a. InH behavior. A similar formula for magne-
toresistance was worked out in 3D by Kawabata
(1980a,1980b), who found that o(H,T)—o(0,T) goes as
H'72 for x >>1. The magnetoresistance in the bulk is iso-
tropic. For strictly 2D systems, Eq. (2.30) applies only
for the field component normal to the phase because the
effect comes from the orbital motion of the electron. For
a thin film of finite thickness ¢t << Ly, a negative magne-
toresistance also exists for a magnetic field parallel to the
plane. However, the characteristic field strength is much
stronger, being given by the condition (Altshuler and Aro-
nov, 1981a)

t2L3,

sk~

(2.32)

A similar situation obtains for thin wires of cross-section
area A. The conductivity is given by
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where D1y =CLj; /A and the coefficient C is a number
of order 2 or 3 that depends on the orientation of the field
(transverse or longitudinal) and on the shape of the cross
section.

In the presence of spin-orbit scattering, the spin of an
individual electron is no longer a good quantum number,
but unlike spin-flip scattering, time-reversal symmetry is
preserved. Hikami, Larkin, and Nagaoka (1980) found
that spin-orbit scattering leads in perturbation theory to a
logarithmic increase in conductivity for length scales
larger than both [/ and the spin-orbit scattering diffusion
length Lgo~(D7so)!/?, where 750 is the spin-orbit
scattering time. In 2D this results in a sign change in the
3 function, so that

Bl)=+— .
28

Hikami et al. have worked out the magnetoresistance
when spin-orbit scattering is present. More detailed for-
mulas and the inclusion of Zeeman spin splitting are
given by Maekawa and Fukuyama (1981). There are three
length scales now, i.e., the flux quantum length
Ly=V'hc/2eH, the spin-orbit diffusion length
Lso[=(D759)!?], and the Thouless inelastic length
Lyy[ ~(D7;)'?]. The magnetoresistance regime depends
on their relative sizes. Both positive and negative magne-
toresistance are possible, and the rich variety of behavior
can be experimentally probed by changing the magnetic
field, temperature, etc. This has been done recently by
Bergmann (1982b), who found nonmonotonic behavior of
o(H) in quantitative agreement with the Hikami, Larkin,
and Nagaoka theory (see Sec. VI).

A somewhat more physical picture can be found in the
discussion of Altshuler, Aronov, Khmel’nitskii, and Lar-
kin (1983) and Bergmann (1982a). Instead of considering
the averaged conductivity diagrams (Fig. 7), we may con-

(2.34)
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sider the unaveraged one-particle Green’s function
G(r,r',E), which will contain information on the wave
function and therefore localization. (This information is
lost upon averaging over impurity configurations.) The
Green’s function G (r,r’,E) describing the propagation of
an electron from r to r’ can be constructed as a Feynman
path integral over all paths connecting r and r'
Altshuler, Aronov, Khmel’nitskii, and Larkin (1983)
point out that in the presence of impurities, most paths
will arrive with random phase, with the exception of
paths that are self-intersecting. As shown in Fig. 8, for
each self-intersecting path, the closed loop can be cir-
cumscribed in two opposing directions. In the presence of
time-reversal symmetry, these two paths will interfere
with each other. This.interference is interpreted as the
origin of the singularities due to the maximally crossed
conductivity diagram. In this picture it is easy to see that
a uniform magnetic field will dephase the interference be-
tween the two paths. A similar picture was presented by
Bergmann (1982a) in momentum space. Bergmann fur-
ther pointed out that the sign change in the 8 function in
the presence of a spin-orbit interaction can be understood
as an overlap factor between the spins as they arrive at r'.
Spin-orbit scattering preserves time-reversal symmetry, so
that interference is still possible, but the spins are rotated
in opposite directions along the two paths in Fig. 8. Berg-
mann showed that the average overlap between the spins
as a result of this rotation is — %, basically because a ro-
tation by 27 of a spin-7 state leads to a sign change.

Altshuler, Aronov, and Spivak (1981) proposed an ex-
perimental configuration that demonstrates most dramati-
cally the orbital origin of the magnetoresistance. They
suggested measuring the conductivity of a ring or a thin
cylinder as a function of the magnetic flux @ through the
ring or cylinder. In the case of the cylinder, the conduc-
tivity is measured along the cylinder axis and parallel to
the magnetic field. The diffusing electron pair shown in
Fig. 7(b) or the self-intersecting path in Fig. 8 are now
constrained to run around the cylinder, so that the phase
is periodic in @/@o, where go=hc /2e. Under the condi-
tion that Ly, be large compared with the radius of the
ring or cylinder, the conductivity should oscillate with the
magnetic field with the period ¢ /g,.

This effect was experimentally observed by Sharvin and
Sharvin (1982), who evaporated Mg and Li films on
quartz fibers. The oscillation is small (~10~*), but that

FIG. 8. A self-intersecting Feynman path for an electron to
propagate from r to r’. Propagation along solid and dashed
paths can interfere.
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is because the film is rather thick (thousands of A). Ex-
periment on rings instead of cylinders should yield much
larger effects. The experiments on cylinders have been
confirmed and analyzed in detail by Gijs, Van Hasen-
donck, and Bruynseraede (1984). Experiments on large
arrays of rings have also been reported recently by Pan-
netier et al. (1984).

Altshuler, Aronov, and Khmel’nitskii (1981,1982) also
discussed the effect of an electric field on the conductivi-
ty. A dc electric field does not break time-reversal invari-
ance and is equivalent to a static potential gradient. The
interference between the two electron loops shown in Fig.
8 should not be affected. This point of view is contrary to
the conclusions of Tsuzuki (1981) and Mott and Kaveh
(1981), but we find it physically more transparent. Exper-
imentally, Bergmann (1984) has determined that a dc field
has no effect apart from heating. On the other hand, in
the presence of an ac field Eye’?", the potential experi-
enced by the electron will depend on time and introduce a
random phase, which can be estimated as follows. In a
time 7 such that Q7 << 1, the electric field will change by
EoQr. The electron diffuses a distance L ~(D7)!/2, and
the energy change is AE ~E,QD7*/2. The phase change
is Ap~AE, ~E QD72 Equating this with unity gives
the characteristic cutoff time (to be compared with ;)

To~(EoQD) 2% (2.35)

This time is in agreement with that obtained by an expli-
cit solution of the electron pair propagation in the pres-
ence of an electromagnetic field (Altshuler, Aronov, and
Khmel’nitskii, 1982).

Finally we mention that the orbital effect of a magnetic
field was incorporated into a scaling theory of the metal-
insulator transition by Khmel’nitskii and Larkin (1981).
They found the crossover exponent for the magnetic field
to be +, which simply expresses the fact that the relevant
length scale is the Landau orbit size, which scales as
H~12 As an example, they predicted a magnetoconduc-
tivity at the metal-insulator transition of the form
o(H)~ A;(e®/#)eH /#c)!/? in 3D, where A; is some
universal constant depending only on the symmetry of the
system, e.g., the presence of spin-orbit scattering. Fur-
thermore, the mobility edge is shifted by an amount of
the order of H'/%,

F. Scaling results for other transport
properties

1. ac conductivity and the dielectric function

Gor’kov, Larkin, and Khmel’nitskii (1979) showed that
the frequency w can serve as a cutoff instead of the sam-
ple L. Considering for o(w) the maximally crossed dia-
gram Fig. 7(a), they found that for an infinite system
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o=0, (2.36a)
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for 3D and

1+ - ln|wr| (2.36b)

kgl

O=0y

for 2D; the correction terms are as usual presumed to be
small. We notice that in three dimensions the conductivi-
ty initially rises with frequency as w!/?, a distinctly non-
Drude type of behavior. In two dimensions, the conduc-
tivity falls logarithmically as frequency decreases, so that
this result suggests again that 0—0 as w—0, and that
there is a characteristic frequency wo~ (1/7)exp(—mkgl)
which marks the crossover to the exponentially localized
regime. In the perturbative regime, the forms Eq. (2.36)
for olw) could be guessed at from the forms (2.25) for
o(L), and the relation o~ '~7, ~[L2D(L)] for the time
taken to diffuse a length L. If D(L) depends only weakly
on length scale L, Vo scales as L ~! and the results [Eq.
(2.36)] follow.

Near the metal-insulator transition, the conductivity
depends on length scale according to Eq. (2.16a). Thus
the diffusion constant D(L)=o(e?/#) dn/dp)~!
varies with length scale as '

_ (dn/dp)”'g*
DW= ,

(2.37)
where g* is the fixed-point value of conductance given in
Eq. (2.14a). The connection between w and L is now
modified to read w~D(L)L ~%*=(dn/du)"'g*L ~%. We
thus have a new length scale L,=(wdn/du)~"%. Put-
ting this length scale into the conductivity equation, we
obtain the frequency-dependent conductivity in the criti-
cal region as

(2.38)

o OCw(d—z)/d ,

which goes as !/ in three dimensions. This result was
first obtained by Wegner (1976) using general scaling ar-
guments and subsequently discussed by a number of au-
thors (Shapiro and Abrahams, 1981b; Shapiro, 1982b;
Imry, Gefen, and Bergmann, 1982a,1982b; Vollhardt and
Wolfle, 1982). The frequency-dependent conductivity can
be cast into a scaling form
2
olw)=——E"(&/L,) . (2.39)
A

For L, >>¢&, i.e., low frequency, o(w) is independent of w
on the metallic side and o(w)~ (e?/#7*)E*~%. The func-
tion f(x) must approach unity for x <<1. In the oppo-
site limit, £ >> L, we are in the critical region, and o(w)
must be independent of £&. Thus f(x)~x92 for x >>1,
and we recover Eq. (2.38) in this limit.

The above scaling considerations can be extended to in-
clude the full g- and w-dependent conductivity or dielec-
tric function. This is important in the discussion of
screening near the metal-insulator transition and also per-
mits a discussion of the critical behavior of the dielectric
constant on the insulating side. The polarizability func-
tion Il(q,w) takes the form



300 Lee and Ramakrishnan: Disordered electronic systems

2
H(q’w)__d_n_____D(q,w)q

= s (2.40)
du D(q,w)q*—iw

where we have generalized the standard expression for
disordered metals to include g¢- and w-dependent dif-
fusion. If g£>>1, we are in the critical region, where the
diffusion constant is scale dependent according to Eq.
(2.37), and we should replace L by ¢ ~'. In this limit, the
usual diffusion pole is replaced by

1 1

2 . 1 . (2.41)
Dg”—iow dn « d
— | g%¢°—iw
dp

This result was first obtained by Wegner (1976), who
pointed out a very useful analogy of the diffusion pole
with the transverse magnetic susceptibility in a system
with a continuously broken symmetry,

1

kg*+ ||’
where h is an external field and « is the spin-wave stiff-
ness constant. In the critical region, X| ~g*~" defines the

critical exponent 7. In comparison with Eq. (2.35) this
exponent is (Wegner, 1976; McKane and Stone, 1981)

n=2—d . (2.43)

X, (g,h)= (2.42)

This unusual diffusive behavior was exploited by Ander-
son, Muttalib, and Ramakrishnan (1983) in their study of
superconductivity (see Sec. VII.C). It was also used by
Lee (1982) in his investigation of the role of the Coulomb
interaction.

The screening properties on both sides of the transition
that follows from the polarization function given in Eq.
(2.40) were discussed by McMillan (1981). A lucid dis-
cussion was presented by Imry, Gefen, and Bergmann
(1982a,1982b), and a discussion of the scaling function in
(2 + €) dimensions can be found in Abrahams and Lee
(1985). The essential feature is that, on the localized side
of the transition, we can follow the scaling away from the
fixed point g* up to a length scale L =&, which corre-
sponds to the localization length. Inside the length scale
we are in the critical region, and the polarization function
can be described by Eq. (2.40). The real part of the dielec-
tric constant is given by

2
£(g,0)=1+ < Re[M(g,0)]
g

z477'e2—dn -2
du
Setting g ~&~!, we obtain an estimate of the static dielec-
tric constant on the insulating side as

(2.44)

8'=4#e25ﬁ§2 , (2.45)

which implies a divergent €' as (g —g*)~%". Further-
more, comparison with Eq. (2.16a) shows that in three di-

mensions,
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? (2.46)

¢'oc“=const ,
if ¢ and o are measured equidistant from the metal-
insulation transition point. Equation (2.46) is consistent
with the experimental data of Paalanen, Rosenbaum,

Thomas, and Bhatt (1982).

2. Anisotropic systems

The perturbative scaling theory of localization has been
recently generalized to the case of anisotropic systems by
Wolfle and Bhatt (1984). They show for a general aniso-
tropy leading to differing principal Boltzmann conduc-
tivities oﬁ,‘ (where u=x and y in 2D) that

» B
B e’ uu

1
=g —_ —_
B omh o B

wT

Ol @) , (2.47)

where o %=(0%, 0}, Thus the logarithmic term has

the same anisotropy as the conductivity. This interesting
result agrees with the measurements of Bishop, Dynes,
Lin, and Tsui (1984) on various Si inversion layer faces.
Note that Eq. (2.47) has the following simple interpreta-
tion. (See Altshuler, Aronov, Larkin, and Khmel’nitskii,
1981.) According to the dogma that conductance is the
only scaling variable, we first rescale the x and y length
scales differently so that the conductance is isotropic.
Since G, :foLy /L, and G, =0§,Lx /Ly, this clearly re-
quires L,/L,=(05,/0%.)1/%. We then perform the usual
scaling argument in this anisotropic frame, and the
correction to the conductance is the usual universal term
e?/(2m*#)Inwr. We finally rescale to the original x and y
scale, and the correction to the anisotropic conductivity
takes the form given in Eq. (2.47). The effect of anisotro-
py on the correction to the conductivity due to interaction
effects (see Sec. III) is discussed by Altshuler and Aronov
(1979c¢).

)1/2

3. Hall conductivity

The Hall conductivity for weak disorder, considering
the leading-order scaling corrections (i.e., the crossed dia-
gram process in perturbation theory), was first calculated
by Fukuyama (1980a). He showed, for two dimensions,
that to this order the Hall resistance was unchanged.
That is, defining Ry=(E,/JH) for small E and H
(linear response), one has

8Ry /Ry =0. (2.48)

This is an important result because, as we shall see (Sec.
III), Coulomb interaction effects lead in contrast to a non-
vanishing (8Ry /Rj;). The result is true in three dimen-
sions as well.

A general scaling analysis of the Hall conductivity us-
ing perturbative exponent estimates and scaling forms has
been made by Shapiro and Abrahams (1981a). They find,
for example, that near the mobility edge the Hall conduc-
tivity approaches zero as oy =(E —E,)?*, where u is the
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conductivity exponent [u=1 in perturbation theory, in
(2 + €) dimensions]. Consequently, the Hall constant
Ry =0y /02, is nonsingular, of order o, as the metal-
insulator transition is approached from the metallic side.

4. Thermoelectric power

Ting, Houghton, and Senna (1982) have calculated the
thermoelectric power of the two-dimensional system.
They found that the minimally crossed diagrams do not
introduce any logarithmic anomalies. However, when in-
teraction is taken into account in the way described in
Sec. III, logarithmic corrections are found.. To our
knowledge there is no experimental verification of this ef-
fect so far.

G. Beyond lowest-order perturbation theory

The perturbative estimate (Sec. IL.C) of the scale-
dependent conductivity and of the curve B(g), using the
scaling idea, is accurate for large conductance or long
mean free paths, i.e., for g>>1 or kgl >>1. (In two di-
mensions, the expansion fails at large enough length
scales or low frequencies even for kpl/>>1.) Since the
critical conductance g, =(e2/#n?)e~! for a disordered
electron gas in (2 + €) dimensions, perturbation theory is
capable of describing the behavior for € << 1. The transi-
tion in three dimensions occurs for intermediate coupling,
and the exponent estimates are approximate. There have,
therefore, been several attempts to go beyond lowest-order
perturbation theory, and also to develop a theory that de-
scribes both extended and localized regimes. We briefly
mention them here.

The next terms -in S(g) have been calculated by
Khmel’nitskii (1980), Efetov, Larkin, and Khmel’nitskii
(1980) and by Hikami (1981). They are found to vanish.
Hikami (1981,1982) in particular has shown that there are
no terms to three-loop order, i.e., to order (1/g%. In
principle, the higher-order terms in the B function depend
on the cutoff procedure used. Hikami uses the dimen-
sional regularization methods of Callan and Symanzik.
The critical exponents, such as v, are however universal,
and the vanishing of the higher-order terms suggests that
there are no higher-order corrections to v in an € expan-
sion that is analytic in €.

Vollhardt and Walfle (1980a,1980b) have given an ap-
proximate self-consistent theory of localization. The
same results were obtained by Hikami (1982), who solved
the renormalization group equations for the diffusion
constant assuming that all higher-order terms in 3(g) van-
ish.

Vollhardt and Woélfle consxder the density-density
correlation function

D(q,0)q>

=XT(q,0)
? —iw+D(g,0)q>

X(q,w) (2.49)

This diffusive low-frequency form defines D (q,w). It is
more convenient to examine the current relaxation kernel
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M (q,w), related to D by

1

Dlge)= )(T Mgo)

(2.50)
M (q,0) essentially measures the current relaxation rate.
In the metallic limit, it is a constant given in the standard
Born or relaxation-time approximation by M (0,0)=i/7,
where 7 is given by Eq. (2.22). A general equation relat-
ing M to moments of the two-particle scattering ampli-
tude can be obtained. The latter satisfies a scattering or
Bethe-Salpeter equation. The backscattering terms, which
can be separated using time-reversal invariance, make a
singular contribution at low frequencies w. To lowest or-
der,

(2.51)

In d <2, Eq. (2.51) has an infrared singularity, so that
D is strongly modified. One should therefore not use the
bare D, on the right-hand side, but in a self-consistent
(dynamic Hartree) theory, use D(q,») instead, so that
M (0,w) satisfies the equation

__E 1

. (2.52)
o—k*Dor~ M (0,0)"!

MO,w)=

Equation (2.52) can be solved for low frequencies, and in
d <2 gives
@5

MOw)=L 22 (2.53)
T w

which corresponds to an insulator with the frequency-
dependent conductivity o(w) given by

(/o) . (2.54)

olw)=

The frequency oy is the scale at which localization effects
become important; it is proportional to (kz/)~! in one di-
mension and to e " F in two dimensions. For o >> w0,
the conductivity is nonzero; it decreases logarithmically
(in 2D) as frequency decreases, and then crosses over to
that for localized states when w <<, The localization
length can be estimated from the static polarizability
al0)~I2=£"2% In 2D, as expected from perturbation
theory, it is exponential in weak disorder. The authors
find good -agreement with the direct many-body theory re-
sults of Abrikosov and Ryzhkin (1978) for a one-
dimensional system. A diagrammatic classification lead-
ing to Eq. (2.52) as a first approximation has been dis-
cussed by Wolfle and Vollhardt (1982b). From their ex-
pression for the conductivity Vollhardt and Wolfle
(1982a,1982b) have obtained the scaling function implied
by their self-consistent theory. It has the correct asymp-
totic forms for large and small g, the latter being obtained
on considering nonlocal response to the applied electric
field. In two dimensions, they find

B(g)=——é(1—e"23) g>>1 (2.55a)
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=Ing g<<1. (2.55b)
There is no correction of higher order in (1/g) for B(g)
which is analytic in that variable [Eq. (2.55a)]. Similar
scaling functions for large g have been obtained by Hi-
kami (1982), who solved the equation for the 8 function.
Historically, the first mode-mode coupling theory for
the conductivity correction was given by Gotze (1979).
However, Gétze obtained his singularity from the slow
diffusive mode in the density fluctuations and ignored the
quantum interference effects. The corrections he found
are higher order in (kpl)~! and disagree with the results
of Abrahams et al. (1979). It was pointed out by
Vollhardt and Wolfle (1981a,1981b) that, from conserva-
tion laws, the coupling to the diffusive mode goes as g
for small g, and does not contribute a singular correction
in two dimensions. In general, as noted by them and by
Maleev and Toperverg (1975), diffusion corrections to the
conductivity of a noninteracting system are nonsingular
to leading order of (kpl)~!. As discussed by Gotze
(1979,1981,1983) the mode-mode coupling theory leads to
a scale-dependent correction of order (kz/)~2 and a dc
conductivity exponent p of 5 rather than unity, i.e., a
scaling function B(g)=(d —2)—(a/g?). Prelovsek (1981)
and Belitz, Gold, and Gotze (1981) have incorporated
quantum interference into the mode-mode coupling
theory of Gotze (1979,1981,1983); this leads to results
identical with scaling theory in the critical regime.

H. The high-magnetic-field limit:
The quantum Hall regime

The magnetoresistance calculation reviewed in Sec. IL.LE
was carried out treating the magnetic field semiclassical-
ly, which should be valid under the condition w,.7<<1,
where w, is the cyclotron frequency. There is great in-
terest in understanding the opposite regime w.7>>1, par-
ticularly in view of the quantum Hall effect observed in
this limit. The important issue is whether all states
remain localized in the high-field regime. The theoretical
understanding of the quantized Hall effect requires the
existence of extended states somewhere within the Landau
subband (Laughlin, 1981), and Halperin (1982) has pro-
vided an argument for the existence of extended states. A
quantitative treatment of the problem is difficult because
of the absence of a small parameter. The dimensionless
resistance g ~! is of order unity or larger according to the
self-consistent Born approximation (Ando and Uemura,
1974). Thus a perturbative treatment is not possible. Ono
(1982) has generalized the self-consistent treatment of
Vollhardt and Wolfle to this case, and found that, exactly
at the band center, an extended state exists, with the local-
ization length diverging as the band center is approached.
This result is in qualitative but not quantitative agreement
with numerical simulations (Ando, 1982,1983). However,
in view of the absence of an expansion parameter, the
selection of diagrams in this approach appears rather ad
hoc. The field theory treatment of this problem is briefly
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reviewed at the end of Sec. V, and the conclusion again is
that extended states exist (Levine, Libby, and Pruisken,
1983). A phenomenological scaling approach by
Khmel’nitskii (1983) suggests the existence of a single ex-
tended state in the middle of the band. Very recently, Hi-
kami (1984) has extended Wegner’s (1983) exact calcula-
tion of the density of states at the band center to perform
a perturbative expansion of the conductivity in powers of
the impurity scattering strength, which he then summed
by a Borel-Padé approximation. The results indicate an
extended state at the band center. :

We mention that the interaction effects to be discussed
in the next section have also been calculated in the high-
field limit (Girvin, Jonson, and Lee, 1982; Houghton, Sen-
na, and Ying, 1982). These calculations are in reasonable
agreement with experimental observation when a few
Landau levels are filled (Paalanen, Tsui, and Gossard,
1982).

lll. INTERACTION EFFECTS

A. Introduction

The study of the interacting electron gas has a long his-
tory. Early studies using perturbation theory in the un-
screened Coulomb interaction led to a strong singularity
near the Fermi surface. It was then realized that a proper
calculation, taking screening into account, removed all the
singularities (see Nozieres and Pines, 1966). These results
can be fitted into the general framework of Landau’s
Fermi-liquid theory, which concludes that the effects of
interaction can be represented by the introduction of a
number of Fermi-liquid parameters, describing the renor-
malization of physical quantities such as specific heat and
magnetic susceptibility. While these renormalizations can
be large, they are finite. In the early 1960s these studies
were extended to the vicinity of the ferromagnetic transi-
tion. It was found that low-lying spin fluctuations
(paramagnons) lead to strong renormalization of physical
quantities and, in addition, introduce singularities near
the Fermi surface. However these singularities are typi-
cally weak, such as a T>InT term in the specific heat.
The general feeling was that impurity scattering would
not lead to any essential modification of the Fermi-liquid
theory (see Betbeder-Matibet and Nozieres, 1966). Thus it
came as quite a surprise when it was shown by Altshuler
and Aronov (1979a,1979¢) that interactions in a disor-
dered Fermi liquid lead to strong singularities near the
Fermi level. For example, a singularity of the form
(w—Ep)!/? is predicted for the tunneling density of states,
and T2 and T3/? low-temperature corrections are
predicted for the conductivity and the specific heat,
respectively. Interestingly some of these effects were al-
ready anticipated by Brinkman and Engelsberg (1968),
who showed that the diffusive nature of spin fluctuations
in a disordered system leads to singularities stronger than
in a pure system. In particular, the T°InT term in the
specific heat becomes 73/2. The Altshuler-Aronov effect



Lee and Ramakrishnan: Disordered electronic systems 303

can be understood if we replace spin diffusion in
Brinkman-Engelsberg by density diffusion. The irony is
that perhaps Fermi-liquid theory was so successful and so
entrenched in our thinking that our understanding of the
disordered Fermi liquid may have been delayed by more
than a decade.

B. Self-energy corrections and lifetime
in a disordered Fermi liquid

1. Model calculation of the density of states

Altshuler and Aronov (1979a,1979¢c) treated the
disordered-Fermi-liquid problem by performing a pertur-
bation theory to lowest order in the interaction strength.
The disorder is treated by the conventional diagrammatic
technique (Abrikosov, Gor’kov, and Dzyaloshinskii,
1963), which should be valid in the limit kz/ >>1. In this
limit crossed impurity lines are considered higher order in
(kgl)~! and are ignored. Thus the localization effects
discussed in the preceding section are specifically exclud-
ed. For simplicity we shall first discuss a model problem
in which the electrons interact via a static interaction
v(q),

Hy=73 > v(@pip, 3.1
q

where p,= >, ai",qax. We shall return to discuss the

complications of the dynamically screened Coulomb in-

teraction later.

The important ingredient of the interaction theory is
that the interaction vertex is dressed by the impurity
scattering, as shown in Fig. 9. A straightforward calcula-
tion shows that, for small ¢ and w,,, the vertex correction
is given by

(|@0m | +Dg*) 771, g (ey—@p,) <0

F(q:“)masn): (3.2)

1 otherwise ,
where ®,, =2mmkT and €, =m(2n + 1)kT are the Matsu-
bara frequencies. Note that when the electron lines have
frequencies with opposite signs, the vertex correction has
the diffusion form and becomes singular in the limit of
small ¢ and w,,. The relation with density diffusion is
best illustrated by calculating the polarization function
Il(g,w,, ) using the diagrams shown in Fig. 10. We obtain

dn | @ |
g0,)=— |[1———— (3.3a)
dp | @ | +Dg?
p-q,€-w
|
= + #
p.€

FIG. 9. Impurity dressing of the interaction vertex.
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FIG. 10. Diagram for the polarization function Il(q,w).

dn __ Dg’

= _— (3.3b)
dp |o, | +Dq?

In Eq. (3.3a) the first (second) term comes from the region
where the frequencies of the electron and hole lines have
equal (opposite) frequencies. Upon analytic continuation
we obtain the well-known result for the diffusive form of
the response function,

(g,0)=i f0°° dt dx {[p(x,1),p(0,0)) ] Ve ~ia%eiwt

2

*_dn_ Dy (3.4)
dp —iw+Dg?

Equation (3.4) can be derived from more general con-

siderations by making the assumption that density fluc-

tuations satisfy the diffusion equation (Forster, 1975).

To lowest order in the coupling constant, the correction
to the Green’s function in the momentum representation
is given by the diagram shown in Fig. 11. The physical
quantity that is independent of representation is the
single-electron density of states

8N (E)=n 3 ImG (k,E) . (3.5)
k

This was first calculated by Altshuler and Aronov
(1979a,1979c¢), who showed that the diffusion pole associ-
ated with the two vertex corrections in Fig. 11 leads to
unexpected singular behavior in the density of states, such
as an E!/2 behavior in three dimensions. We emphasize
that the singularities are unrelated to the long-range na-
ture of the Coulomb interaction. In fact, starting with the
short-range model interaction we see that the vertex
correction generates an effective long-range and retarded
coupling. This expresses the physical idea that since the
electron motion is diffusive, the electrons spend a longer
time in a given region in space relative to the plane-wave
states, and their interaction is enhanced.

We. note that the particular diagram Fig. 11 is con-
structed in a conserving approximation in the sense of
Kadanoff and Baym (1962) from the diagram for the free
energy shown in Fig. 12 by cutting the fermion line at an
arbitrary place. The relation with diffusion can be seen
from the fact that Fig. 12 is obtained from the response
function Fig. 10 by connecting the external vertices by an
interaction line.

FIG. 11. Self-energy correction due to interaction (wavy line).
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FIG. 12. First-order correction to the free energy in the pres-
ence of impurity scattering.

The diagrammatic treatment is carried out in the basis
of momentum eigenstates. The plane wave is very far
from being an eigenstate of the disordered Hamiltonian.
This is why in a perturbation treatment of the interaction,
large vertex corrections are necessary. Furthermore,
quantities like self-energy and decay rate are meaningless
in the k representations because the spectral representa-
tion contains a large width given by the elastic scattering
rate 7—!. A more natural basis for the perturbation ex-
pansion is the set of exact eigenstates 1,, with eigenvalue
E,, of the noninteracting Hamiltonian (Abrahams et al.,
1982; Maldague, 1981). In this basis the single-particle
Green’s function is given by

Gm @)={m [(0—H)"'|m), (3.6)

and the effect of interaction is included in the self-energy
correction 2,, (@), so that

Gom(@)=[0—E,, —Z,,(0)]"". (3.7)

We keep only the diagonal terms in the self-energy be-
cause we shall find that it is enhanced by wave-function
correlation. Writing =,,=A,, +il,,, we perform the
standard expansion

- ~ 04,
Ap(0)=A,(E,)+(w—E,,)— , (3.8)
dw
where
E,=E,+A,(E,) . (3.9)
We obtain

Gm(@)=Z/[(@—E,)—ivm], (3.10)

where ~

Z~'=[1-0A,/30],_5 (3.11)

and

Ym=ZT n(w=E,,) . (3.12)

In Eq. (3.10), E,, is interpreted as the quasiparticle ener-
gY, ¥m as the decay rate of the quasiparticle, and Z as the
fractional weight of the quasiparticle excitation.

To discuss the average energy shift and the average de-
cay rate we have to study the impurity average of the
self-energy for a fixed E,,, i.e.,

Sp0)=—S8E _EnSn@) , (3.13)
Ny 2

where N, is the one-spin density of states_and the bar
denotes impurity averaging. Writing 2p=Ap+il' g, we
see that the average density of quasiparticle states is given
by

Ny

L B— (3.14)
1+6A;/8E

No
and the average quasiparticle decay rate is given by
Ve=ZT =T, (3.15)

where

Ty=(1/Ny)=,,8E —E, )T (w=E,,) .

The model problem of electrons interacting via a static
interaction v(r) is particularly simple in that, to first or-
der in v, Z=1 and 75 =0. In the Hartree-Fock approxi-
mation, the four-fermion term in Eq. (3.2) is factorized.
Let us focus our attention on the exchange term; the Har-
tree term can be shown to be small if the potential v(7)
has a range larger than the interparticle spacing. We shall
see that the diagonal exchange term is enhanced because

of wave-function correlation, so that we write
H=3,¢,aa, where
en=— 3 [ drdry (Y} e, (), (Do (r—r) .
occupied .
(3.16)

Suppose we insert a particle at energy E. Its energy will
be shifted on the average by the amount

O
Sp=—098FE—E,
ESNG (E—E,)em
0
=— f_wdE'F(E,E';r,r')v(r—r’) , (3.17)

where

F(EE;n,r)= 3 8(E —Ep)S(E —E, ) (DU (X )i (£ ) (1) .

m,n

In Eq. (3.18) we need to know the average of the products
of four wave functions. Since we do not have an explicit
solution of the impurity problem, we seem to be faced
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(3.18)

T

with a hopeless task. Fortunately we notice that the com-
bination required in Eq. (3.18) is precisely that which
enters in a density-density correlation function defined as



Lee and Ramakrishnan: Disordered electronic systems 305

Alq,0)= f_w dt drdr'ei®@teiq(r—1)

X {[p(r't),p(r,0)]) . (3.19)

This is the spectral function for the density-density
response function given in Eq. (3.4). Again, under the as-

sumption of density diffusion above, we obtain
|

2
A(q,w)=—a—rilm ./ h—
ou —iw+Dq?
where D is the diffusion coefficient.
To make the connection to Eq. (3.18), we expand the
operator p in Eq. (3.19) in terms of the exact eigenstates
(Abrahams, Anderson, Lee, and Ramakrishnan, 1982).
Restricting ourselves to T=0 for simplicity, for o >0
only one ordering of the commutator is nonvanishing, and

Eq. (3.19) becomes

(3.20)

Algw)=3" [ drdre' "=y, (Of; (DY,

m,n
where the sum is restricted to n occupied and m unoccu-
pied. We convert the sum into an energy integration and
compare with Eq. (3.18). We have

© 0 : ,
A(g,0)= [ dE [ _dE,F(EE,,r)e/d" ="

XOE—E'—w) . (3.22)

We expect F(E,E';r,r') to be dependent on E —E’ and
r—r' (the latter because we have translational invariance
after impurity averaging). Then F(E,E';r—r')=F(o,r
—r'), and Eq. (3.22) becomes

A(gw)= [ Flo,r)e"™dr . (3.23)
Comparing with Eq. (3.20), we have
2
f Flw,r)e’? 'dr:@*~——Dq—* (3.24)
A w’+(Dg?)?

Equation (3.24) is remarkable because it is divergent in
the limit g,0—0. Going back to the definition F(w,r),
we see that the seemingly innocent assumption of dif-
fusion implies that eigenstates that are nearby in energy
are also correlated in space. We are now in a position to
calculate the self-energy using Egs. (3.17) and (3.24),

~ 0 2
3 on dE" f dq Dq

E= 3 (2m) (E—E')?+(Dg?)?

v(q) .
1 —©

(3.25)

According to Eq. (3.25), the exchange interaction between
the added electron with energy E and the electrons in the
Fermi sea depends strongly on the energy separation. As
a result the self-energy is also dependent on E. This will
give rise to a change in the density of states, given by

dq Dg*v(q)(dn/du)
m?  EX+(Dg??*

%ITV—BEE/SE f (3.26)
The integrand in Eq. (3.26) is singular in the limit
q,0—0. We can therefore replace v(q) by v(0). Just
from power counting we immediately see that 8N is loga-
rithmically divergent in 2D and goes as V'E in 3D.
Equation (3.26) agrees with results given based on sum-
mation of diagrams.

In an electron gas it is necessary to introduce a dynami-
cal screened Coulomb interaction,
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')y, (r")o(E, —E,, —o) ,

(3.21)

where the polarization function that enters into screening
is given by Eq. (3.3), and Vp(g) is the bare Coulomb in-
teraction. In 3D we have

4me? |@n| +Dg’

Veslgo,)=
RO =0 0, | +DK3

, (3.282)

where K3 =4me%(dn /dp). In strictly 2D (such as the Si-
MOSFET inversion layer), we have

2e? ©, | +Dg*
VCZ(q’wn):-e_ l ”l ’

(3.28b)
9 |w,|+DgK,+Dg*

where K, =2me*(dn /dp). It is interesting to note that in
the static and long-wavelength limit (w=0,9 —0), the di-
mensionless couphng constant V.(dn/du)=1. The bare
coupling constant e? is cancelled in the problem.

2. Dynamic screening and electron lifetime

The dynamic aspect of the effective interaction intro-
duces a number of complications in that 3 is now com-
plex and depends on w. The quasiparticle now acquires a
lifetime due to the electron-electron interaction contained
in the inelastic (imaginary) part of the dynamically
screened interaction. If we compute 3 using Eq. (3.16)
with a complex V given by Egs. (3.27) and (3.28a), we ob-
tain a decay rate I'y; which varies as E?/2. This result in
3D was first obtained by Schmid (1974) and Altshuler
and Aronov (1979b). Note that while the decay rate is
enhanced compared with the standard E 2 result, it is still
small compared with E, so that the quasiparticle concept
is still valid. In 2D a further complication arises because
of the existence of logarithmic singularities. The simple
argument described here is not sufficient to yield the full
o dependence. Abrahams er al. (1982) showed that it is
possible to rewrite Eq. (3.18) in terms of Green’s func-
tions and then perform the averaging using standard di-
agrammatic techniques in the momentum representation.
The result is that, at T =0,

32K2 1
4 Ex

—Q

= o+ (E—ow)ln £

l ,  (3.29)

while at finite T,
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TP =e2K, (kT /Eg)|InT /T, | , (3.30)

where Ex =DK3 and T;=DEZ2 /e*. These results are for
strictly 2D films. In the momentum integral in Eq.
(3.26), it -is the momentum transfer satisfying
Dq? < max(E,kT) that is important. In films of thickness
t there will be a crossover from 2D to 3D behavior when
the temperature or frequency exceeds (), given by
t=(D/Q,)2 In the 2D regime, the screening constant
K, appearing in Eqgs. (3.29) and (3.30) and in the defini-
tion of E; must be replaced by K,(kgt /) to account for
both the phase-space restriction of the thin-film geometry
and the change in screening properties. The crossover
from 2D to 3D is discussed in detail by Lopes dos Santos
and Abrahams (1984).

The peculiar InT" dependence in Eq. (3.30) comes about
because, in evaluating the decay rate on the mass shell
w=E, a logarithmic divergence is encountered. Abra-
hams et al. (1982) argue that this divergence is cut off by
including the shift in the quasiparticle pole. This leads to
the rather peculiar energy scale 7T, in Eq. (3.30).
Altshuler, Aronov, and Khmel’nitskii (1982) have ques-
tioned the observability of the decay rate given in Eq.
(3.30). As discussed in Sec. ILE, they claim that it is the
phase relaxation time 7, that is the physically relevant
quantity, and not the lifetime of an exact eigenstate as
calculated here. In one and two dimensions, the impor-
tant contribution to the lifetime comes from electron
scattering with very small energy transfer, so that the dis-
tinction between 7, and the lifetime becomes significant.
Altshuler et al. (1982) further state that the low-energy
electron-electron scattering is equivalent to the interaction
of an electron with the thermal fluctuations of elec-
tromagnetic waves. A physical manifestation of 7, is that
it serves as a cutoff of the interference effect leading to
weak localization, as discussed in Sec. ILLE. Altshuler
et al. solve explicitly for the interference effect in the
presence of a thermal bath of electromagnetic radiation,
and they interpret their results in terms of a dephasing
time given by

—1 T

=———In(7D. .
Te ZFDNO‘ﬁ n( N()h)

(3.31)
Note that 7, ! is smaller than the decay rate given in Eq.
(3.30) and does not involve a In7T enhancement. Recently
Fukuyama (1984b) reported diagrammatic calculation of
the influence of interference effects in weak localization
by electron-electron collision, which corrected an earlier
version by Fukuyama and Abrahams (1983a), and the re-
sult is in full agreement with Eq. (3.31), indicating that
the In(T'/T;) term in Eq. (3.30) should not appear in con-
ductivity experiments.

In one dimension, similar calculations of Ty by
Altshuler et al. (1982) yield

2/3

ld=1)= |—L—
DI/ZNO

? (3.32)

This is to be compared with a decay rate I'; analogous to
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Eq. (3.30), which goes as T!/2. Interestingly, the com-
bination 7,I"| obeys the relationship

T, L1 ~(T7,) "2, (3.33)

so that 7, and I'; become comparable when T'7,~1. This
latter condition gives the temperature above which the
quasiparticle concept remains valid. Thus it appears that
in the regime where the theory of localization based on a
quasiparticle picture is valid (7 greater than 7, Vor '),
the dominant mechanism for quasiparticle decay is via
scattering by thermal radiation, and Eq. (3.32) should be
applicable. This predicts a low-temperature rise of the
resistivity in quasi-one-dimensional wires that goes as
T'73, which is consistent with experiments.

3. Hartree terms

So far we have discussed the exchange contribution to
the self-energy. In the limit of a 8-function interaction, it
is clear that the Hartree term with parallel spin and the
exchange term are equal in magnitude and opposite in
sign. Diagrammatically the Hartree version of Fig. 11 is
shown in Fig. 13. Physically the Hartree term is the in-
teraction of a given eigenfunction with the nonuniform
electron density in the ground state. Singularities appear
because wave functions nearby in energy are correlated in
space. Several differences from the exchange term should
be noted. The Hartree term requires zero-frequency
transfer, so that only the static limit of the screened
Coulomb interaction is involved. Furthermore the
momentum transfer in the interaction is not dominated by
small g because, unlike the exchange term, is it not the
same as the momentum appearing in the diffusion pole.
Thus for a static screened interaction v(q), the Hartree
term is reduced relative to the static exchange term by a
factor F,

- [ dQv[g =2kpsin(6/2)]

—~ (3.34)
[ d@v(0)

which is the average of the interaction on the Fermi sur-
face over the solid angle Q.

C. Specific heat and tunneling density of states

We begin by discussing the model problem with short-
range interaction. The correction to the single-particle
density of states per spin N; which is observable by tun-

FIG. 13. The Hartree correction to the self-energy.
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neling experiments is given by Eq. (3.26). In two dimen-
sions we have

5N(Q) _ Nyv(0)

N,  2mepr

(1-2F)n| Q7| . (3.35)
The term proportional to 2F is the Hartree contribution,
with the factor 2 coming from the spin sum. Note that
the magnitude of the correction increases with disorder.
For the short-range problem, the quasiparticle fraction
Z =1 to first order in v(0), and the correction to the
linear term in the specific heat is given by Eq. (3.35) with
Q replaced by 7. In three dimensions, the corresponding
correction is given by

SN(Q) _ Niv(0)(1—2F)
Ny  47%dn/du)D

172
T

2D

(3.36)

Next we consider the case of electrons interacting via
the Coulomb interaction. This introduces a number of

complications. We first consider the exchange-type con-
tribution. The static interaction v(gq) in Eq. (3.26) is re-
placed by the dynamically screened interaction Eq. (3.27).
In three dimensions it is legitimate to ignore the term uni-
ty in the denominator in Eq. (3.27), and we obtain
(Altshuler and Aronov, 1979)

172
dN(Q) 1

N, 27%(dn /du)D

£
2D

(3.37)

However, in two dimensions, a similar approximation
leads to a logarithmic singularity in the momentum in-
tegration which is not cut off by Q or 7. It is necessary
to keep the full screening from Eq. (3.28b). Performing
the integral we find that if DK % >7 1

SN(Q) 1 Qr!
SN L jorim-2T .

N, py— n|Q7|ln (DK2)? (3.38a)

(Altshuler, Aronov, and Lee, 1980), while if DK3 <71,
2
SN(Q) 1 Q
= 1 -
e (3.38b)

(Castellani, DiCastro, Lee, and Ma, 1984). This peculiar
In’Q dependence can be traced to the Z factor of the
quasiparticle coming from the dynamic nature of the
screened interaction. ;

Recently Altshuler, Aronov, and Zyuzin (1984) have
pointed out that in a tunneling experiment there is always
a metallic electrode separated by an oxide barrier of thick-
ness A. The image charge converts the Coulomb interac-
tion to a dipolar one at sufficiently long distance, and the
In[Q7r~'/(DK?%)?] factor in Eq. (3.38a) is replaced by a
constant factor In(2K,A). In a typical experimental set-
up, this logarithmic factor leads to a considerable
enhancement, which is needed to bring theory into agree-
ment with the experiment of Imry and Ovadyahu (1982c).

A second complication concerns the treatment of
Hartree-type terms coming from the short-range part of
the interaction. Initially, the perturbative results [terms
proportional to —2F in Egs. (3.35) and (3.36)] were sim-

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

ply added to Egs. (3.37) and (3.38), and it was thought to
be a safe procedure if F <<1. However, this procedure is
dangerous because the dynamically screened interaction
includes all orders in perturbation theory, and it is not ob-
vious that one can simply add more first-order terms.
Recently Finkelshtein (1983) carried out an expansion to
lowest order in (kr/)~! but to all orders in the interaction
coupling constant. He arrived at the rather surprising
conclusion that, even if the parameter F is small, the Har-
tree term should be proportional to — %F instead of —2F.
Altshuler and Aronov (1983,1984) provided a very nice
explanation of this observation. Essentially the particle-
hole scattering should be divided into total spin singlet
and triplet channels, and multiple scattering should be al-
lowed between the particle and hole. The singlet channel
has the feature that an interaction line can be an inter-
mediate state. Upon summing an infinite series of such
diagrams, we have an effective interaction of the form
given by Eq. (3.27), but with Vjp(q) replaced by
Vg(q)—F /2. Since Vg(q) is singular for small g, the
F/2 term is negligible, and we recover the dynamically
screened term as given by Eq. (3.28), which in turn con-
tributes the factor 2 in the (2—2F) factor in Eq. (3.38).
Thus basically the factor —2 F should be decomposed into
—(F/2+ZF), and the — F/2 is really the first term in
an infinite series that gets absorbed into the exchange con-
tribution. Altshuler and Aronov (1983,1984) found that,
in all formulas where 2 F appears, it should be replaced by
%F, and F is a different function of F depending on
whether one is calculating density of states or conductivi-
ty corrections, etc. However, in all cases F—F for
F << 1. For the density of states, the Hartree term, being
proportional to In|Qr|, is always dominated by the ex-
change term in two dimensions for long-range interaction.
This is not the case for the specific heat correction or for
the conductivity. As already mentioned, the In’Q singu-
larity arises from the Z factor, which in Fermi-liquid
theory does not enter thermodynamic quantities. Indeed,
calculation using the standard expression for the free en-
ergy’

—L 1 VB(Q)H(%CO)
AF=3T3 Js 5y ot

leads to the following correction to the electronic specific
heat:

(3.39)

sc_ 1-3F (17
= | (3.402)
C  4x*(dn/du)D | 2D
=L (_2F)Im|Tr| (3.40b)
TERT
for 3D and 2D, respectively, where F,=4[(1

+F/2)472_1]1/d in d dimensions (Altshuler and Aronov,
1983,1984).

So far there has been no experimental confirmation of
these predictions for the specific heat. An intriguing pos-
sibility is to consider small metallic particles that are elec-
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trically isolated. If the particle size is small compared
with (D/T)'?, this will constitute a collection of zero-
dimensional samples, and the specific heat 8C/C is
predicted to show a rather unusual 7'~! behavior. (The
theory is, of course, limited to §C /C small.)

D. Conductivity, magnetoresistance,
and magnetic susceptibility

The conductivity can be calculated using the Kubo for-
mula to lowest order in the interaction. The appropriate
diagrams are shown in Figs. 14(a)—14(e). These are gen-
erated from the free-energy diagram shown in Fig. 12 by
inserting two external current vertices at all possible posi-
tions on the fermion lines. Figures 14(a)—14(c) can easily
be shown to cancel each other. The remaining diagrams,
combined with the Hartree version, give the following
corrections to the conductivity:

_ le 1 ., 3% 1/2
So1= 17 17_(4 >F, D /2T) (3.41a)
for 1D,
€ 1 35
S (2— 3F, In(T'7) (3.41b)
for 2D,
soy= e L 13 s sE 7D (3.41c)
) ﬁ 4’”_2 ‘/5 3 24 o

for 3D, where F,=8(1+F/2)In(1+F/2)/F —4 in 2D,
F,=—[32/d(d —2)][1+dF/4—(1+F /2)*?|Fin d+2,
and A is the wire cross-section area. We should also
point out that the dynamic (imaginary) part of v(q,w)
makes a contribution equal to the static part in 2D and +
of the static part in 3D. This accounts for the factors 2
and + in Egs. (3.41b) and (3.41c), respectively. Details of
the calculation can be found in Altshuler and Aronov
(1979b) and in Altshuler, Khmel’nitskii, Larkin, and Lee
(1980); in Eq. (3.41) we have made the 2F— +F, correc-
tion as discussed in the preceding section.

In Sec. II we discussed how even a weak magnetic field

p,€+Q

(a) (b) (c)

ptgetw+ll
p‘ﬁ
p.€ 7 etw
p'-q,€
(d) (e)

FIG. 14. Diagrams for the correction to conductivity.

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

can suppress the localization effect. The origin of that ef-
fect is that the particle-particle channel is sensitive to the
magnetic flux. The interaction effects we have discussed
so far are all based on the particle-hole diffusion channel,
so that similar sensitivity to the magnetic field does not
occur. We shall return later to a discussion of the contri-
bution of particle-particle scattering to the interaction ef-
fects. As far as the particle-hole channel is concerned, the
dominant effect is the splitting of the spin-up and spin-
down bands (Kawabata, 1981; Lee and Ramakrishnan,
1982; results in these papers need correction due to
—2F— — %F » which has been made in the results given
below). The physical idea is most simply illustrated for
the self-energy correction. As discussed in Sec. IIL.B, the
singular correction is due to the correlation between the
wave function of the added electron and the wave func-
tions of the occupied electrons that are nearby in energy.
In the presence of a magnetic field, the triplet term pro-
portional to —+F is divided into an S,=0 and two
| S;| =1 terms. The exchange (singlet) and the S,=0
triplet terms involve correlation with electrons with the
same spin, and are unaffected by the spin splitting. This
leaves S, =1 terms, and the spin splitting produces a
gap gupH between the lowest unoccupied spin-up elec-
tron and the highest occupied spin-down electron. The
singularity of that term is therefore cut off for gugH
greater than k7. In a magnetic field, the correction to the
conductivity can be written as a sum of two terms,

So(H,T)=801(T)+807(H,T) . (3.42)

The first term 807 is the field-independent exchange and
S, =0 Hartree contribution, and is the same as Eq. (3.41)
except that the factors (2— 3 F,) and (+ —+F,) are re-
placed by 2— F and %—%ﬁ,, respectively. The second
term is the | S, | =1 triplet contribution. Its field depen-
dence is given by

” " e2 FU
801 (H,T)—801(0,T)= ~7j4;2-g2(h) (3.43a)
e2 ﬁa
_—— — '\/__——
PRy T/2Dgs(h),
(3.43b)
for 2D and 3D, respectively, where
_ 0 dZ hZ
gah)= [~ da JoFLON@)In |1—25 | (3.44a)
in 2D and
© d2
g3(h)= fo dQ 102 [AN(Q)]
X(VQ+h +VQ—h | —2VQ) (3.44b)

in 3D, and where & =gugH /kT. The zero-field contri-
bution 807(0,T) is_the usual one, and is given by Eq.
(3.41), with (2—3F,) and (+ —3F,) replaced by —F,.
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The functions g, and g; can be computed numerically.
They have the limiting behavior

[ In(h/1.3) h>>1
0:084h2% <<l (3.452)
and
2 vVh—1.3, h>1
3:
0.053h2, h <<1. (3.45b)

It is important to point out that the spin-orbit scattering
rate 755 or spin-flip rate 7; ! has been ignored in the
above theory. Spin scattering mixes the spin-up and
spin-down channels, and we require guzH >>750 or 7; |
in addition to gupH >>kT before the magnetoresistance
due to the spin-splitting mechanism is operational. In
heavy metal, such as Pt, T§OI can easily be large enough
for this to be an important consideration. We also remark
that in almost ferromagnetic materials, such as Pd, the
internal field that gives rise to spin splitting may be much
enhanced, making the magnetoresistance effect more
readily observable. These effects and the effects of spin-
orbit scattering on the magnetoresistance have been dis-
cussed by Millis and Lee (1984).

We now return to a discussion of the particle-particle
channel contribution to the interaction effects. For sim-
plicity we discuss the density-of-states corrections.
Altshuler, Khmel’nitskii, Larkin, and Lee (1980) noted
that Figs. 15(a) and 15(b) are the particle-particle version
of Figs. 13 and 11 and yield equal contributions. These
diagrams should be sensitive to the orbital effects of the
magnetic field. The resulting magnetoresistance has been
evaluated by Fukuyama (1980b) and by Altshuler, Aro-
nov, Larkin, and Khmel’nitskii (1981). Fukuyama con-
sidered first-order perturbation theory in some coupling
constant (his g, and g,), whereas Altshuler et al. pointed
out that it is necessary to sum a ladder involving repeated
interactions between the electrons. A typical Hartree dia-
gram is shown in Fig. 16. This replaces the coupling A by
the effective coupling

A
14+AI(ER/Ty) °

where To=max(T,D/L%}) and Ly=V7c/2¢eH is the
Landau orbit size. Equation (3.46) is very similar to the
theory of superconductivity, except that for repulsive in-
teraction the coupling constant scales to weak coupling.
Indeed, if a phénon-ind_uced attractive coupling A, is also
present, the A in Eq. (3.46) should be replaced by

A= (3.46)

(a) (b)

FIG. 15. Particle-particle channel version of the self-energy
correction.
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FIG. 16. Ladder diagram version of Fig. 15(a).

A—A,+ (3.47)

Y
14+uln(Eg/wp) ’
where p is the electron-electron interaction, and E in Eq.
(3.46) should be replaced by wp. Equation (3.47) is very
familiar in the theory of superconductivity, and for at-
tractive A, it is more proper to think of the predicted
anomalies as due to superconducting fluctuations. The
surprising element is that, even for repulsive interaction,
relatively strong temperature-dependent effects are
predicted for the density of states and conductivity, even
though the overall size of the effect is small compared
with that given by Figs. 15(a) and 15(b) because of the re-
normalization of A given by Eq. (3.46). Since the renor-
malization depends only logarithmically on T, the ladder
sum can be approximated by a phenomenological cou-
pling constant. From this point of view Fukuyama’s
theory is in basic agreement with that of Altshuler et al.
if his g, and g, are understood to be phenomenological
constants smaller than g; except when superconducting
fluctuations are important.

According to Fukuyama and Altshuler et al., the
particle-particle channel leads to positive magnetoresis-
tance when the Landau orbit size becomes comparable to
the thermal length (D /T)!/?, i.e.,

2eH S kT

fic D -
For kpl>>1 this occurs at a smaller field than the re-
quirement for spin splitting discussed earlier,

gupH > kT

(3.48a)

(3.48b)

for normal values of g. Larkin (1980) has pointed out the
importance of a class of diagrams involving the particle-
particle channel which is analogous to the Maki-
Thompson diagram for superconductivity. This produces
a positive magnetoresistance when the field satisfies

2eH 1

. (3.49
#ic = Dy, )

Usually the inelastic scattering rate 7, ! is smaller than

kT, so that this occurs at an even weaker field than Eq.
(3.48). In fact this effect takes the same form as the mag-
netoresistance of noninteracting electrons, due to the
suppression of localization, except that the overall magni-
tude is very small for normal metals, being proportional
to m*A2/6 for |A| <<1.

The combination of the spin-splitting effect and the lo-
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calizing effect leads to very rich behavior in the interact-
ing model, and magnetoresistance is clearly a powerful
tool for disentangling the two contributions. This is espe-
cially true in 2D, since the orbital contribution is sensitive
only to the magnetic field component normal to the plane,
whereas the spin-splitting term should be isotropic. Many
positive magnetoresistance results can be analyzed using
the spin-splitting and the localization terms only, which
presumably means that A is small for these systems.
There are apparently also other systems where A is not
negligible, and it will be very interesting to separate exper-
imentally the three magnetic field regimes discussed in
Egs. (3.48) and (3.49). The experimental situation will be
discussed further in Sec. VI

The spin-splitting effect also gives rise to a correction
to the magnetic susceptibility. In a free-electron theory
the spin susceptibility is proportional to the density of
states, and one might naively expect the density-of-states
corrections to appear in the susceptibility as well. How-
ever, this is not entirely true. In the presence of a mag-
netic field, the up-spin and down-spin bands are split,
each with its own Fermi energy. The exchange correction
involves the interaction between up- and down-spin parti-
cles separately. Thus the exchange correction of each
spin band can be considered separately and is tied to its
own Fermi energy. Consequently, in the exchange correc-
tion to the density of states the relative populations of the
up and down spins cancel out, and the susceptibility is the
same as the free-electron value. A similar situation is
well known in the electron-phonon problem, where the
density-of-states enhancement does not affect the spin
susceptibility. The same consideration applies to the Har-
tree term involving equal spins. On the other hand, the
Hartree interaction between up and down spins can modi-
fy the susceptibility. This was first shown by Fukuyama
(1981a), who calculated the transverse spin-fluctuation
correlation function in a disordered metal using a di-
agrammatic technique. He found an enhancement of the
susceptibility, which moreover depends on scale size in
the same way as conductivity. The same result can be ob-
tained by considering the field-dependent part of the Har-
tree term for the free energy. For a zero-range interaction
U, this is just the Stoner term

SF(H)=U{¢{ (), (rf (r,(r)) .

This can be rewritten in terms of the equal space, equal
time limit of a spin-spin correlation function, i.e.,

(3.50)

5F<H)=%<n,><nl>

— lim -lzi(T{SJ“(r,t)S“(r’,t’)})+H.c.

r—r
t—t'

(3.51)
In addition to the usual Hartree or Stoner term, one has a
contribution here due to the diffusive motion of spin fluc-
tuations. The spin splitting due to the magnetic field acts
as a low-energy cutoff of the diffusion pole, so that 8F is
given by
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| @m | T

sF~—-2Ys s (3.52)
7'2 q

w (|om | +Dg>)’+4p’H>

It is clear that there is a susceptibility enhancement
AX = —d*SF/dH?. Further, in two dimensions the
temperature-dependent part goes as

AX ~[2UN*0)/kglIn(TT)~ ", (3.53a)
and in three dimensions
AX ~ —[UNX0)/(kpl32)(T /ep) 2 . (3.53b)

The correction depends on temperature (or length scale or
frequency) and on the diffusion constant in exactly the
same way as the conductivity correction due to interac-
tions. If the latter effect becomes large near the mobility
edge, one might expect a corresponding susceptibility
enhancement and slowing down of spin diffusion.

So far we have considered only the spin-splitting effect.
Just as in the case of the density-of-states corrections, we
must also consider the orbital effect on the magnetic sus-
ceptibility via the particle-particle channel. It turns out
that this problem was investigated long ago by Aslamazov
and Larkin (1974) in connection with superconducting
fluctuations. They found that in the presence of disorder,
corrections to the susceptibility persist much above the
superconducting T,, and indeed exist even for normal
metals, when the electron-electron interaction is repulsive.
The corrections take the same form as Eq. (3.53), except
that they are proportional to A instead of U and the mag-
nitude is enhanced by a factor kgl. This is because the
scale for the magnetic field is much smaller, being set by
Eq. (3.48a) rather than Eq. (3.48b). These results are well
summarized in Altshuler,  Aronov, and Zyuzin
(1983,1984). Up until now we know of no experimental
test of this effect.

E. Electron-phonon interaction

The long-wavelength electron-phonon vertex is not
enhanced by the diffusive motion of the electron in a ran-
dom system, in contrast to the effect on the Coulomb ver-
tex discussed in the preceding section. There are two
reasons for this, as realized in essence by Pippard in his
theory of ultrasonic attenuation in disordered metals (Pip-
pard, 1955). First, the random scattering centers are em-
bedded in the lattice and move with it, so that electron re-
laxation by scattering is in the moving frame. Second,
electron density fluctuations induced by coupling to longi-
tudinal phonons are perfectly screened by the electron gas.

The first microscopic calculation of the electron-
phonon vertex in a disordered metal is due to Schmid
(1973). He used the method of Tsuneto (1960), in which
one transforms to a frame moving with the lattice. The
appropriate canonical transformation leads to an interac-
tion between the lattice strain and electron kinetic energy
fluctuation or electronic stress. Schmid considered a
Coulomb-interacting electron gas, and showed that be-
cause of perfect screening the diffusion enhancement of
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the electron-longitudinal-phonon vertex is cancelled to or-
der (kpl)~!. Since the transverse phonon does not couple
to electron density fluctuations, no diffusion enhancement
is expected for it. An alternative direct many-body
analysis, which does not make use of the canonical
transformation but treats scattering from moving impuri-
ties explicitly, has been discussed by Eisenriegler (1973)
and by Griinewald and Scharnberg (1974,1975). This
work shows in detail how the impurity-motion-dependent
part of the phonon self-energy largely cancels the static
term, and how screening of all the bare. long-range
Coulomb interactions (ion-electron, impurity-electron,
electron-electron) is crucial.

The decay of a phonon in a metal into an electron-hole
pair depends on the effective electron-phonon coupling,
i.e., the electron-phonon vertex. The decay rate resulting
from the correct unenhanced vertex is that calculated
semiclassically by Pippard (1975). For example, the at-
tenuation coefficient for a longitudinal phonon of wave
vector q is found to be

US
al(q)= —

(qus)ql) , (3.54)

(VIS

where v is the sound velocity and / the mean free path.
This expression is valid for g/ <<1. The attenuation is
small because of the mismatch between the sound velocity
v, and the Fermi velocity vg. It is proportional to g2,
whereas the frequency depends linearly on g, so that
long-wavelength phonon modes are well defined. Rather
surprisingly, the attenuation decreases with decreasing /,
i.e., increasing disorder; this is because stronger impurity
scattering makes equilibrium easier. Equation (3.54) is
correct to lowest order in impurity scattering and does not
therefore include either effects due to incipient localiza-
tion or effects due to interaction.

The result that the electron-phonon vertex is
unenhanced in a disordered metal has implications for su-
perconductivity, as discussed by Keck and Schmid
(1975,1976). To leading order in (kpl)~!, the attractive
part arising from exchange of phonons with g <</~ ! is
unaffected. Clearly, the part due to phonons with
g >>1"" is not changed. The phonon-mediated coupling
is of short range (~gp '), so that over most of phase
space there is no enhancement. Keck and Schmid find
model-dependent corrections from the regime g~I["!,
e.g., an increase in the attractive term from shear modes.

The fact that the long-wavelength electron-phonon ver-
tex is not disorder enhanced means that there are no
characteristic effects on conductivity, etc., due to the ex-
change of phonons, of the sort discussed for Coulomb in-
teractions. However, there is a Hartree-type electron-
phonon interaction term (similar to that in Fig. 13), which
contributes only when the system is disordered, since in a
clean system the process describes the exchange of a ¢ =0
phonon or uniform lattice translation (Ramakrishnan,

1984). In a disordered system, due to scattering, there are

local short-range fluctuations in the electron density
which produce a lattice distortion. These fluctuations
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couple to other electrons. The effect of this polaronic
process, to lowest order in electron-phonon coupling, is
similar to that of the Hartree-type Coulomb interaction
term, except that the sign is opposite. It thus leads to a
reduction in the density of states and the scale-dependent

‘conductivity.

F. Scaling theory of the disordered
interaction problem

So far we have treated the interaction only in lowest-
order perturbation theory and in the weak-impurity
scattering regime. One would like to extend the theory to
the region of the metal-insulator transition in three di-
mensions, where the interaction and localization effects
are both strong. The hope is that a scaling theory for the
combined interaction and disorder problems exists, so that
one can obtain a description of the transition region in
(2+¢) dimensions. It is worth noting that the effects of
interaction discussed here require the presence of disor-
der, since the diffusive motion of the electrons plays a
crucial role. Thus the interaction-driven metal-insulator
transition discussed in this section must not be confused
with the Mott-Hubbard transition (see Mott, 1974), which
is driven by correlation effects due to Coulomb or short-
range interaction, in the absence of disorder.

McMillan (1981) was the first to write down a scaling
description of the disordered interaction problem, basical-
ly by extrapolating the perturbation expansion from the
coupling constant. He proposed that the one-parameter
scaling description on the noninteracting problem be ex-
panded to a two-parameter problem, with the dimension-
less interaction constant as the new scaling parameter in
addition to the conductance. In the development of the
theory, McMillan made the assumption that the screening
constant and the conductivity are related to the single-
particle density of states N(0), i.e., K 2=47eN(0) and
o=e>N(0)D, and the singularity in N(0) discussed in

" Sec. IIL.B plays an important role in his scaling process.

This assumption has been criticized by Lee (1982), who
pointed out that K? and o should be proportional to
dn /du, the change in density with chemical potential,
which, unlike N (0), has no singular corrections. Conse-
quently the relations derived by McMillan between vari-
ous exponents should not be trusted. However, as pointed
out by Grest and Lee (1983), many of the features in the
McMillan theory are generic to any two-parameter scaling
theory, and as such the theory is useful as a starting point
for data analysis. For example, the conductivity as a
function of temperature T is predicted to take the form

o(T)=c(0)[14+C(T/A)¢=D7?], E<A, (3.552)
o(T)=E% E>A, (3.55b)

where A is a characteristic energy scale that vanishes as a
power of the distance to the metal-insulator transition, as
measured, for example, by 8n=n --n,, where n, is the
critical dopant concentration in the case of doped semi-
conductors,
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A=(dn) . (3.56)

This energy scale separates the region T <A, where the
T2 behavior predicted by perturbation theory [see Eq.
(3.41c)] is still valid, from the “critical region” T > A,
where a new critical exponent appears, as given by Eq.
(3.55b). In Eq. (3.55a) o(0) itself vanishes at the metal-
insulator transition

o(0)=6nt* . (3.57)

By demanding continuity at T'=A in Eq. (3.55), one im-
mediately obtains the scaling relation

u=ap .

General considerations of this kind also apply to the
behavior of the density of states in the vicinity of the
metal-insulator transition and have been used to analyze
data (see Sec. VI).

Various attempts at a microscopic deviation of scaling
theory by extending the perturbation theory to higher or-
der have been unsuccessful. The attempt to construct a
1/n expansion, where n is the number of orbitals per site,
is incomplete (Oppermann, 1982; Ma and Fradkin, 1983).
Grest and Lee (1983) attempted a brute force calculation
on the perturbation theory to second order in the coupling
constant V. First they considered the simpler case, where
the maximally crossed diagrams are suppressed by time-
reversal-symmetry-breaking fields. They found a pertur-
bation series for various physical quantities like conduc-
tivity and magnetic susceptibility of the form

o=oo[l+a,Vtlnwo+a,(Vt)’In%w+ - ]. (3.59)

By demanding that these physical quantities scale multi-
plicatively, Grest and Lee constructed scaling equations.
However, it was pointed out by Castellani et al. (1983)
that certain anomalous diagrams were left out, which give
terms of the form bVt’Inw in Eq. (3.59). The number of
diagrams of order V?t’In? proliferates, and some recent
progress was made in computing the corrections to the
density of states (Castellani, DiCastro, and Forgacs,
1984).

A more promising approach is via the field theory
method (see Sec. V). Finkelshtein (1983) has constructed
a field theory for the interacting fermion problem, with
the maximally crossed diagrams suppressed. He then
constructed a renormalization group treatment of the
field theory. Castellani, DiCastro, Lee, and Ma (1984)
have rederived his results using conventional diagrammat-
ic techniques. Here we simply summarize a few key re-
sults. Due to the necessity of summing over the frequen-
cies of the electrons, which are analogous to external
magnetic fields in the field theory, the renormalization
group is somewhat different from the usual ones encoun-
tered in critical phenomena. As interpreted by Castellani
et al. (1984a), the renormalization group is one in which
strips in frequency and momentum space given by

O<z|w|7T<A, A <Dg*r<A

and
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(3.58).

AM<z|o|T<A, 0<Dg?*r <A’ (3.60)

are successively integrated out. Compared with the
noninteracting problem, the new feature is that a frequen-
cy scale renormalization denoted by z is introduced.

Finkelshtein treated the long-range Coulomb interac-
tion problem. His only expansion parameter is (gz7) 71,
and he assumed weak disorder and treated the interaction
to all orders. His results are surprising in that, in two di-
mensions, the system scales towards weaker and weaker
disorder, so that the conductivity scales towards infinity.
In (2+¢) dimensions, his theory predicts that the system
always stays metallic, and a metal-to-insulator transition
is impossible. Recently a factor-of-2 error was found in
the nonlinear term in Finkelshtein’s scaling equation for
the interaction coupling constant (Castellani, DiCastro,
Lee, Ma, Sorella, and Tabet, 1984b; Finkelshtein, 1984b).
The conclusions of the original Finkelshtein solution are
changed considerably. The conductivity is still enhanced
as temperature decreases, but it now saturates to a con-
stant in the zero-temperature limit. The mechanism for
the conductivity enhancement can be seen from perturba-
tion theory. In Eq. (3.41b) the triplet contribution
proportional to —;—F » enhances conductivity. In
Finkelshtein’s theory, the parameter F is replaced by a
scattering amplitude I';. Upon scaling, %F,, is replaced
by a function of I';/z. According to the modified scaling
equations, I', and z and T',/z all scale to infinity. The
triplet term overcomes the exchange term in Eq. (3.41b),
leading to a net conductivity enhancement.

The spin triplet diagrams leading to the conductivity
enhancement are very much reminiscent of the ladder dia-
grams in paramagnon theories (see, for example, Brink-
man and Engelsberg, 1968). Castellani et al. (1984b) and
Finkelshtein (1984b) calculated the spin susceptibility to
be :

X=z+T)X,, (3.61)

where X, is the free-electron spin susceptibility. Thus X
scales to infinity at low temperatures. However, unlike
the paramagnon theory, in this problem the frequency
scale z also scales to infinity, and a finite length scale is
generated, so that X is independent of length scale up to a
finite cutoff. This suggests a picture of localized spin
fluctuations. The triplet spin-density propagator takes
the form [ Dg?—iw(z +T',)]7Y, so that the spin-diffusion
constant is given by

D

— , 3.62
z +F2 ( )

s

which scales to zero, even though the charge-diffusion
constant D scales to a finite value. The vanishing of the
spin-diffusion constant reinforces the picture that strong
local spin fluctuations develop upon scaling.

The real difficulty with the modified Finkelshtein solu-
tion is that scaling is towards strong coupling, so that the
model eventually breaks ‘down. In any event, a model that
simply suppresses maximally crossed diagrams does not
describe the true zero-temperature limit. In a physical sit-



Lee and Ramakrishnan: Disordered electronic systems 313

uation, these diagrams are suppressed with a magnetic
field or with spin-flip scattering. In either of these situa-
tions, the spin degrees of freedom are affected, and new
solutions are expected to appear.

From the above discussion, it is clear that triplet fluc-
tuations are responsible for the scaling towards a conduc-
tor. If the triplet fluctuations are modified, it should be
possible to produce a theory that scales to an insulator in
two dimensions, and, more interestingly, one that de-
scribes a metal-to-insulator transition in (2+¢) dimen-
sions. This possibility has been realized in two different
models.

(i) Singlet-only model. The condition for this model is
strong spin-flip scattering, 7; ' >>kT, or strong spin-orbit
scattering, 750 >>kT, with a small magnetic field which
suppresses the maximally crossed diagrams.

(ii) Strong magnetic field, so that spin splitting of the
bands occurs. The conditions are guzH >>kT and
gupH >>7;! or 755. These conditions are naturally
satisfied in ferromagnetic metals, in which case H is the
internal field.

Model (i) was first discussed by Altshuler and Aronov
(1983), and the scaling theory for both models was
worked out by Finkelshtein (1984a) and by Castellani, Di-
Castro, Lee, and Ma (1984a). We summarize some of the
results below. We note that, unlike the original Finkel-
shtein model, in both models (i) and (ii) the suppression of
the maximally crossed diagrams is a natural consequence
of the model. Furthermore, the theory involves an expan-
sion in weak disorder only, and should be accurate in the
vicinity of the metal-insulator transition in (2+¢) dimen-
sions. Thus these results should describe the metal-
insulator transition in physically realizable situations.

We first give the results for the long-range Coulomb in-
teraction problem, and we begin with the results for
model (ii) because it is simpler. In fact, as far as the con-
ductivity is concerned, its critical behavior is the same as
that of the noninteracting theory. In two dimensions, a
universal logarithmic correction is predicted,

e

o(T) =00+ - (2—2In2)InT7 . (3.63)
27°h

Basically, the Hartree-type correction in Eq. (3.41) scales
to a constant, and the parameter F, disappears from the
problem. In (2+4¢) dimensions, near the fixed point, the
scaling equation for the conductance g takes the same
form as the noninteracting case given in Eq. (2.14), except
that the constant a is different. Since the critical ex-
ponents are independent of this constant, they are the
same as in the noninteracting case. Furthermore, the fre-
quency renormalization factor z scales to a constant in
this case, so that the critical behavior in frequency or
momentum space is also the same as in the noninteracting
case. The conductivity obeys Eq. (3.55), with
a=(d —2)/d, by the same arguments as given in Eq.
(2.38). The exponent p =2/e+0(1) and pu=1+0(¢) to
the accuracy of this calculation. Furthermore, the coeffi-
cient of the T%/? correction for small T should diverge as
(8nPe/2—H ~(8n)@ =274 These predictions should be
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amenable to experimental tests.

The dielectric constant on the insulator side can be es-
timated from the scaling theory, as done in Sec. IL.F, and
we find that the relation between the dielectric constant
and the conductivity on the metallic side, given by Eq.
(2.46), i.e., €'o*=const, still holds.

The single-particle density of states at the Fermi level
observable in tunneling experiments is very different from
the noninteracting case, in that it is predicted to vanish at
the metal-insulator transition. It is predicted by Finkel-
shtein (1984a), to vanish as a power law N (Q)~QF, with
B~ '~2(2—21In2), whereas Castellani et al. (1984a)
predict N(Q)~exp{—[(d —2)/8(2—21n2)]In’Q}. The
difference between the two predictions has to do with dif-
ferent ways of taking the e—0 limits.

The above results were derived for a dynamically
screened Coulomb interaction. One can also imagine ex-
perimental situations where a short-range interaction is
appropriate. Examples are disordered neutral fermions
such as He; on a disordered substrate, or a two-
dimensional electron gas screened by a nearby metallic
sheet. The case of short-range interaction was treated by
Castellani et al. (1984a). The critical exponents are un-
changed for model (ii). The density of states is predicted
to vanish as a power law with nonuniversal exponents,
and the coefficient of InT in Eq. (3.63) is nonuniversal.

We next discuss the results for the singlet-only problem
[model (i)]. As first pointed out by Altshuler and Aronov
(1983), the spin scattering cuts off the diffusion pole in
the triple channel, so that in perturbation theory only the
exchange term survives. For long-range interactions, we
have in 2D

2
o=0y+ _h_zﬁlnTT . (3.64)
This prediction should be easily tested experimentally.
For example, one can study a thin film with strong spin-
orbit scattering with a small normal magnetic field to
suppress weak antilocalization effects. A recent experi-
ment by Nishida et al. (1983) on Si;_,Au, films appears
to confirm this prediction.

In (2+¢) dimensions, the scaling equation also takes
the form of the noninteracting problem, Eq. (2.14). How-
ever, there is one important difference, as pointed out by
Finkelshtein (1983b). In this model the frequency renor-
malization factor z in Eq. (3.60) scales to zero. Thus the
renormalization procedure differs from the noninteracting
case in frequency scale, while Eq. (3.55) continues to hold;
the critical exponent a is modified to be a=¢/(2+¢/2),
while ¢ and p remain the same to lowest order in €. The
relation between the dielectric constant €’ and the conduc-
tivity measured equidistant from the metal-insulator tran-
sition is modified to read

g'o?=(6n)%, (3.65)

where the exponent 8=pe/4z%+0( €). The tunneling
density of states is also expected to vanish at the transi-
tion with a different behavior, according to Finkelshtein
(1984a) and to Castellani et al. (1984a).
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Finally it is interesting to note that, for short-range in-
teractions the singlet-only model behaves very differently.
Castellani et al. (1984a) found that the interaction con-
stant scales to zero, so that the noninteracting theory
describe the metal-insulator transition. The density of
states remains finite at the transition in this case.

In summary, we now have available, in certain cases,
scaling theories for the metal-insulator transition that in-
clude interaction effects. In all these theories, the weak
localization effects discussed in Sec. II are explicitly
suppressed. [We should note that Finkelshtein (1984b)
treated the localization effects in lowest order and argued
that they are unimportant.] While these special cases may

describe certain experiments, the important problem of -

the full interplay between localization and interaction is
not yet addressed. What is clear, however, is that one
should expect to find a number of different universality
classes, depending on the experimental situation.

IV. NUMERICAL TESTS

It is in principle straightforward to test the predictions
of localization theories by performing numerical solutions
of the Schrodinger equation on a finite lattice. The brute
force diagonalizing of an N XN matrix required to
describe a lattice of N sites requires computer storage
proportional to N2 and processing time proportional to
N?3. Furthermore, since we are dealing with a random
system, averaging over many lattices is required. Thus
the lattice size that can be studied by the brute force
method is severely limited. Several different methods
have been devised to reduce the storage and time require-
ments. At the same time there are a number of different
ways to make measurements on the lattices and extract re-
sults that are related to the conductivity. Some of the ap-
proaches are summarized below.

(i) Yoshino and Okazaki (1977) directly observed the
eigenstates of random lattices up to 100X 100. They ob-
tained a graphic demonstration of localized and extended
states. However, since only a few states are studied at a
time, this method does not permit quantitative studies of
the conductivity.

(ii) Computation of the conductivity using the Kubo
formula. This method was used by Stein and Krey (1980)
and more recently by Yoshino (1982). A finite energy
resolution ¥ is required for studies of finite systems, so
that one effectively averages over transitions between a
number of eigenstates. The energy scale y plays the role
of an inelastic scattering rate and effectively limits the
sample size to Lqy,=(D /y)/?. Careful extrapolation to
¥=0 has to be made. Even in one dimension it is not
simple to reproduce the known results that all states are
localized (Czycholl and Kramer, 1980). This problem
was clarified in detail by Thouless and Kirkpatrick
(1981).

(iii) Licciardello and Thouless (1975) related the con-
ductivity to the sensitivity of the eigenvalues to changes
in boundary conditions. The advantage of this technique
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is that only eigenvalues, not eigenvectors, need to be com-
puted. When combined with the techniques of diagonal-
izing sparse matrices (Edwards and Thouless, 1976), this
becomes a highly efficient method. The first hints that
all states may be localized in two dimensions came from
numerical studies using this method.

(iv) Instead of diagonalizing the Hamiltonian, an alter-
native approach is to follow the time development of a
wave packet. If the conductivity is finite, the wave packet
should spread according to the diffusion constant. This
method was implemented by Prelovsek (1976). However,
Prelovsek’s choice of the initial wave packet led to oscilla-
tions in the time development. This can be minimized by
an optimal choice of the initial wave packet (Sher, 1983).

(v) Approximate methods. When the scaling idea for
localization was first proposed, attempts were made to
implement these ideas numerically. The approximation
involves either truncation on the basis idea set every time
the lattice dimension is doubled (Lee, 1979) or the intro-
duction of an effective Hamiltonian (Sarker and Domany,
1980,1981). As the lattice size becomes large, the approx-
imation becomes uncontrolled, and the result is either in-
conclusive or erroneous.

(vi) Localization may be studied by computing the
transmission matrix 7 through a disordered region and
relating it to the conductivity via some generalized Lan-
dauer formula (Landauer, 1970); the Landauer formula
states  that the  conductivity is given by
(e2/#)| T |?/(1—| T |?) in one dimension. The generali-
zation of this formula to higher dimensions is a subtle
problem and depends on assumptions about equilibrium
in the wires outside the sample. This problem was dis-
cussed by Thouless (1981) and treated in detail by
Langreth and Abrahams (1981), and more recently by
Biittiker, Imry, Landauer, and Pinhas (1985). The
transmission coefficient can be computed quite efficient-
ly. Lee and Fisher (1981) computed the conductivity of
162, 322, and 64% samples, using an approximate form of
the generalized Landauer formula (Fisher and Lee, 1981).
They found that even for relatively weak disorder,
(W /V =4), the conductivity decreases with increasing
sample size in a way consistent with the scaling theory
and the perturbation results. These methods are easily ex-
tended to include a magnetic field normal to the two-
dimensional sample. The conductivity no longer de-
creases with increasing sample size, again in agreement
with the perturbation theory, since a magnetic field des-
troys time-reversal symmetry. Lee and Fisher (1981) also
reported that for exponentially localized states, the locali-
zation length is increased with the application of a mag-
netic field.

(vii) Finite-size scaling methods. In this method one
calculates the properties of a long chain with finite cross
section (width M for a 2D strip and M XM for a 3D
block) and studies how the properties of the chain scale
with M (Pichard and Sarma, 1981; MacKinnon and Kra-
mer, 1981). In practice the localization length
MM, W /V) is calculated for the strip or block. In analo-
gy with critical phenomena (Nightingale, 1976), it is pro-
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posed that if a scaling theory exists, then A(M,W/ 2
should scale in the following way:

ZL“”’#’lzf,,,[xmxW/V)/M] 4.1)

and A (W /V) should be the characteristic length scale
for a sample of infinite cross section which is identified as
the 2D or 3D localization length if the system is localized
[W/V>(W/V).]. The advantage of this scheme is that
AMM,W/V) can be calculated efficiently and with arbi-
trary accuracy. The statistical error can be controlled
better than in the direct computation of conductivity.
The scaling relation can be tested using the numerical
data and found to be satisfactory. The length scale A,
can be extracted. With this method MacKinnon and
Kramer (1981) concluded that states are’'localized in two
dimensions down to W /V =2. Furthermore, by making
an additional assumption relating the conductivity with
Ap, MacKinnon and Kramer (1983) constructed numeri-
cal scaling functions B(g) for 1, 2, and 3 dimensions.
These are consistent with the scaling picture of Abrahams
et al. (1979). While this method involves a number of as-
sumptions, it provides a convincing consistency test of the
scaling theory. Recently these calculations were extended
to include the presence of a magnetic field (MacKinnon
and Kramer, 1983).

V. FIELD THEORY DESCRIPTION
OF THE LOCALIZATION PROBLEM

The close relation between the localization problem and
problem of critical phenomena suggests that a mapping of
the localization problem to a field theory should be possi-
ble. This mapping was first accomplished by Wegner
(1979) and made precise by Schafer and Wegner (1980).
It has since been elaborated upon and extended by many
authors. Much of the insight that led to the mapping was
gained from an earlier study of a model with n orbitals
per site, and a perturbation expansion was carried out to
lowest order in 1/n by Oppermann and Wegner (1979).
The 1/n expansion is very similar to an expansion in

weak disorder, i.e., in Dy ! ~(ep7)~!, and we shall follow

the latter approach. A detailed and lucid derivation of
the field theory approach can be found in McKane and
Stone (1981), and Wegner (1982) has provided a concise
review article. We shall not reproduce the derivation
here. Instead we shall describe the resulting field theory
and make qualitative comments.

It has long been appreciated that the impurity-averaged
Green’s function

G(r,r E+in) =[G (r,r,E+in)],y , 6D

where G (r,r',E+in)=(r|E+in—H)|r’), contains no
information on the localization properties of the wave
function. For example, the density of states

N (E)=—-Tm[G(r,r,E —in)] (5.2)
is completely smooth as E varies across the mobility edge.
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To study localization, it is necessary to consider the im-

_purity average of the two-particle Green’s function

K(r,r'm)={|G(r,r,E+in/2) |, (5.3)

which is related to the density-density correlation func-
tion. To represent Eq. (5.3) as a functional integral, it is
necessary to introduce field variables @' and ¢ corre-
sponding to G(E +in/2) and G(E —in/2), respectively.
Furthermore, we replicate the fields to n components ¢%,
p=12, a=1,...,n. This permits the impurity averag-
ing of the Green’s function, provided the limit #—0 is
taken at the end of the calculation. Suppose the Hamil-
tonian is given as

H=3 v, |r){r'], (5.4)
rr

where v, ,. is a random tight-binding potential. For real
v, We can choose the ¢’s to be real. On the other hand,
if time-reversal symmetry is broken, v, , is in general
complex, and the ¢’s are to be complex. In terms of the ¢
fields, the correlation functions are given as

G(r,r', E+in)=TFi{@hret*(r')) s , (5.5
where p =1 (2) for + (—), and
K (r,r") =@y Pk (r")pp(r" )3 (7)) 4 . (5.6)

In Egs. (5.5) and (5.6), the averaging ( ), denotes an
averaging over the effective Hamiltonian 27 =2%"4 5,
where

Ho=—7 3 (B8, —v,) 3 [ gh(rIpstr’)

—@ANPA] (57

and
9/1=—-—Z— S [eaN P+ ea(n]* . (5.8)

The impurity averaging over v, can now be performed in
Egs. (5.5) and (5.6) in the usual way. But before we do
that, we point out an important symmetry in the effective
Hamiltonian. As noted by Wegner, 2, is invariant under
a global transformation, which leaves

I1=73 (95 pa—95 92) (5.9)
a

invariant. The negative sign in Eq. (5.9) comes from the
requirement that the representation of G (E +i7) in terms
of the ¢’ and @2’ fields be convergent. For real fields ¢,
this means that while 577, is invariant under an O(n) rota-
tion among the @' and ¢ fields, it is not invariant under
0(2n). Instead the symmetry group is O(n,n). On the
other hand, 2 is invariant under 0(2x) and not O(n,n).
Thus 27 breaks the O(n,n) symmetry and 7 plays the role
of a symmetry-breaking field, analogous to a small mag-
nitude field in a ferromagnet. The field conjugate to 7 is

(X (rel(r) + @2 (rek(r)) =i[G(E +in/2)

—G(E —in/2)]. (5.10)
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According to Eq. (5.2), this equals 27N (E) in the n—0
limit. Thus the density of states play the role of an order
parameter. We have a peculiar situation where the order
parameter is finite in both the localized and extended
phases, a situation that is possible only by virtue of the
n—0 limit of the field theory. The case of complex
fields is similar except that the symmetry group is
Ul(n,n).

The invariant Eq. (5.9) is described by Shifer and
Wegner (1980) in terms of pseudounitary transformations,
i.e., Hy is invariant under ¢p— f‘<p where p=(¢',¢?) and
T obeys the relation

T+T=TT+=1. (5.11)
Here

T+=5'T"s (5.12)
and

2P0 =5 80080 » (5.13)
where s;=i and s,=—i. In the orthogonal case, T is

constrained to be a real matrix.

The next step is to average over the impurities and to
introduce the composite operator Qﬁ%(r), which basically
plays the role of (s,5,)'2gA*(r)¢h(r). Under the
transformation ¢— f"(p, we have

- Q-TQOT+ (5.14)
where
T=512T,172 (5.15)

For complex ¢, T is pseudounitary and so is 7. For real
@, T is real and T',T? are real whereas T'2, 7% are
imaginary. The latter transformation is referred to as
pseudo-orthogonal.

In terms of the Q matrices, the correlation functions
are

( Q%3 )5 =8,p8,5G (r,r,E *in) (5.16)
and
K(r,r) < {QB(rNQs(r'))% . (5.17)

The average in Egs. (5.16) and (5.17) is over an effective
Hamiltonian #°, which is a functional of the Q matrices.
Since impurity averaging has been performed, 5 is no
longer a random Hamiltonian. The important point
about 57 is that it contains a part #, that is invariant
under the transformation, Eq. (5.14), i.e.,, O(n,n) or
U(n,n) symmetry. There is a second part of % that is
proportional to 7, which breaks the O(n,n) or U(n,n)
symmetry but which preserves the O0(n)XxO0(n) or
U(n)X U(n) symmetry of rotation among the @' or ¢?
components alone. According to Eq. (5.16) there is al-
ways a spontaneous breaking of the O(n,n) or U(n,n)
symmetry.

From this point on, Wegner proceeded in direct analo-
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gy with the well-studied vector-spin O(n) model,
H=3J, > s54(rsa(r'),

154 a

(5.18)

where s, has n components a=1, ..., n. Equation (5.18)
has 0(n) symmetry, which is spontaneously broken. The
important fluctuations at low temperature are the angular
fluctuations of the spin. The amplitude fluctuations are
negligible. More precisely, suppose the symmetry is bro-
ken in the direction sp=(1,0,....,0). The important de-
grees of freedom are those obtained by operating the rota-
tion operator 0 on s, i.e., s(#)=0(r)sy such that O(r) is
slowly varying in space. Instead of the full Hamiltonian,
we can study

#,= [ dr{5k[Vs(r)P+H's) , (5.19)

where k is the spin stiffness constant.

By definition, s is constrained to have unit length
s+2=1. Thus we have removed the irrelevant amplitude
fluctuations from the original Hamiltonian. Note that
any O that can be written as 0=0,0,, where 0, is an
0(n —1) rotation among the a=2,...,n spin com-
ponents, generates the same s for any 0,. Thus s is de-
fined not on the space O(n) but on the coset space
0(n)/0(n —1), which identifies all O(n —1) rotations.
The analogous procedure for the localization problem is
to introduce the Hamiltonian

= [ dr %(VQVQ)+in§(QLL—Q§i) . (520

The matrices Q are generated just as in the O(n) spin case.
We first consider the O(n,n) symmetry to be spontaneous-
ly broken, and we choose a particular direction of the
“quadrupole” so that Qy=s where the matrix s is de-
fined in Eq. (5.13). Then Q is the field generated by

O(=T(r)sTH*(r), (5.21)

where T is any pseudo-orthogonal or pseudounitary
operator. Again, for any T that can be written as T, T,
where T, is a unitary rotation in the @' or @? subspace,
the resulting Q is independent of T,. Thus Q is defined
not in the space O(n,n) or U(n,n), but in the coset space
0(n,n)/0(n)X0(n) or U(n,n)/U(r)XU(n).

From Eq. (5.21) it is clear that the matrices Q satisfy
the constraint :

Q*=—1, (5.22)

and its elements are not independent. For practical calcu-
lations it is convenient to parametrize Q in terms of its
independent variables, just as in the O(n) spin model it is
convenient to parametrize
172
1— 2 '7T,2 ] s
1

s= , [=2,...,n,

in terms of the n —1 independent 7 fields. There are
many possible parametrizations of Q, but a convenient
one is
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_ i(I+Q'12@21)1/2 o
= ‘Q‘zl _i(1+ézlé 12y172 | » (5.23)
where
QZI=Q 121 . (5.24)

In the pseudo-orthogonal case, Q 12 is an arbitrary real
. : |

2’0=fdr

2t

_ %V(I_’_Q' ZIQ' 12)1/2v(1 +Q 21@' 12)1/2

We treat the first term in Eq. (5.25) as the unperturbed
Hamiltonian and form a perturbation series by expanding
out the square root in the remaining two terms. This ex-
pansion was performed by Hikami (1981) and compared
with the direct impurity diagrammatic perturbation ex-
pansion of the density-density correlation function in
powers of Dg !, the inverse of the bare diffusion constant.
He found that the perturbation series agree to the order he
studied, which included products of six Q’s. In zeroth or-
der the correlation function is given by

[ dre (3 23 2(0)) = —5— .
t71g%+n

(5.26)
Recalling that this correlation function is related to the
density-density correlation function, [i.e., (5.17)] and in
the metallic limit, we expect the diffusive behavior

[ dre K (r)=—1

. (5.27
Dyg*—iw )

We therefore identify the parameter in the field theory ¢
as Dy '. Furthermore, if time-reversal symmetry is not
broken, the field ¢, is real and K can represent either a
particle-hole or a particle-particle propagator. Thus the
singularity in the particle-particle channel (the maximally
crossed diagram) discussed in Sec. II is included. On the
other hand, if time-reversal symmetry is broken, K
represents only the particle-hole propagator, and the
singularity in the maximally crossed diagram is
suppressed. In the field theory the situation is analogous
to the introduction of anisotropy fields in the spin model,
where, for example, a Heisenberg model may cross over to
an x-y model. The breaking of time-reversal invariance is
represented as a crossover from a 0(n,n)/0(n) X 0(n) field
theory toa U(n,n)/U(n)X U(n) one.

Wegner (1982) has pointed out the analogy of this
model to the more familiar magnetic system described by
Eq. (5.19). In that case we have a spontaneous magnetiza-
tion M in the low-temperature phase, and the transverse
fluctuation is described by the transverse susceptibility X,
given by

M

Xj=—5—""". (5.28)
YT kgi+H
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n X n matrix, whereas in the pseudounitary case, Q 2 is
an arbitrary complex nX#»n matrix. It can be shown
(Schafer and Wegner, 1980) that Eq. (5.23) is equivalent
to Eq. (5.21). Equations (5.20) and (5.23) define the field
theory mapping of the localization problem.

By combining Egs. (5.23) and Eq. (5.20) we have a field
theory with unconstrained variables:

%(V@ 2y52 4 v32vG 12)—-1—V(I +0 2§ 2M)12y(1 4§ 120 )12

(5.25)

f

Comparing Eq. (5.28) with Eq. (5.27), we see that iw
plays the role of the external field H, and the density of
states N [not explicitly written in Eq. (5.27)] plays the
role of the magnetization M. The critical exponent corre-
sponding to M or N is 8. As mentioned earlier, the local-
ization problem is peculiar in that the order parameter is
finite on both sides of the transition. This is possible only.
if B=0. In the field theory, B is proportional to n, so that
it indeed vanishes in the »—0 limit. Using the standard
scaling relations, 3=0 implies n=2—d. This means that
at criticality the density-density correlation function
behaves as

1 _ 1
2—n qd

K~

(5.29)
q

This agrees with the analysis based on general scaling ar-
guments given in Sec. ILF.

We mention here that the critical behavior of higher
moments of the quantity Q*+—Q ~~ has been reported
by Wegner (1982). These moments are related to mo-
ments of the wave function and provide information on
the fluctuation of wave-function amplitudes near the mo-
bility edge. For example, Wegner found that

p=2 |%:(r) [ #(E —E;)~(E—E)™, (530

i

where 7 =(k —1)(2e"'+1—k)+O(e). This critical
behavior indicates strong amplitude fluctuation near the
mobility edge.

We should point out that the above mapping of the lo-
calization problem to a field theory is not unique. Efetov,
Larkin, and KhmeDl'nitskii (1980) introduced ¢ fields
which are Grassmann (anticommuting) fields instead of
c-number fields. This method avoids the convergence
problem that forced the introduction of the metric Eq.
(5.9) and the resulting noncompact O(n,n) symmetry.
The resulting field theory is again given by Eq. (5.20), but
the matrix Q.is now a 2n X2n matrix whose entries are
q~uartemions, i.e., they are 2 X2 matrices parametrized by

an = 2,‘ qr’nnTi’ where
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10 0 —i
o= lo 1) T |—i 0|’
(5.31)
0 —1 —i 0
=11 o0 P T o0 i

and g,,, are real numbers. The matrix Q is subject to the
constraint

Q%=1 TrQ=0. (5.32)

If time-reversal symmetry is preserved, this constraint can
be satisfied by

o=o0%A0, (5.33)

where A is a diagonal matrix with entries 1 and —1 for
m=1to nand m =n +1 to 2n, respectively, and O is an
orthogonal rotation with quarternion entries.

If time-reversal symmetry is broken, Q becomes simply

a complex matrix defined in the space U(2n)/
U(n)X U(n), i.e., it is parametrized by
0=U'AU (5.34)

where U is a unitary 2n X 2n matrix. It is interesting that
in this case a field theory defined either on
U(n,n)/U(n)xU(n) [Eq. (5.21)] or on U(2n)/
U(n)X U(n) represents the localization problem in the
n—0 limit. The two field theories have different scaling
behavior for finite #, but the 8 functions are the same for
n—0.

So far we have discussed spin-independent scattering.
Introduction of spin-flip scattering of the form
H'= fdrh(r)'a(r), where h(r) is a random field, de-
stroys time-reversal symmetry and simply converts the
orthogonal symmetry to the unitary symmetry. However,
if we introduce spin flip via the spin-orbit scattering,
time-reversal symmetry is preserved. The corresponding
field theory using real ¢ fields is given by Eq. (5.20), with
Q defined in the symplectic space sp(n,n)/sp(n)Xsp(n),
so that in the parametrization Eq. (5.23) the entries O 2
are quarternions. In the Grassmann ¢ representation of
Efetov et al. (1980), the entries of the Q matrices become

Q=QOTo+i41Tl+i42Tz+qu3 s (5.35)

where g; are real numbers.

Recently still another field theory mapping was intro-
duced by Efetov (1982), who used a mixed real and
Grassmann ¢ field. In this technique the n—0 limit is
avoided. Essentially closed loops in a diagrammatic ex-
pansion are removed, not by n—0, but by cancellation
between fermions and boson loops, which enter with op-
posite signs. The B function was reproduced by this
method, and Efetov (1983) solved the problem of the level
statistics in small particles using this technique.

The mapping of localization problems to field theories
puts the scaling theory of localization on a firmer basis, in
that the renormalization of the field theory can be
checked using standard techniques. The B function can
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be computed to high orders in an expansion in powers of ¢
(Hikami, 1980). However, the renormalization of ‘the
field theories has so far been based on an expansion in
powers of ¢, and leaves open the scaling behavior in the
strongly disordered regime.

The problem of the field theory mapping of the locali-
zation problem in the presence of a strong magnetic field
is particularly intriguing. The initial view was that a
magnetic field simply destroys time-reversal symmetry, so
that the pseudounitary symmetry case should apply. The
B function is given by (Hikami, 1980)

B(t)=—2t3 (5.36)

in two dimensions [Efetov et al. (1980) initially favored
B(t)=0, but this claim was later withdrawn by Efetov
(1982) in favor of Eq. (5.36)]. Although the leading — 2
term is missing, Eq. (5.36) still implies that all states are
localized. This is in conflict with the quantized Hall ef-
fect, which requires for its explanation the existence of
extended states (Laughlin, 1981; Halperin, 1982). Recent-
ly Pruisken (1983) and Levine, Libby, and Pruisken (1983)
showed that an additional surface term is needed in Eq.
(5.20). Furthermore, they claim that topological excita-
tions are important in the U(2n)/U(n)XU(n) field
theory, as they introduce nonperturbative corrections to
the B function in Eq. (5.36). According to Levine et al.,
these considerations lead to the presence of extended
states for a sufficiently strong magnetic field. It is amus-
ing to note that topological excitations exist in the
U((2n)/U(n) X U(n) but not in the U(n,n)/U(n)XU(n)
formulation of the field theory. The role of topological
excitations in the field theory for the localization is a sub-
ject that merits further investigation.

VI. EXPERIMENTAL STUDIES OF LOCALIZATION
AND INTERACTION EFFECTS

A. Introduction

The observable consequences of electron localization
were first explored theoretically by Mott (see, for exam-
ple, Mott and Davis, 1979). Directly stimulated by his
work, a large number of workers studied metal-insulator
transitions in disordered systems. Their data and already
existing data have been extensively analyzed by Mott, and
provide broad support for the ideas of variable-range hop-
ping in the localized regime and minimum conductivity
for the metal. In this section we discuss (mostly) recent
experiment work on disordered metals at low tempera-
tures. The work bears largely on relatively small (a few
percent) but characteristic anomalies in transport proper-
ties. These are localization effects predicted by the

" theories described in the previous sections. The properties

studied are resistivity, magnetoresistance, Hall effect, den-
sity of states, quasiparticle lifetime, and superconductivi-
ty. The systems are effectively one, two, and three dimen-
sional. In three dimensions, there are a few experiments
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near the metal-insulator transition boundary, where the
effects are large, but much more work remains to be done
in the strong-localization regime.

A detailed review of the experimental situation is given
by Bishop and Dynes (1984) in a separate article. What
follows is a very incomplete selection of recent experimen-
tal work, chosen to illustrate the effects observed.

We first summarize briefly work on wires, i.e., effec-
tively one-dimensional systems (Sec. VI.B). Experiments
on these were stimulated by the paper of Thouless (1977),
who pointed out that as the inelastic cutoff length Ly, in-
creases on cooling, a thin wire becomes effectively one di-
mensional for radius g less than Lyy. For example, a
wire with radius 250 A and resistivity p~100 uQcm is
expected to become one dimensional at T~1 K and to ex-
hibit anomalous temperature dependence of resistivity
below this temperature. In trying to look for these ef-
fects, Dolan and Osheroff (1980) uncovered a logarithmic
temperature and voltage dependence of resistivity in
films, which was associated by Anderson, Abrahams, and
Ramakrishnan (1980) with a two-dimensional localization
effect. In Sec. VI.C we discuss the rather extensive exper-
imental work on two-dimensional localization, while work
on bulk systems is described in Sec. VILD. Three-
dimensional systems have been studied for a long time.
There are some characteristic small effects, for example,
resistivity saturation, failure of Mathiessen’s rule, VT-
dependent resistivity, and V'H magnetoresistance at low
temperature. Large effects near the metal-insulator tran-
sition, i.e., 0 << Oy, @ giant dip in density of states, etc.,
have been seen recently.

B. Wires

Early experiments on effectively one-dimensional sys-
tems were carried out by Giordano, Gibson, and Prober
(1979; see also Giordano, 1980) and by Chaudhuri and
Habermeier (1980a,1980b). They showed the presence of
anomalous temperature-dependent terms of the right sign,
size, and functional form. More recent and extensive
work by White, Tinkham, Skocpol, and Flanders (1982),
Masden and Giordano (1982), Skocpol, Jackel, Hu, Ho-
ward, and Fetter (1982), Wheeler, Choi, Goel, Wisnieff,
and Prober (1982), and Santhanam, Wind, and Prober
(1984) tests several aspects of localization and interaction
predictions. These difficult experiments, in which the
well-defined narrow dimension is of order 100—1000 A,
have become possible because of advantages in photo-
lithography, ion beam etching, and other microelectronic
techniques.

For a wire of cross section A4, we have seen from Egs.
(2.21c) and (3.41a) that the leading perturbative correc-
tions to conductivity are

Ao= [Leff+(2—% )LHT, 6.1

wﬁA

where Lé}f) and L‘e%f) are the Thouless length and the
thermal diffusion length (%D /kzT)'/?, respectively. The
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sample length L is the cutoff if it is shorter. This quasi-
one-dimensional form is valid if L)} and L'} are larger
than the narrow dimension (~A4!/2). Otherwise, the sys-
tem is effectively two or three dimensional, depending on
the shape of the cross-sectional area A.

It was established quite early that the anomalous term
does indeed scale as the inverse of the cross-sectional area
A. The existence of a length cutoff L} has been veri-
fied directly by Masden and Giordano (1982), who com-
pared Ao(T) for otherwise identical wires of differing
lengths. They found that, for wires shorter than a certain
(temperature-dependent) length, resistivity increases with
length, whereas for longer wires it does not. This is direct
evidence for non-Ohmic behavior due to quantum locali-
zation or interaction. However, according to Masden and
Giordano (1982), there are difficulties in modeling quanti-
tatively the observed length dependence.

The perturbation theory also makes predictions con-
cerning the temperature and disorder dependence of
Ao(T). As discussed earlier (Sec. II.D), the most poorly
known quantity is the inelastic mean free path, which
could have (for a one-dimensional system) a temperature
dependence varying from T2 to T~!/2 depending on the
inelastic mechanism and the degree of disorder. Another
complication is possible dimensional crossover for Ao
when one of the relevant length scales becomes compa-
rable to and smaller than the narrow dimension.

The interaction effect term in Ao(T) goes as T
Such a temperature dependence is generally seen, and
White et al. (1982) show that it has the size expected
from Eq. (6.1) in many wires over a wide range of disor-
der. They argue that this is the dominant term. On the
other hand, Wheeler et al. (1982) find that the magne-
toresistance and their high-conductivity narrow inversion
layers fits the prediction of Altshuler and Aronov (1981a)
for localization effects in a restricted-geometry system.
They conclude that both localization and interaction con-
tribute significantly to Ao in these systems. A similar
conclusion is reached by Skocpol et al. (1982) for much
more strongly disordered systems.

While interaction terms are clearly present, it is diffi-
cult to assess the size of the localization term. Magne-
toresistance has not been exploited sufficiently as a diag-
nostic tool, especially in metallic wires. Part of the reason
is that, unlike the 2D case, the orbital contribution is re-
duced greatly by finite size effects (Altshuler and Aronov,
1981a), so that the characteristic field for the suppression
of localization becomes closer to the spin-splitting field
required to affect the interaction term (Sec. ITL.D).

We should mention one system that does not appear to
fit into this scheme. Sacharoff, Westervelt, and Bevk
(1982) measured conductivity in platinum wires drawn to
a diameter as small as 800 A. The resistivity rises as
T~'/2, but the size of the effect is 1 or 2 orders of magni-
tude larger than predicted by the 1D interaction theory.
In any event, the criterion for the 1D interaction effect is
not met even in the thinnest wires, and 3D interaction
theory would predict an even smaller effect. On the other
hand, the magnetoresistance predicted on the basis of lo-

—172
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calization theory was not observed (Sacharoff, Westervelt,
and Bevk, 1984). The drawn wires are different from the
evaporated system in that they are believed to be heavily
dislocated. There is at present no explanation of this ef-
fect. '

C. Films

Vapor-deposited films and inversion layers are two
classes of systems largely used to study two-dimensional
effects. The former range in thickness from a monolayer
to about 200 A and in resistance per square from 10 kQ
to 1 Q. They are pure metals [van den Dries, van Haesen-
donck, Bruynseraede, and Deutscher, 1981 (Cu); Berg-
mann, 1982a,1982b,1982¢ (Mg, Cu, Ag, Au); Markiewicz
and Harris, 1981 (Pt)]; alloys [Dolan and Osheroff, 1979
(Au-Pd)], and metal-metal oxide composites [Ovadyahu
and Imry, 1981 (In,O;_g); Kobayashi, Komori, Ootuka,
and Sasaki, 1980 (Cu-CuO)].

The films are two dimensional for localization effects if
the length scale Lt; up to which electrons diffuse
without inelastic collisions is larger than the film thick-
ness ¢, ie., Lyy~(L;L,)"/*>t where L;=vp7; and
L,=vp7 and 7; and 7 are the inelastic and elastic scatter-
ing times, respectively. Since generally L; decreases as
temperature increases, there is a crossover to three-
dimensional behavior above a certain temperature. In
many films, boundary scattering is the basic elastic
scattering mechanism, i.e., L, ~¢. In that case, the condi-
tion of two dimensionality is L; >¢. This kind of dimen-
sionality crossover has been observed, e.g., in GaAs FET’s
by Poole, Pepper, Berggren, Hill, and Myron (1982). It is
possible for a film to be effectively two dimensional with
respect to localization and three dimensional with respect
to Coulomb interaction (see, for example, Imry and Ova-
dyahu, 1982). The condition for the latter is
(D/kT)"? <t. In the temperature window specified by
(D/kT)"? <t <[L;(T)L,]"% the system is three dimen-
sional for interaction effects and two dimensional for lo-
calization effects. Clearly, at low enough temperatures,
the first inequality is not satisfied, and the film is two di-
mensional for all disorder-caused transport anomalies.

The inversion layer system is intrinsically two dimen-
sional, the electrons being confined to the inversion layer.
The areal density of electrons, and hence the Fermi ener-
gy €r, can be varied by changing the gate voltage. For ex-

ample, when the latter is increased from 8 to 200 V, n in-

creases from 3% 10''/cm? (g5 ~20 K) to 5.8 10'%/cm?
(e ~360 K). [The numbers are for the (100) face of a
Si-MOSFET.] The effective disorder can be varied in-
dependently by applying a substrate bias, which moves
the electron wave function away from or close to the
Si-oxide interface. Experiments have been done in
the resistance-per-square range of 300 Q to 10 kQ. Since
the electron-lattice coupling in these systems is relatively
weak, they are ideal for studying the effects of disorder
and of Coulomb interactions in two dimensions.

Most of the recent studies have concentrated on the re-
gime where disordered system anomalies are relatively
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small, i.e., the perturbative (kp! >>1) results for localiza-
tion and interaction effects are sufficient. A number of
observable characteristic anomalies have been discussed in
Secs. IT and III. To the lowest significant order, localiza-
tion and interaction corrections to conductivity o(T,H)
are 'additive. For example, the zero-field conductivity
shows a logarithmic increase as temperature decreases,
ie.,

o(T)=0o To)—f— 2[ozp—l—(l—— 3F ) ]In

T

For an orbitally nondegenerate free-electron gas, a=1
and p/2 is the temperature index of the Thouless length
Ly,. The index p depends on the dominant collision
mechanism. The Coloumb term is (1—3F, /4), where the
size of the Hartree part F, depends on the screening
length [Eq. (3.34)]. The logarithmic increase of Eq. (6.3)
has been seen in a large number of systems with a coeffi-
cient of order unity, over a wide range of o(T) (from 1
to 10* Q per square). Experiments described below enable
a, p, and F » to be determined independently.

A related anomaly is the logarithmic dependence of o
on applied steady voltage if the latter causes sufficient
Joule heating to push the electron temperature up signifi-
cantly (Sec. ILD). Dolan and Osheroff (1979) and
Bishop, Tsui, and Dynes (1980) found such a In¥V term.
Its slope relative to that of Eq. (6.3) is predicted to be
2/(2+p’) where the electron energy relaxation time 7. -ph
due to scattering from phonons goes as T ?". The experi-
mental result for p’ is 3, which is the theoretlcally expect-
ed dependence. This heating effect has been extensively
studied in inversion layers by Uren, Davies, and Pepper
(1980; see also Pepper, 1981).

The unique magnetoresistance behavior of disordered
metal films has been discussed earlier, in Sec. IL.E for lo-
calization and in Sec. IIL.D for interaction effects. These
sections predict logarithmic and quadratic dependences
for strong and weak fields, respectively. However, the
characteristic fields are different [see Egs. (3.48) and
(3.49)]; for the localization term it is Hj=~(hc/2e)L T,
whereas for the spin-splitting part of the interaction term
it is Hy~(kpT/gup). The orbital contribution to the
latter has a lower characteristic field Hy~(kpT/
gup)(kpl)~!. The magnetoresistance due to localization
is negative, and for a thin film purely transverse, whereas
the interaction magnetoresistance is positive, being isotro-
pic for spin splitting and transverse for the orbital part.
These differences help one to disentangle the two terms
and to determine their sizes, etc. In general, H; < H; and
H,. Further, except at very low temperatures, it is very
hard to reach the limit Hy~(kpT /gup). Therefore, the
transverse magnetoresistance is almost always negative
except at very low temperatures and high fields, where it
can be positive if F, is large enough. The longitudinal
magnetoresistance is positive for a truly two-dimensional
film. In the presence of spin-orbit scattering, the
behavior is more complex (see below).

Negative magnetoresistance was first observed and
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analyzed by Kawaguchi and Kawaji (1980a,1980b) in a Si
inversion layer (see also Kawaji and Kawaguchi, 1968 and
Eisele and Dorda, 1974 for earlier observations of nega-
tive magnetoresistance). Since then the theoretical predic-
tions have been confirmed in great quantitative detail by
experiments on Si inversion layers (Wheeler et al., 1981;
Davies, Uren, and Pepper, 1981; Kawaguchi and Kawaji,
1982a,1982b; Dynes, 1982; Bishop, Dynes, and Tsui,
1982), Cu films (van Haesendonck et al., 1982), Pt films
(Markiewicz and Harris, 1981), Mg films (Bergmann,
1982a), and other systems. From o(H;T) one can deter-
mine, in addition to «, the dephasing length Ly, and its
temperature dependence, as well as the size of the Hartree
term f‘a. The accurate results on the Si inversion layers,
extending down to the millidegree range, have so far been
analyzed considering for interaction effect only spin split-
ting and ignoring the orbital term. This works well and
suggests that the coefficients of the latter are temperature
renormalized to small values (Sec. IIL.D).

The Hall coefficient Ry is another quantity that
behaves differently for localization and interaction ef-
fects. There is no logarithmic correction due to the form-
er, whereas in interaction theory

3Ry S8R

=2'— ’

Ry, R (6.3

where SR is the logarithmic resistivity anomaly (Sec.
III.G). This prediction has been verified by Bishop, Tsui,
and Dynes (1980) and by Uren, Davies, and Pepper
(1980). These authors measured the Hall coefficient in a
magnetic field sufficient to suppress the localization ef-
fect (H > H;); when the field is decreased, the ratio
[(8Ry /R )/(8R /R)] decreases from two, due probably
to localization effects.

The effect on magnetoresistance of scattering by mag-
netic impurities and by impurities with spin-orbit cou-
pling has been demonstrated in a series of beautiful exper-
iments by  Bergmann (Bergmann, 1982a,1982b,1982c,
1982d). By covering thin quenched-condensed metallic
films with small controlled quantities of a magnetic ion
like Fe, or a heavy ion with large spin-orbit coupling like
Au, he was able to observe dramatic changes in the size
and sign of magnetoresistance as a function of the field.
In Fig. 17 we show the magnetoconductance of an Mg
film as a function of magnetic field and Au coverage
(Bergmann, 1982b). The data clearly show the change of
magnetoresistance from negative to positive with increas-
ing spin-orbit scattering, and its curvature back to a nega-
tive value for large enough field. The data can be fitted
quantitatively by a calculation due to Hikami, Larkin,
and Nagaoka (1980), who considered the effect of random
magnetic impurity scattering, spin-orbit scattering, mag-
netic field, and inelastic collisions on the quantum back-
scattering interference term of Sec. II.C. When these are
all present together, the individual length scales appear in
characteristic combinations, and their effects can be un-
ravelled by analyzing Ao(T,H) for various coverages.
One then obtains experimental values for rates of spin-
orbit scattering, spin-disorder scattering, and inelastic col-
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lisions. For example, from experiments with a 103
monolayer of Fe on Mg, a magnetic scattering time of
4.7x 10712 sec is found. The spin-orbit scattering cross
section for an Au atom on Mg is deduced to be
0.5x 10716 cm2. As pointed out by Bergmann, weak lo-
calization effects can now be used as an accurate tool to
measure basic solid-state  properties.  Spin-orbit-
scattering-related magnetoresistance anomalies have been
observed in many pure metal films such as Mg, Cu, Ag,
Au (Bergmann, 1982b) and in In-P inversion layers
(Poole, Pepper, and Hughes, 1982). The situation in Mg
is particularly interesting in that the onset of spin-orbit
scattering has been observed as a function of decreasing
temperature (White, Dynes, and Garno, 1984).

We now briefly discuss the experimentally determined
values of the parameters a, F, that appear in Eq. (6.3)
and the Thouless length Ly,. From detailed measure-
ments of o(T,H) over a resistivity range of about 25,
Bishop, Dynes, and Tsui (1982) concluded that
a=1.0%0.1, close to the theoretical estimate. We should
note that Larkin (1980) has produced a term in interac-
tion theory which contributes to magnetoresistance in ex-
actly the same way as the localization term, and effective-
ly reduces a from unity [see Eq. (3.49)]. The data show
that the correction is small in Si-MOSFET, but interac-
tion effects are apparently observable in GaAs, where a
was found to be ~0.8 (Lin et al., 1984) or o was analyzed
as being field dependent (Nambu et al., 1984). Since ;'
turns out to be close to 7" in this system, it is possible that
both the Larkin term and the particle-particle interaction
term [Eq. (3.48a)] contribute to magnetoresistance.

The size of the Hartree term F, has been investigated
only in a few cases where there is clear evidence for high-
field positive magnetoresistance contributions attributable
to it. Bishop, Dynes, and Tsui (1982) measured the mag-
netoresistance in a magnetic field parallel to the 2D plane.
This should probe the spin-dependent part of the magne-
toresistance, and should have contributions only from the
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FIG. 17. The magnetoconductance curve of a Mg film with dif-
ferent coverages of Au. [AL(H) is the magnetoconductance,
and L _=e?/27°%.] The coverages shown are in percent of an
atomic layer. Increasing Au coverage converts the positive
magnetoconductance to negative. Full curves through the data
points are fits using the theory of Hikami, Larkin, and Nagaoka
(1980). Figure is taken from Bergmann (1982b).
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interaction term. A positive magnetoresistance was ob-
served, and by comparison with the perturbation theory
[Eq. (3.43)], values for F, were extracted as a function of
kpl. F, was found to increase from unity at kpl~10 to
~3 for kpl~4. This large value of F, is surprising and
unaccounted for by theory. It is possible that the use of
the perturbation result is not adequate in this case, as we
expect F, to be renormalized as discussed in Sec. IILF,
and this renormalization is more important for small kgl.
This is clearly a problem that deserves further attention.
In particular, the parallel field experiment is the ideal
geometry for investigating the universal behavior predict-
ed in Eq. (3.62).

The Thouless length L1y, being the effective scale size
for quantum interference effects, determines the size of
localization anomalies. One of the major initial surprises
was the smallness of localization effects; this is most like-
ly due to the disorder-induced enhancement of inelastic
decay rates leading to small Lyy,. Typically, compared to
the pure system estimates, the inelastic mean free path
L; (=L%,/L,) is less by a factor of 10? or 10°, the
discrepancy being larger for more resistive films. For a
number of well-characterized systems, L; has been ob-
tained as a function of temperature from magnetoresis-
tance measurements.

In Cu films of very low resistance per square (van
Haesendonck et al., 1982a) and in Mg films (Bergmann,
1982a), L,-"1 goes as T2, indicating that electron-electron
collision (in the clean limit) is the dominant inelastic re-
laxation mechanism. The temperature index decreases to
about 1.5 for more resistive Cu films with Rg>50 Q
(van den Dries et al., 1981), and is 1.65 for noble-metal
films with R > 100 Q. This temperature dependence is
not understood. The films are thin enough for the inelas-
tic process to be two dimensional, in which case the in-
elastic length due to Coulomb interaction is given by Eq.
(3.31). This length seems to be of the right order of mag-
nitude, but has the wrong temperature dependence.

In the intrinsically two-dimensional inversion-layer sys-
tems, it appears from the work of Wheeler (1981), Bishop,
Dynes, and Tsui (1982), and Poole, Pepper, and Hughes
(1982) that the inelastic rate is in good agreement with the
predictions of Eq. (3.30), i.e., that 7; ! is proportional to
eK,(kgT/DK3)In(T,/T), where K5 ' is the screening
length and T'; a high-temperature cutoff. The disorder
and temperature dependences of 7;~ Y(T), as well as its
size, all agree with the above form. Poole, Pepper, and
Hughes (1982), however, suggest that there is evidence
against the presence of the [In(7T; /T)] term in InP inver-
sion layers. These results may be more consistent with
Eq. (3.31).

Experiments on highly resistive Pd and Pd-Pt films
with Rp~6000 Q (Markiewicz and Harris, 1981) also
suggest very short inelastic mean free paths. These are
complicated systems, with strong spin-orbit interactions,
and Stoner-enhanced spin fluctuations, and more needs to
be known about their effects.

One of the predictions of the scaling theory of localiza-
tion is that, at large enough length scales, any disordered
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film is insulating.. This has not been directly verified yet,
though from the continuous Ry(7T) curves of increasingly
disordered Si-MOSFET’s, for example, it appears clear
that there is no o, and that the transition to localized
behavior is continuous. Since the localization length &,
increases exponentially with decreasing disorder, and the
Thouless cutoff length increases only as 7172, one has to
go to exponentially low temperatures to probe length
scales larger than £j,.. At such low temperatures and
large length scales, electron heating effects become impor-
tant and limit the lowest effective electron temperature at-
tainable.

D. Bulk systems

We have briefly reviewed (in Sec. I) earlier work on the
metal-insulator transition in three-dimensional disordered
systems which broadly supports the ideas of mobility
edge, minimum metallic conductivity, and variable-range
hopping. In some systems, for example, granular metals,
there is evidence for the importance of Coulomb interac-
tions. We discuss here recent experiments, mainly those
done at low temperatures, where there are characteristic
localization as well as interaction effects. The few experi-
ments probing the critical region near the mobility edge
are then discussed; it is possible that there is a rich variety
of behavior. Further discussion of some of the systems
that are less well understood is given in Sec. VII.

1. Systems studied

Two classes of systems, namely doped semiconductors
and vapor-deposited thick films (alloys or metal-metal ox-
ide composites), have been investigated in detail near the
metal-insulator transition in the past few years. In the
former, there is an insulator-metal transition due to shal-
low impurity-state overlap when the dopant concentration
is large enough. For example, in Si:P the critical P con-
centration is 7, ~3.74x 10'® cm™3. The system is intrin-
sically disordered because the P atom randomly substi-
tutes a Si atom. Experiments include low-temperature
studies of resistivity as a function of temperature and
magnetic field on the metallic side (Rosenbaum, Andres,
Thomas, and Lee, 1981; Rosenbaum, Milligan et al.,
1981; Thomas, Kawabata et al., 1981), observation of the
absence of o,,;, (Rosenbaum et al., 1980), stress tuning of
the metal-insulator transition (Paalanen et al., 1982), ef-
fect of compensation (Thomas et al., 1982a,1982b) and
dielectric behavior near n, on the insulating side (Hess
et al., 1982). (See Rosenbaum et al., 1983 for a review, as
well as recent results.)

Vapor-deposited thick films of Al-Al,O; (Dynes and
Garno, 1980), In-In,O; (Ovadyahu and Imry, 1981),
Au;_,Ge, (McMillan and Mochel, 1981; Dodson et al.,
1981), and Nb,_,Si, (Hertel et al., 1983) have been stud-
ied as a function of oxygen content and grain size in the
former systems, and as a function of Ge or Si content in
the alloys. In addition to resistivity and magnetoresis-
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tance, tunneling measurements of the density of states
show striking square-root anomalies due to interaction ef-
fects.

Recently, a new class of system has been added to the
list. Interesting results have been reported in a magnetic
semiconductor Gdj;_,S,, which can be driven metallic
with a magnetic field (von Molnar et al., 1983).

2. Low-temperature conductivity anomalies

As discussed in Secs. II and III, there are characteristic
temperature-dependent corrections to conductivity, aris-
ing from localization (2.29a) and Coulomb interaction
(3.41c). To lowest order, these are additive, so that

35 YT 6

The localization term reduces conductivity as temperature
decreases because the scale of quantum interference is set
by the inelastic collision length Ly, ~aT ~?/? (Sec. IL.D),
which increases as temperature decreases. The interaction
term has a V'T dependence, but its sign depends on the
relative size of the exchange and Hartree terms, which de-
pends on the screening length. In doped semiconductors,
solid-state effects, such as the presence of many degen-
erate conduction-band minima in k space (valleys), inter-
valley scattering, and mass anisotropy, have all to be con-
sidered if a detailed quantitative comparison is desired.
Some of these effects have been considered by Fukuyama
(1981b) and by Bhatt and Lee (1983).

At the lowest temperatures, Ao(7) is dominated by the
interaction term because the index p is greater than 1.
(The estimates for p are 5, 2, and 3, depending on wheth-
er Coulomb interactions in the dirty limit, clean limit, or
electron-phonon scattering determine the inelastic scatter-
ing rate) The cusplike VT conductivity behavior has
been seen in doped semiconductors (Ootuka et al., 1979;
these authors attributed it to the Kondo effect). Rosen-
baum, Andres, Thomas, and Lee (1981) observed it in Si:P
and successfully explained its sign, size, and dependence
on electron density (density of P) using a Thomas-Fermi
screening approximation for F. [The perturbative form
(£ —2F) was used in the analysis, instead of the correct
form (+—2F,) given in Eq. (6.5). Thus some quantita-
tive adjustment of the analysis will be necessary, but the
qualitative features will not be affected.] The V'T coeffi-
cient was found to change sign as a function of disorder, a
change which can be interpreted as being due to a sign
change in (+—3F,). The effect is sizable, e.g., for
n=4.5%10" cm? o increases from 112 (uQ cm)~! to 125
(uQ cm)~! as temperature decreases from 4 K to 50 mK.
No localization effect was considered. Thomas et al.
(1982a) have recently measured the temperature-
dependent conductivity of Ge:Sb from 10 mK to 1 K and
have fitted the results with a more realistic version of Eq.
(6.4) that includes anisotropy and many-valley effects.
They include a localization term, which contributes a
small opposite sign correction, and show that it is neces-
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FIG. 18. Conductivity of the amorphous metal Fe NisoP4B¢
showing T''/? behavior. Data from Rapp, Bhagat, and Gud-
mundsson (1982).

sary to account for the curvature of o(T) at higher tem-
peratures, i.e., temperatures of order 1 K. A fairly good
fit is obtained with p =2, i.e., the exponent characteristic
of electron-electron inelastic processes in the pure regime.
An evaluation of the importance of intervalley scattering
in this system is given by Bhatt and Lee (1983).

Low-temperature 7'/2 anomalies in the conductivity
have also been observed in a number of metallic glasses.
Such anomalies have been known in the. literature for
some time, but they have typically been plotted versus
InT and interpreted in terms of Kondo-type scattering by
structural defects (see, for example, Tsuei, 1976; Rapp,
Bhagat, -and Johannesson, 1977). Figure 18 shows a re-
plot of existing data that extend down to 30 mK, reveal-
ing very nice T!/? behavior (Rapp, Bhagat, and Gud-
mundsson, 1982). Such T'!/? behavior appears to be a
common feature in many amorphous alloys (Cochrane
and Strom-Olsen, 1984).

3. Magnetoresistance

We have discussed earlier the negative magnetoresis-
tance due to magnetic field suppression of localization
(Sec. IL.E) and the positive magnetoresistance of an in-
teracting electron gas due to spin splitting and orbital ef-
fects (Sec. IILD). To the leading order they are additive,
the localization contributions to magnetoconductivity be-
ing (Kawabata, 1980a,1980b)
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2

Ao(H,T)==5—VeH /fic f3(x) , (6.52)
27°h
where x =#c/(4eHL?%y) and
1
=3 2(vVa -V —— |,
Sf3(x) n§0 (Vn+x+ n+x) — 115
(6.5b)
with the asymptotic forms
f3(x)=0.605 forx <<1
=(x"32/48) for x >>1. (6.5¢)

The spin-splitting contribution to positive magnetoresis-
tance is given in Eqgs. (3.43)—(3.45). The orbital terms are
discussed by Fukuyama (1980) and by Altshuler, Aronov,
Larkin, and Khmel’nitskii (1981). The asymptotic forms
are V'H for large fields and H? for small fields. The
former behavior is a characteristic signature of disordered
system anomalies in three dimensions, and is different
from all nonsaturating magnetoresistance field depen-
dences known so far.

Kawabata (1980a,1980b) has discussed the negative
magnetoresistance of doped semiconductors from this
point of view, and has shown that both the field depen-
dence and the size fit localization predictions. At very
low temperatures such that ugH > kg T is accessible, the

interaction contribution to magnetoresistance becomes -

more prominent. Experiments on Si:P first clearly estab-
lished such a term (Rosenbaum et al., 1981). These au-
thors analyzed their results to show that both interaction
and localization effects were present with roughly the ex-
pected density and disorder dependence. Kawabata
(1982d) has included, in addition to spin-splitting, an or-
bital interaction term in analyzing the earlier data of
Ootuka et al. (1979) on Ge:Sb. Low-temperature magne-
toresistance experiments have also been done on n-InSb
(Morita et al., 1982), a direct band gap semiconductor
that has isotropic effective mass and is thus free from
many-valley and anisotropy complexities of the other sys-
tems. Model calculations for parameters appropriate to
these experiments have been reported by Isawa, Hoshino,
and Fukuyama (1982).

Negative magnetoresistance going as V'H has been ob-
served also in ‘a very different type of system, namely
granular aluminum, by Chui, Lindenfeld, McLean, and
Mui (1981). These authors find clear evidence for interac-
tion effects in their high-resistivity samples. Data
analysis in these systems is complicated by the presence of
superconducting fluctuations.

Magnetoresistance in disordered metals and metallic
glass has been studied for some time (e.g., Hake et al.,
1980). Recently the V'H magnetoresistance has also been
reported in amorphous alloys. Examples include the
Cu-Ti system (Howson and Greig, 1983), La-Al system
(Lu and Tsai, 1984), and Cu-Zr system (Bieri et al.,
1984).
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4. Critical régime

One of the most important questions connected with
the localization transition is the critical behavior. The
first question is whether there is a minimum metallic con-
ductivity, or whether conductivity goes to zero with a
universal exponent. From the insulating side, one is in-
terested in the divergence of the dielectric constant. The
behavior of other physical quantities, such as the density
of states, is another important problem. The few experi-
mental results in this area suggest a rich variety of
behavior.

a. Conductivity

Conductivity measurements close to the metal-insulator
transition have been made in Si:P and the metal semicon-
ductor alloys Au;_,Ge, and Nb;_,Si,. In Si:P, the
metal-insulator transition occurs at n,=3.74<10'%/cm?.
Rosenbaum et al. (1980) found a few sample specimens
whose zero-temperature conductivity was much less than
the minimum metallic' value, in one ingtance nearly a
thousand times less. However, for most of these the
dopant density lies within a percent of n., close to the
limit of accuracy with which its change can be monitored.
Mott (1976,1981) has pointed out that inhomogeneities
can lead to very low conductivities even if there is a
NONZero O, in two ways: One is a distribution of
dopant density due to preparation conditions. The other
is statistical finite size (or N ~!/2) fluctuation in dopant
concentration. This can lead to a rounding of the conduc-
tivity transition if the localization length exponent v is
smaller than 2/D. Mott suggests (1981) that the relative-
ly sharp transition in Si:P is due to such a rounding
effect’s masking a o,;,- Even when there is no o;,, such
a smearing can mask the conductivity exponent if it is less
than (2/d), as mentioned in Sec. II.C.

In a recent experiment, Paalanen, Rosenbaum, Thomas,
and Bhatt (1982) have made a high-precision study of the
transition in Si:P by starting with a slightly insulating
sample and applying uniaxial stress to drive the system
metallic. This permits a detailed study of the transition
region by tuning a continuously variable parameter, the
stress. They find, by combining results with their work
above, that conductivities in the range (opmin/4) <0
<100,;, [corresponding to 1073 <(n—n,)/n, < 1] scale
with an exponent 4 =0.55+0.1. Further, this exponent is
nearly half that for the divergence of the dielectric con-
stant (Capizzi et al., 1980; Hess et al., 1982). Since the
latter is expected to behave as (localization length)?, the
resistivity and localization length diverge with the same
exponent. The exponent, u=0.55, is, however, rather dif-
ferent from the prediction u=1 of localization theory
without interactions. At present there is no clear under-
standing of why this value of u is different in Si:P from
other systems.

An important and relatively unexplored question is the
significance of compensation. In uncompensated semi-
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conductors such as Si:P described above, there are as
many sites as carriers. Correlation effects are maximal in
such a half-filled band, and the observed critical behavior
may be connected with this. It is then interesting to study
samples with compensation where there are more sites
than carriers. Recently Thomas, Ootuka, Katsumoto,
Kobayashi, and Sasaki (1982b) have shown for Ge:Sb that
with increasing compensation ¢ vs n tends from the form
(n/n,—1)1"2 to (n/n,—1). Recent measurements by Za-
brodskii and Zinoveva (1984) on germanium samples as a
function of compensation show a conductivity exponent
of approximately 0.8, consistent with the work of Thomas
et al. (1982b). One way a compensated sample may be

" different is that local moment formation is more likely, so
that spin-flip scattering may be present and turn the sys-
tem into a different universality class, as discussed in Sec.
IILF.

Recent measurements on Ge;_,Au, (Dodson, McMil-
lan, Mochel, and Dynes, 1981), granular Al (Dynes and
Garno, 1981), and Nb, Si;_, (Hertel et al., 1983) all find
a metallic range, i.e., o(T=0)#0 with o<<op,. In
granular Al, there is superconductivity as well as a sig-
nificant density-of-states effect for 0.050 i, < 0 < Tpin. In
this class of materials, the most precise determination of
the conductivity exponent was made in Nb, Si;_,, where
the critical Nb concentration was x ~0.12. Graded alloys
with a variety of concentrations x were prepared. In the
range 0.12 <x <0.18, ¢ varied from 5 to 150 (Qcm)~!
where o), was ~20 (Qcm)~!. The conductivity was
found to vanish linearly with x near the critical concen-
tration.

Recently the metal-insulator transition in the magnetic
semiconductor system Gd,_, v, S3, where v stands for va-
cancy, was studied in detail (von Molnar et al., 1983). At
zero applied field, the conduction electron is supposed to
form a magnetic polaron with the Gd ions, so that the
system is insulating. Of course, the presence of disorder
due to the vacancies introduces further complications into
the picture. Nevertheless, the application of magnetic
field reduces the binding of the magnetic polaron and in-
duces an insulator-to-metal transition. The advantage of
this system is that the transition occurs as a function of
an external field, which can be varied continuously. Con-
ductivity down to mK range was measured in the vicinity
of the transition, and the conductivity was found to van-
ish linearly with applied field. In view of the recent
theory reviewed in Sec. IILF, which is applicable to a
metal-insulator transition in the presence of a strong
external field, this is a particularly interesting system to
pursue in greater detail.

b. Density of states

Altshuler and Aronov (1979) showed that the single-
particle density of states, as measured by tunneling, exhib-
its an E'/? dip at the Fermi level. As reviewed in Sec.
II1.F, McMillan (1981) proposed that this dip should ex-
tend to zero at the metal-insulator transition and suggest-
ed the following functional form:
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FIG. 19. Single-particle density of states measured by tunneling
experiments on Nb,Si,_,. Different sets of data correspond to
different x. The data show V!/2 behavior on the metallic side
and the vanishing of the density of states in the vicinity of the
metal-to-insulator transition. Figure from Hertel et al. (1983).

N(E)=N(0)1+VE/A), (6.6)

where N (0) vanishes at the transition and A is an energy
scale that vanishes as [o(7T =0)]". The power n is 3, ac-
cording to perturbation theory in the metallic regime, and
is modified near the transition. The vanishing of the den-
sity of state was observed by McMillan and Mochel
(1980) in Au,Ge;_, and by Dynes and Garno (1981) in
granular aluminum. A very detailed tunneling study of
Nb,Si;_, was reported by Hertel et al. (1983), who
found excellent agreement with Eq. (6.6), with the ex-
ponent n measured to be near 2. The tunneling data are
shown in Fig. 19. As discussed in Sec. IILF, the func-
tional form given in Eq. (6.6) is a common feature of scal-
ing theories, while the relations between critical exponents
given by McMillan require further assumptions that are
subject to question. This distinction should be kept in
mind in assessing the good agreement reported by Hertel
et al. with McMillan’s theory.

Vil. REMARKS AND OPEN PROBLEMS

Instead of a conclusion section, in this final section we
address a number of open problems that are not so well
understood. Our remarks are necessarily incomplete and
speculative. We are hopeful that the advances reviewed
so far may lead to progress in these more difficult prob-
lems.
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A. High-temperature anomalies

The way resistivity of metals and alloys varies with the
temperature depends broadly on resistivity or disorder.
When resistivity is small, as in many relatively pure met-
als and alloys, the resistive scattering from phonons has a
well-understood temperature dependence. At high tem-
peratures (T >60p, the Debye temperature), it is propor-
tional to the mean-square amplitude of lattice vibrations,
i.e,, to (kgT). The resistivity is typically in the range
10—15 pQcm. This and the resistivity due to static dis-
order (residual resistivity) are additive. Strongly disor-
dered metals and alloys, amorphous metals, metallic
glasses, etc., show characteristic deviations from this
behavior; we mention here three kinds, namely the Mooij
correlation, the saturation effect, and breakdown of
Matthiessen’s rule. These may all be connected. These
effects have all associated with them a characteristic
resistivity of the same order as the Mott maximum metal-
lic resistivity pp;, (perhaps smaller by a factor of 5 or so).
We discuss several largely qualitative explanations, in-
cluding one in terms of incipient localization.

The size and sign of the temperature coefficient of
resistivity (TCR) in many disordered systems correlates
well with its residual resistivity pg, as first pointed out by
Mooij (1973). For the transition-metal alloys discussed by
him, the high-temperature TCR changes from positive to
negative around pi~ 150 uQcm, an approximate equa-
tion for p(T) being

P(T)=po+(p5—po)AT , 7.1

where A is about 10~° per K. This is a very small coeffi-
cient, so that the temperature-dependent part is rather
small, of order 10~3 to IO_Zpo. The resistivity changes
weakly with temperature, and may decrease with increas-
ing temperature for sufficiently resistive systems. This
kind of connection between resistivity and its temperature
dependence is fairly general, and there are many systems
that show a sizable negative TCR.

In A15 compounds such as Nb;Sn (see, for example,
Gurvitch et al., 1981) or even in elemental Nb (Allen
et al., 1976), the resistivity at high temperatures rises
more slowly than the linear dependence predicted by sim-
ple electron-phonon scattering theory. It is as if there
were a tendency for the resistivity to saturate (a term in-
troduced by Fisk and Webb, 1976). In all such systems
the resistivity is rather large (50—150 u€Qcm), much
longer than typical electron-phonon resistivity (10—15
pcm), so that there is a clear connection between resis-
tivity and its saturation.

Systems with saturation behavior exhibit striking devia-
tion from Matthiessen’s rule. An example is shown in
Fig. 20, where the resistivity of LuRh,B, is exhibited as a
function of temperature for various values of the residual
or low-temperature resistivity po obtained by a-particle ir-
radiation. The curves should be parallel, the relative shift
being p,, if resistive scattering by static and thermal disor-
der were additive (Matthiessen’s rule). Clearly, this rule is
not followed; this is a restatement of the saturation
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FIG. 20. Resistivity as a function of temperature for LuRh,B,
at various damage levels. The numbers represent the a-particle
dose in units of 10'®/cm?®. From Dynes, Rowell, and Schmidt
(1981).

behavior. Instead, the data show a change from positive
TCR to negative as the disorder is increased.

A phenomenological model that fits the data on satura-
tion quite well is that of a shunt resistor pg, in parallel to
the actual system (Wiesmann et al., 1977). One then has

PN =pigea( T) " +pa! , (7.2a)

where pjgeai( T) has the Matthiessen additive form, i.e.,

Pigeal T)=po+ppn(T) . (7.2b)

The quantity pg, is a characteristic of a given system, and
does not depend on disorder (py). Typical values of pg,
are in the range 150—200 uQcm for the A15°s. The
physical origin of such a shunt resistor is not clear,
though it has been suggested that there is an interband
conduction channel in addition to the standard transport
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channel (Chakraborty and Allen, 1979). However, the ar-
gument is quite incomplete. Gurvitch et al. (1980) have
argued that the statistical distribution of relaxation times
has a lower cutoff related to the Ioffe-Regel criterion, and
averaging over such a distribution obtains a parallel resis-
torlike formula. In a completely different context, name-
ly resistivity of mixed valent compounds such as CePd3, a
saturation resistivity appears naturally. The system is
crudely described as a lattice of resonant levels. The ef-
fect of thermal lattice vibrations and of other disorder is
to randomly dephase scattering from different sites. If
the dephasing is strong enough, each resonant level
scatters independently; this is the saturation limit
(Ramakrishnan, 1982). It is possible that the resistivity
saturation in A415’s is due to a similar mechanism. A
shortcoming of the shunt resistor model and of most sa-
turation mechanisms is that they cannot describe the re-
gime of negative TCR; the resistivity is always less than
Psh and increases towards it as temperature rises.

There is a different class of models in which
temperature-dependent conductivity is a sum of two
terms, one a normal phonon term that decreases with in-
creasing temperature, and another leading to an increase.
The competition can lead to a Mooij-type correlation.
Jonson and Girvin (1979; Girvin and Jonson, 1980) sug-
gest that the latter is phonon-induced hopping between
slowly diffusing, spatially fluctuating extended electronic
states. In the localized regime, this hopping leads to
nonzero conductivity increasing with temperature. Jon-
son and Girvin argue that there are precursor effects in
the metallic regime. A model numerical calculation for a
tight-binding system shows that TCR changes sign as
resistivity increases. A detailed analytical theory with a
similar idea, i.e., phonon-induced tunneling, has been re-
cently developed by Gotze, Belitz, and Schirmacher (Bel-
itz and Gotze, 1982; Belitz and Schirmacher, 1983). This
term increases the conductivity and is found to be of or-
der Ap(kpl )~! where Apn is the electron-phonon coupling.
Since the temperature-dependent part of the conductivity
is small, i.e., Ap(T)/p(0) < 1072, the lowest-order term in
Apn is adequate. The standard phonon term, again to
lowest order in Ay, goes as — Ayp(kpl )2. Since the two are
of opposite sign, it is argued that for (kp/)~1, the TCR
can go negative. Obviously, such a conclusion can be re-
lied upon only when all terms of relative order up to
(kpl)~3 are collected together and their temperature
dependences, signs, etc., are compared. ‘

It has been suggested that the observed negative TCR is
a manifestation of incipient localization (Imry, 1980; see
also Kaveh and Mott, 1982, for a recent discussion). As
discussed in Sec. VI.D, there is evidence for localization
and also interaction contribution to the low-temperature
conductivity, particularly from magnetoresistance studies
(Bieri et al., 1984). Whether these ideas continue to hold
at high temperature, T'~6p, when 7;' becomes large is
not all clear. In the most naive estimate, the dominant in-
elastic process is electron-phonon scattering, so that
T ~T and Ao(T)=0yT/6p)'%. There is, in addition,
a normal electron-phonon resistivity term
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Since the temperature dependences are different, the tem-
perature dependence of the sum of these two terms will in
general change sign over some temperature range, and
such sign change is not typically observed.

Laughlin (1982) attempted to explain the resistivity
saturation by applying the interaction theory in the pres-
ence of disorder. He argued that strong disorder is in-
duced by thermal fluctuations, and that exchange correc-
tions would lead to a suppression of the density of states.
His theory is a rather phenomenological extrapolation of
the perturbation theory of Altshuler and Aronov (1979a)
to the strong coupling regime, and has been criticized by
Gurvitch (1983) on experimental grounds.

A weak-scattering explanation of small and negative
TCR is based on Ziman’s theory of electrical resistivity of
liquid metals. Here electrons are assumed to scatter
weakly off a static temperature-dependent arrangement of
atoms. The observed TCR is attributed to the latter
(Nagel, 1977,1982) or .to “ineffectiveness” of phonons
with wave vector g </~! (Cote and Meisel, 1977,1978).
The first explanation is too specific, and the latter is in-
correct (see Sec. IIL.LF). More generally, the basic assump-
tion is unsound, since in these systems scattering is not
weak, mean free paths being comparable to interatomic
spacing. However, an effective medium analysis (Nichol-
son and Schwartz, 1982) of a structurally disordered met-
al leads to conclusions similar to that from perturbative
Ziman theory.

There are some possibly related transport anomalies,
such as in thermopower (Nagel, 1978), T? dependence of
low-temperature resistivity (e.g., Gurvitch, 1980), and
resistivity minimum in amorphous metals, both magnetic
and nonmagnetic (see, for example, Tsuei, 1976; Grest
and Nagel, 1979). All these are observed in stongly disor-
dered systems with short mean free paths, so that these
could be characteristic disorder effects.

B. Electron-phonon interaction and polaronic effects

Some known results about electron-phonon interaction
in disordered metals have been mentioned in Sec. IILE,
namely, that the interaction vertex is not enhanced by dis-
order, and that the ultrasonic attenuation has the Pippard
form. We mention here several open questions, connected
with disordered metals and with the motion of single elec-
tron in a disordered deformable medium (a polaron).

There is as yet no analysis of the electron-phonon ver-
tex or of phonon propagation in a disordered metal
beyond the Schmid approximation (Sec. IIL.E), i.e., one
which considers processes arising in localization or in-
teraction theories. These are of higher order in (kgl)~!,
but can lead to sizable characteristic anomalies as electron
diffusion slows down close to the metal-insuiator transi-
tion. Sound propagation in metallic glasses, which are
strongly disordered, has been extensively studied experi-
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mentally (e.g., Guntherodt, 1981). In insulating glasses
there is good agreement between the observed temperature

and amplitude dependence (saturation behavior) of sound .

velocity, attenuation, etc., and the two-level or tunneling
model of Anderson, Halperin, and Varma (1972) and of
Phillips (1972). However in metallic glasses there are
many differences, for which explanations are sought in
coupling of two-level systems to low-lying electron hole
excitations in addition to phonons. (See, for example,
‘Vladar and Zawadowski, 1983, for recent work and an ex-
tensive review.) It is possible, however, that in these sys-
tems there could be significant and characteristic disorder
effects on phonon propagation.

In perturbation theory, the Hartree-type process involv-
ing coupling between disorder-induced electron density
fluctuations via lattice distortion leads, as mentioned in
Sec. IILE, to a reduction in conductivity and in the densi-
ty of states. For strong electron-phonon coupling and
strong disorder, i.e., in the vicinity of the metal-insulator
transition, the effect of this kind of process is not known.

An electron coupled to a deformable vibrating lattice
(i.e., acoustic or optical phonons) carries the lattice distor-
tion with it. In clean systems, the consequences of this
polaronic effect (reduction in ground-state energy, effec-
tive mass, mobility, self-trapping for large electron-
acoustic phonon coupling, etc.) have been investigated for
a long time. (See, for example, Mahan, 1981.) Holstein
and particularly Emin (see Emin, 1983, for a recent re-
view) have argued that polaronic effects should be partic-
ularly strong in disordered systems, since slow diffusion
or localization promotes local lattice distortion. In amor-
phous semiconductors (elemental and chalcogenide),
electron-phonon coupling is strong and Coulomb screen-
ing effects are absent. Emin has developed a detailed
description of transport properties of amorphous semi-
conductors, in which the charge carriers are small pola-
rons that hop, the small-polaron formation being due both
to large electron-phonon coupling and to the strong disor-
der.

There is as yet not much theoretical work on the prob-
lem of a single electron in a disordered, deformable medi-
um. The medium has both quenched and annealed disor-
der, and is not static since there are lattice vibrations. In
the adiabatic approximation, which ignores dynamics,
Cohen, Economou, and Soukoulis (1983) have discussed
polaron effects recently and have argued that the conduc-
tivity transition becomes discontinuous, the discontinuity
being proportional to (electron-phonon coupling)?/3. On
the localized side of the mobility edge, Anderson (1972)
has suggested that the feedback effect of self-trapping can
lead to a gap in the density of states. There is at present
no theoretical analysis of these questions from a micro-
scopic point of view.

C. Superconductivity and localization

The ground state of an electron gas with phonon-
mediated net attraction between electrons is supercon-

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

ducting. One expects that as disorder increases and elec-
tronic states near € localize, superconductive coherence
is destroyed, and the system goes insulating. This transi-
tion is not understood, since it occurs when the system is
strongly disordered. We briefly summarize here the ex-
perimental and theoretical work that has touched upon
this difficult problem.

An interesting perturbative precursor effect of super-
conductivity in a disordered metal has been discussed by
Larkin (1980). He calculated the vertex enhancement of
the fluctuation conductivity caused by impurity scatter-
ing. The Maki-Thompson process considered involves the
exchange of a single Cooper-pair excitation. The contri-
bution of this process to magnetoresistance depends on
field in the same way as the localization term (Sec. IL.E),
and the coefficient, i.e., the effective coupling, depends
strongly on how close one is to the superconducting T.
Such a strongly temperature-dependent magnetoresistance
above T, has been observed by Gordon, Lobb, and Tink-
ham (1983), by Bruynseraede et al. (1983), and by
Gershenson, Gubankov, and Zhuravlev (1983), the agree-
ment with theory being very good.

The superconducting transition temperature 7, de-
pends rather weakly on disorder in general. Matthias and
co-workers showed first in the late 1950s that while a low
concentration of magnetic ions in a superconductor
depresses their T, considerably, nonmagnetic impurities
have virtually no effect. Anderson (1959) provided a fun-
damental explanation of this fact by pointing out that
Cooper pairs can be formed out of time-reversed exact
eigenstates whose state density is not strongly affected by
disorder. Since the phonon-mediated coupling is of short
range in space, it is not expected to change for weak dis-
order, i.e., for I >>qp'. Thus the superconducting transi-
tion is unaffected.” Gor’kov (1960) has explicitly shown to
leading order in random potential scattering that the
two-particle propagator is unaffected. Since the electron-
phonon vertex is also unchanged (Sec. IILE), T, does not
decrease. However, the presence of magnetic impurities
breaks time-reversal invariance, so that time-reversed
Cooper pairs acquire a finite lifetime. This depresses T,.

The analyses of Anderson and Gor’kov do not consider
either the localizing effect of strong disorder (Sec. II) or
the interference between interaction and disorder (Sec.
III). A perturbative analysis of interaction effects has
been carried out by Maekawa and Fukuyama (1981,1982)
and by Takagi and Kuroda (1982). They consider the
two-dimensional case, where the BCS temperature T, de-
scribes a pseudotransition, and not the onset of supercon-
ductive order, which occurs at a lower vortex binding
temperature 7T,. They find that corrections to pair densi-
ty of states and to the interaction vertex both affect T,,
which satisfies the equation

In Tc - (g1—3g0)N(0) 1
TcO - 47TEFT TCQT
(8o+81)N(0) 1 P 7.3)
6mepT T,or | ’
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where T,q is the transition temperature in the absence of
disorder, g; is the electron repulsion, and g, is the
phonon-mediated coupling. The corrections are of first
order in (ep7)~!. It is worth noting that, starting from
the BCS equation, which reads T,=7"lexp—[goN(0)
—u*1! in this case, a modification of the Coulomb
repulsion u* by 8u* would lead to a change in T, given
by In(T,/T,o)= —8u*In*(T,4ry). Thus the last term in
Eq. (7.3) can be interpreted as a logarithmic correction to
the effective Coulomb repulsion u*. We also note that in
Eq. (7.3) the usual renormalization of the Coulomb repul-
sion from its bare value to u* is not incorporated in the
model of Fukuyama and Maekawa, which does not take
into account the phonon-mediated nature of the interac-
tion go. Using Eq. (7.3) and ignoring g, in comparison to
g1, the authors argue that T, decreases with disorder, the
natural scale of the latter being €77~ 1 resistivity. Recent
measurements of Graybeal and Beasley (1984) on ul-
trathin Mo-Ge films find that the pseudotransition tem-
perature decreases with disorder, in good agreement with
the prediction of Eq. (7.3). Retardation effects due to
phonon-mediated interactions and dynamic screening, as
well as extensions of the weak-impurity scattering calcu-
lations to three dimensions, were recently given by
Fukuyama, Ebisawa, and Maekawa (1984).

In a large number of high-T, superconductors, e.g.,
A15 compounds such as Nb3Ge, cluster compounds such
as ErRh By, etc., strong disorder reduces 7, drastically.
It is an experimental fact that 7, depends on low-
temperature resistivity and not on whether disorder is
produced by irradiation, alloying, etc. It also does not de-
pend on other quantities such as the resistivity ratio. The
reduced. T, vs p curves for various systems are similar
(see, for example, Fig. 21). T, falls by a factor of 5 or 6
in many cases and then saturates, as does p. A large part
of the decrease in T, occurs when p is sizable, greater
than 50 pQcm or so. There is at least one exception to
this behavior, namely Mo3;Ge, whose T, increases from
1.5 to 4.5 K and then saturates as resistivity p increases
beyond 100 p 2 cm.

Anderson, Muttalib, and Ramakrishnan (1983) have
pointed out that the strongly scale-dependent diffusion
characteristic of a system close to critical disorder in
three dimensions enhances the repulsive Coulomb pseudo-
potential and thus decreases T,. Assuming that the in-
teraction p is very short range, its effective strength de-
pends on the electron residence probability as a function
of time, ie., on @(t)={p(r=0,t)p(r=0,0)). The
Coulomb kernel is

K@) =p [14+2N(0)"" [7 g0y~ cos(wndt | . (1.4)

For normal diffusion @(t)~t ~3/2, whereas at critical dis-
order we have D(L)~L~! (see Sec. IL.C), so that
@(t)~t~!, ie., electron diffusion is very slow. This
enhances the Coulomb kernal. For near-critical disorder,
diffusion is nonclassical up to around a distance
E~Ip/p,), so that p(t)~t~! for t <(p/p,)*r. The con-
sequent enhancement of effective repulsion reduces T,;
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FIG. 21. The reduction of superconducting T, with increasing
high-temperature resistivity for several compounds. The solid
lines are theoretical fits and also serve as a guide to the eye.
Data are from Rowell and Dynes (unpublished), as reproduced
in Anderson, Muttalib, and Ramakrishnan (1983).

this reduction depends on disorder as measured by resisi-
tivity. This is a localization-dependent process whereby
superconductivity is suppressed. It is assumed that other
effects due to disorder are small. The theory describes the
observed “universal” degradation of 7, reasonably well,
provided the critical resistivity p. is assumed to be rather
low (~50 puQcm). Some reasons for this are given.
There are a number of other explanations for this univer-
sal degradation that do not involve localization. A popu-
lar one argues that there is a sharp peak in the density of
states near thé Fermi energy, where smearing by disorder
reduces T, (Testadri and Mattheiss, 1978).

Besides the transition temperature, there are some mea-
surements on the upper critical field H_, of strongly
disordered superconductors. There are clear anomalies in
both the temperature dependence and the size of H,,.
The best studied atomically disordered systems are amor-
phous metals (Tenhover, Johnson, and Tsuei, 1981); see
also Ikebe et al., 1981; Coleman et al., 1983; and for thin
films Kobayashi et al., 1983). The shape and size of
H_,(T/T,) cannot be fitted by any variant of dirty super-
conductor theory. Also, H (T =0) is higher than ex-
pected. There are a number of similar reports in the
literature (see, however, Karkut and Hake, 1983). In
many cases, H. (T =0) exceeds the Clogston-
Chandrasekhar or paramagnetic limit (ug H.,=kp T,) by
a factor of 2 or 3, sometimes more. On the other hand,
Graybeal and Beasely (1984) report for films that H,, is
smaller than the standard Ginzburg-Landau value. In all
of these cases, the system is very strongly disordered, with
conductivity close to opi,. In this connection, we note
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that the Clogston-Chandrasekhar limit for a dirty super-
conductor corresponds also to the Ioffe-Regel condition,
since from the dirty limit estimate of &2=(#ivp/kyT,)l
one has ugH.,=(kgT,)/(kpl). The paramagnetic limit
at which spin and orbital effects are comparable thus cor-
responds to kpl~1. In this regime both interaction and
localization effects are strong, so that the local weak-
disorder Ginzburg-Landau equation theory of H,, has to
be revised to include effects of scale-dependent diffusion.

Takagi, Souda, and Kuroda (1982) have computed the
modification of the Ginzburg-Landau parameters due to
interaction effects in the presence of disorder and ob-
tained expressions for the critical field H,,. Maekawa,
Ebisawa, and Fukuyama (1983) have generalized the T,
calculation of Maekawa and Fukuyama (1982a) to include
an external magnetic field, and also to consider some lo-
calization effects. The perturbative calculations are for a
two-dimensional system. One of their results is that the
H_., vs T curve can become concave due to localization
effects. Such a concave curvature has been observed by
Kobayashi et al. (1983) for thin Zn films. Coffey, Mut-
talib, and Levin (1984) compute the temperature depen-
dence of H,, for bulk superconductors, assuming that T,
decreases mainly because of Coulomb pseudopotential
enhancement due to localization. Since a magnetic field
reduces localization effects (Sec. ILE), H.,(T) is enhanced
over the standard result for dirty superconductors.

Existing calculations for T,, H.,(T), etc., are incom-
plete in several ‘ways. Disorder effects are either not
properly computed, or one or more processes (among
many with comparable size and disorder dependence) are
neglected, or critical disorder effects are estimated ap-
proximately. Experimentally, the reduction in T, and
enhancement of H,, are small (=~ 10%) for moderate dis-
order. Large effects occur for 415’s and near the metal-
insulator transition for granular superconductors where
the transition becomes broad and T, rather abruptly
drops to zero. The problem of superconductivity in the
vicinity of the metal-insulator transition is addressed very
recently. Kapitulnik and Kotliar (1985) pointed out that
the superconducting coherence length becomes very short,
so that T, is greatly suppressed due to thermal fluctua-
tions. Ma and Lee (1985) suggested that superconductivi-
ty may persist into the insulating side, so that a coherent
paired state with localized quasiparticle excitations may
be possible.

There has been considerable recent work on supercon-
ductivity in disordered films, stimulated by the
Kosterlitz-Thouless-Berezinskii  theory of  vortex-
unbinding transitions in two-dimensional systems. Below
the BCS or mean-field transition temperature, there are
thermally excited free vortices, which move under the ac-
tion of external electromagnetic fields, thus leading to fi-
nite resistivity. Below a certain temperature Tk,
vortex-antivortex pairs bind, so that the system is rigid
against phase fluctuations and is a superconductor. There
are a number of characteristic predictions for resistivity
versus frequency, temperature, and applied voltage (see,
for example, Halperin and Nelson, 1979). Some of these

Rev. Mod. Phys., Vol. 57, No. 2, April 1985

have been directly probed experimentally (see, for exam-
ple, Fiory, Hebard, and Glaberson, 1983). The theoretical
analyses do not include either localization or interaction
effects, and predict for example that

Txr=T21+Rpg.) , (7.5)

where g 1'~2.5x10* Q. Thus, while T decreases with
increasing disorder, it does not vanish no matter how
large Rp is. Experimentally, Ty follows Eq. (7.5) for
low Rp and then drops very rapidly to zero around
R~3X%10* Q (Dynes, Garno, and Rowell, 1978).

This is a strong effect, and could be due to the localiza-
tion length’s becoming of the order of the vortex core
size, so that the vortex core is an insulator. In that case,
the vortex could disintegrate because of large fluctuations
in the phase @ of the superconducting order parameter.
Since the localization length depends exponentially on dis-
order, crossover to the nonsuperconducting regime is very
rapid, and occurs close to Rp~3X 10* Q. Interaction ef-
fects are also expected to be strong in this regime. As is
well known, electron number (or density) and the phase ¢
are conjugate variables, so that fluctuations in the two are
coupled. With increasing disorder, the effective dynamic
interactions between density fluctuations increase, thus
promoting phase disorder and suppressing superconduc-
tivity. There is as yet no theory of these effects.

The most commonly studied strongly disordered bulk
superconductors are granular, consisting of metal grains
separated by insulating oxide or by another codeposited
nonmetal. (See Deutscher, 1982, and Deutscher et al.,
1983 for a concise review.) Metallic, superconducting,
and insulating phases are all known in such systems. Re-
cent experiments on these (see, for example, Sec. VI) show
large characteristic localization and interaction effects not
considered in theoretical models for superconductivity in
such systems developed so far (Deutscher, 1982). The
models differ, depending on the ratio of a typical grain
size or volume to the volume of a Cooper pair. If the
former is large enough so that the average intragranular
energy-level spacing is smaller than kpT,, fluctuations in
magnitude |A| of the BCS order parameter are small,
and the phase @ of the grain is a good dynamical variable.
The system is described as a collection of coupled Joseph-
son junctions (disordered planar spin or XY model). Such
a system always orders. However, interaction between
charge imbalance on the grains leads to quantum fluctua-
tions of the phase, which can destroy phase order. The
problem has been considered by Abeles (1977), Simanek
(1980), Efetov (1981), and most recently by Doniach
(1981), who developed an explicit quantum XY spin
model for a two-dimensional system. In the opposite,
small-grain limit, both amplitude and phase fluctuations
are important. A classical percolative model of “effec-
tively” connected grains has been used to describe this
limit (Deutscher et al., 1983).

It is clear that in the small-grain limit the system is an
atomically disordered metal, with disorder effects depen-
dent on two dimensionless parameters, namely the mean
free path kpl and the screened Coulomb interaction
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* vN(0). Some work on this problem has been mentioned
earlier (Maekawa and Fukuyama, 1982; Takagi and
Kuroda, 1982). In the large-grain regime, the effective
coupling between them is scale dependent, due to quan-
tum interference effects characteristic of localization, so
that at least close to critical disorder in three dimensions
the large-length-scale behavior is the same as that of the
atomically disordered model with renormalized parame-
ters.

Finally, consider a system in which electron-phonon
coupling is the dominant interaction. As disorder is in-
creased, the system passes from a metal to an insulator.
The former has a superconducting ground state, while the
later is a negative U insulator with opposite-spin electrons
paired locally to take advantage of the lattice distortion.
The one-electron excitation spectrum has a gap (see, for
example, Anderson, 1975). It is not yet known how this
transition from momentum space to real space pairing
takes place with increasing disorder for a given electron-
phonon coupling.

D. Coulomb effects in the insulator

So far in this paper we have focused our attention on
the metallic side of the metal-insulator transition. This is
because the metallic side is amenable to a perturbative
treatment in the strength of the disorder. The insulating
side of the transition is a highly nontrivial problem in it-
self, the main feature being the competition between ran-
domness and the long-range Coulomb potential. We shall
review a number of concepts developed to describe the in-
sulator.

Much of the interesting physics is already contained in
a simple model that treats the extremely localized situa-
tion, in which the hopping between sites is ignored. The
Hamiltonian can be written as

n.n~
2—;—J+H' , (7.6)

H=Yne+ ‘;_ »
i izj Vi
where n; is the number operator for a localized state on
site i, r; is the distance between two sites, and H' de-
scribes the Coulomb interaction with some neutralizing
background change. For simplicity, we may also assume
that double occupation of each site is forbidden by an on-
site repulsive term. The energy ¢; is a random on-site po-
tential. Disorder is introduced into the problem by the
distribution of ¢;, or by the random distribution of sites,
or both. An excellent practical realization of such a sys-
tem is the impurity band of lightly doped, compensated
semiconductor, where the disorder arises from the ran-
dom distribution of impurities over the host’s lattice sites.
The carriers remaining in the majority band interact
strongly with unscreened Coulomb potentials, and are
also subject to a large random field from the ionized
minority impurities and the unoccupied majority impuri-
ties. These forces are all of long range, unlike quantum-
mechanical effects, such as tunneling, which depend ex-
ponentially on the separation between sites. A more de-
tailed justification of the purely classical model has been
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given by Shklovskii and Efros (1980).

The spatial distribution of the electrons in this model is
highly nontrivial because the total energy E; of an elec-
tron on site # is given by

E,-=<p,-+2nj/r,~j
J#i

(7.7

and depends on the occupation of other sites. The com-
petition between the disorder and the Coulomb energy
leads to a depletion of the single-particle density of states
near the chemical potential known as the Coulomb gap
(Pollack, 1970; Srinivasan, 1971; Efros and Shklovskii,
1975). We shall give an argument for the Coulomb gap
due to Efros and Shklovskii.

The single-particle density of states N; is defined as the
distribution of the energy E; —u, which is the energy re-
quired to add an electron to an empty site i (or minus the
energy for adding a hole to an occupied site), holding the
rest of the electrons fixed. If an electron is moved from
an occupied site i to an empty one j, the change in energy

“of the system due to this one-electron hop (or particle-

hole excitation) is

EJIZEJ—EI_I/rlJ . (7.8)

The last term is the attraction of the electron-hole pair
created, and its presence causes the Coulomb gap. From
the ground state, all excitation energies like Eq. (7.8) must
be positive. This implies a minimum spatial separation
between pairs of sites whose single-particle energies lie on
either side of the chemical potential; if the states are as-
sumed to be homogeneously distributed through space,
there will be a bound on the single-particle density of
states N{(E) of the form

N(E)« |[E—p|*, (7.9)

with s >D—1 in D dimensions. In this description, the
Coulomb gap is necessary to prevent an excitonic col-
lapse. By using a “self-consistent” argument and an ap-
proximation in which the stability of the ground state is
considered only in terms of particle-hole transitions, Efros
(1976) showed that s =D —1 and derived the constant of
proportionality. He also obtained a sharper bound for
three-dimensional systems by considering many particle-
hole excitations in which the surrounding electrons were
allowed to relax; his density of states had the form

NyE) ccexpl — | Eg/(E—p)| 2] . (7.10)

This exponential gap arises from the existence of short
particle-hole excitations with very low transition energies.
Baranovskii, Shklovskii, and Efros (1980) showed that the
number of such excitations should go to zero logarithmic-
ally as the energy goes to zero, and took this into account
to obtain another form for the single-particle density of
states: ’

N(E) < exp[ —Ay /(Iny)"7*] , (7.11)

where y=E,/(E —u). This holds only for very low ener-
gies, and so cannot be tested numerically. There is also
the possibility that the close pairs with low excitation en-
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ergies may be removed by quantum-mechanical tunneling
in a real material, and that these exponential forms for
the Coulomb gap may therefore be unimportant in prac-
tice.

The addition of a single electron is not the lowest ele-
mentary excitation in this system. The low-lying excita-
tions include a region of relaxation around the added par-
ticle, and therefore have a lower energy than the bare ex-
citation (Mott, 1975). These excitations may be termed
““electronic polarons.” Efros (1976) argued that the polar-
ization cloud should have a finite radius, beyond which
the polaron appears simply as a charged quasiparticle.
The argument leading to Eq. (7.9) should be correct, if
everywhere a particle is replaced by a polaron, and the
density of polaron states N,(E) should obey Eq. (7.9) and
not Eq. (7.10) or Eq. (7.11).

The vanishing of N,(E) at the chemical potential
shows that it is impossible to add an extra particle to the
system with an infinitesimal energy increase over the
ground state, even if local relaxation is permitted. By
contrast, .if total relaxation of the system is allowed, the
resulting density of states dn/du for adding an extra
electron- at the chemical potential is not expected to be
zero. This is. an indication that the system is behaving
like a glass, with regions of configuration space inaccessi-
ble from the ground state at low temperatures. This
glassy state arises from competition between the Coulomb
energies and the random site energies. Another way of
expressing this dichotomy is that, according .to Thomas-
Fermi theory, the screening constant is proportional to
dn /du and the insulator would screen like a metal. It is
only due to the glasslike behavior that this does not hap-
pen in any finite time scale.

The existence of the Coulomb gap has been tested nu-
merically by Baranovskii, Efros, Gelmont, and Shklovskii
(1979) and by Davies, Lee, and Rice (1982,1984), who also
examined the polaron density of states. The results are
consistent with the predictions of Egs. (7.9) and (7.10) for
the polaron and single-particle density of states, respec-
tively. Davies et al. also carried out the calculation at
finite temperature and examined the possibility .of a glass
transition at some temperature, analogous to the spin-
glass transition. The results are suggestive, but not con-
clusive, partly due to difficulties in defining a spin-glass-
type order parameter.

The existence of a Coulomb gap should be tested exper-
imentally by tunneling experiments. There are indications
of a parabolic tunneling characteristic on the insulator
side of the metal-insulator transition in the experiments of
McMillan and Mochel (1981) and Hertel et al. (1983).
However, in tunnéling into an insulator, it is not easy to
ascertain that the tunneling is a one-step process which
measures the density of states, a problem encountered in
earlier tunneling work into doped semiconductors (Wolf
et al., 1971,1975). Further experimental studies are clear-
ly desirable.

A second experimental manifestation of the Coulomb
gap is in the temperature dependence of the conductivity.
Mott’s variable-range hopping theory (Mott, 1968) was
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derived assuming a constant density of states. This
predicted o(T)~exp[ — (T /T,)!/*+V]. The introduction
of the Coulomb gap equation (7.9) modifies this to

o(T)~exp[ —(T/T,)'"?]

in all dimensions (Efros, 1976). There are some experi-
mental indications of this type of behavior in the litera-
ture (Redfield, 1975).

The Coulomb interaction also manifests itself in the
low-frequency conductivity o(w) and the dielectric con-
stant €'(w). To understand this, it must be emphasized
that the presence of the Coulomb gap in N(E) does not
imply the absence of particle-hole excitations with low en-
ergies; the only requirement is that all such excitations
not have negative transition energies. There are, in fact,
many of them, but most involve short hops; only for large
separations of the electron and hole is the number of pos-
sible excitations with low energy reduced greatly by the
Coulomb gap. In a noninteracting system, the particle-
hole density of states is linear in energy. This density of
states is, in fact, greatly enhanced by Coulomb interaction
because the energies of the electron and hole are no longer
restricted to be within E of the chemical potential. This
affects, for example, the frequency-dependent conductivi-
ty, which is given in a noninteracting system at T"=0 and
at low frequencies by (Mott, 1970)

(7.12)

olw)xw?|Inw | *. (7.13)

However, if the Coulomb interaction and a parabolic
single-particle density of states for a three-dimensional
system are included, the result becomes (Efros and
Shklovskii, 1981; Davies, Lee, and Rice, 1984)

oo co/|lnw| . (7.14)

By the Kramers-Kronig relation, this implies a logarith-
mically divergent dielectric constant in the limit o—0.
This intriguing behavior is presumably related to the
glasslike properties of system. A similar behavior has
been found at finite temperatures by Efros (1981). The
frequency-dependent conductivity and dielectric constant
were recently studied by Paalanen, Rosenbaum, Thomas,
and Bhatt (1983) in phosphorus-doped silicon just on the
insulator side of the metal-insulator transition, and a very
slow rise in the dielectric constant that extended down to
very low frequencies was observed. The low-frequency
conductivity is consistent with Eq. (7.14). Bhatt and
Ramakrishnan (1984) have presented arguments for why
this should be so, even near the metal-insulator transition.
Finally we make some brief remarks on the spin de-
grees of freedom. In the strongly localized limit, on-site
repulsion will cause states to be singly occupied, and the
spins will behave as local moments. The interactions be-
tween these spins are antiferromagnetic by the Heisenberg
exchange mechanism. The question arises as to the na-
ture of the ground state, whether it is antiferromagnetic,
spin-glass, etc. Experimental investigations have been
carried out by Geschwind et al. (1980) in CdS and by An-
dres et al. (1981) in Si:P. The magnetic susceptibility
typically increases like a power law with decreasing tem-
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perature, but with an exponent less than the Curie value
of unity. Furthermore, there is no evidence of a spin-
glass or antiferromagnetic transition. These results were
interpreted as the gradual formation of singlet pairs,
starting from spins that happen to be nearby, and extend-
ing to spins that are far apart as the temperature is de-
creased. The singlet formation was demonstrated by cal-
culations on a cluster of a few (up to eight) spins by Wal-
stedt et al. (1979), and by a scaling calculation (Bhatt and
Lee, 1982).

The presence of low-lying magnetic excitation also ap-
pears as a magnetic-field-dependent term in the linear T
specific-heat coefficient: In general, because of the pres-
ence of low-lying particle-hole excitations, the specific
heat of the localized insulator has a linear T term in the
specific heat, quite unlike the insulator with a band gap.
Part of this linear term is found to be magnetic-field-
dependent (Kobayashi et al., 1979). An analysis of these
experiments can be found in Takemori and Kamimura
(1982).

It is clear from the above brief summary that the An-
derson insulator with Coulomb interaction is quite unlike
the ordinary insulator with a band gap. Many of the is-
sues raised here will undoubtedly receive more experimen-
tal and theoretical attention in the years to come.
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