The spherical p-spin solved with replica

 Compute the complexity

* Replica symmetry breaking
and its physics
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Computing the complexity from cloning

of the clone
method:;

Reminder Z](Vm) _ /dfeNZ(f)e_meN = e—ﬁmgb(m)N

—mpBo(m) = MaX ¢1s3(£)>0 X(f) —mBf]

Parametric determination of complexity from ¢ (m):

¢ _ dmo)
dm (f) = ming, [~-mBe(m) + mBf]
¥ = m2¢’ (m) = mlotm) ~ Hlamerans

d
= —pm [cb(m) - (dﬂ;ib)] |a(me) /dm=f
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Computing the complexity from cloning

Z](Vm) :/dfeNZ f) —meN _ _—Bm¢o(m)N

—mf3¢(m)
o 4

1

>

Physical rangeof ¢ : 2 >0 & ¢' >0

and2''(f) <0 & (m¢)'<0

— Max s3(£)>0 X(f) —mBf]

Total quenched free energy:

o BF _ / dfeN (=81
3(f)>0

F =mingspy>0 [f = B 2(f)] = ¢(1),
if Zj(fmin) ~ gb/(l) Z 07
else

— f\z(f)zo — ¢|¢':o = maX,, p(m).
F = F, = max,;,<1 ¢(m)!
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Cloned free energy of spherical p-spins with replicas

ZM = exp(—N®(m)) =?  ®(m) =meo(m) =7

1lm N

H=Hjlo1]+: -+ Hjlom] — € 0’?0’?
ab i=1 Clone forming attraction

Quenched average: (dropped in the end)

(. ) = T lox 7 = — = log | s -+ Dae- I o B BT Btk

N N
Do = (I; doi) 6(32; 07 = N)
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Cloned free energy of spherical p-spins with replicas

ZM = exp(—N®(m)) =?  ®(m) =meo(m) =7

1m N
H=Hjlo1]+ -+ Hjlom] — € olo?
ab i=1 Clone forming attraction
Quenched average: (dropped in the end)
®(m,T) = —Zlqu = T log/Dm ... DopePH o+ +Hilom)+Be 07 S8, ofo)
) N m N m
Do = (I, doi) 6(3_; o; = N)
Replica trick to express the log-average:
®(m,T) = gy (Zp)"
m) - Nn]ino n m

For integer n:

(Zw)™ = [ Doy -+ DopmeBHslo1l++Hylonm]) n x m copies!



Cloned free energy of spherical p-spins with replicas

a=1,....,nm
p—1

\ N mn
(Zm)n X /DO‘? H /dJil---z'p exp I:_J’izl'“ip - -+ 5Ji1-~-ip Zo‘?l " O'?p
' a=1

i1 <<ty

Product over all p-tuples
(clone attraction is now not explicitly written)
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Cloned free energy of spherical p-spins with replicas

a=1,....,nm

\ Np_l mn
(Zm)n X /DO‘? H /dJil---z'p exp _Jz'zl---ip p' + 5Ji1-~-ip Z 0‘?1 . O'?p
) a=1

i1 <<ty

Gaussian average over
g2l L, » |  independent couplings
* a a
oc/Daf H exXp | o Zai10i1 - 0p 0y p | pling
fiasl, ;b Get rid of disorder!

,82 1,mn N P

_ a a, b

_/Dai exp AN Z (ZQ%)
b '

\ Crossterms with identical
indices are subleading by
O(1/N)



Cloned free energy of spherical p-spins with replicas

a=1 ...,nm

Np_l mn
/Da H /szl s exp[ J,Lz1 i} —I—BJ?;I...iPZUfl---afp]
’ a=1

1< <?ap

. Gaussian average over
N /DU{1 T ew B2p! Z sasb ...sa b | independent couplings
e ANP~ S PP Getrid of disorder!
,82 1,mn 2 1,mn
— /Dof €XP | o X; /Da exp Z Za
\ Crossterms with identical 'T‘
indices are subleading by

O(1IN)

Overlap (global similarity) T >
between replicaaand b : Qlo%,0") = 7 2_oioi



Cloned free energy of spherical p-spins with replicas

Np_l mn
/Da H /szl s exp[ J,Lz1 i} —I—BJ?;I...iPZUfl---afp]
’ a=1

et <?ap

B*p! iy b b
oc/Daf H exXp | o Z@ﬁgh 07 0y

i1 < <ip

- ot e [ 55 ($ert) | - oot e[ ()|

1-mn 9 1,mn
/ Ib {dczaba(czab Nza )} exp N% ZQ&,]
a<
1’m'n 1,mn
:/dQexp }/da Hé(NQab Za )
a<b

/

dQ = Ha<b dQab and . Q;a =1



Cloned free energy of spherical p-spins with replicas

Np_l mn
/Da H /szl s exp[ J,fl i} +ﬁJil-~-¢pZU?1'“Ufp]
’ a=1

et <?ap

B*p! iy b b
oc/Daf H exXp | o Z 005, * - "0 0

i1 < <ip

oo e ()| - o 5 ()

1,mn 9 1,mn
nOC/DO'f/ —[ {anbé(Qab NZU )} exp N% Zng]
a,b

a<b

1,mn

=/dQ exp 1""’ }/da ]ﬁn5(NQab ZUaffb)_/dQ exp[ ZQ ]J(Q
/ a<b lmn

dQ =Tl,<,dQa and . Qe =1 J(Q) = /da H s (NQab Za o! ) /d&acs(NQab—&'a-ab)




Jacobian J(Q)

1,mn

J(Q) = / dof ] o (NQab — Zagag)

a<b

N
J(Q) = /d)\agb/da exp (Z N Qap — Z Aub ZG?US>

a<b a<b 1=1

Important:

Virtue of all-to-all (mean field) setting:

Different sites have been decoupled!

. o . . a=1,....mn
Only single-site interactions between the mn replica &,



Jacobian J(Q)

1,mn

J(Q) = / dof ] o (NQab - Zagag’)

a<b
N
J(Q) = /d)\agb/danp > NAawQab — ¥ Aav »_0fo)
a<b a<b =1

Saddle point wrt Agp —> (A;l)ab — Qab

N
J(Q) = const - /da exp (nmN — Z Q;bl Z o‘?a?) — const - [det Q]N/2
i=1

a<b



Cloned free energy of spherical p-spins with replicas

—_— (Zm)™ /anb el |

x@ =25 a1+ hogano
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Due to mean field structure:
Final integral over global replica overlaps Qg , with an action ~N

—> Saddle point over Q! ?



Cloned free energy of spherical p-spins with replicas

—_— (Zm)™ /anb el |

x@ =25 a1+ hogano
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Find a saddle point Q*, for any m,n!



Cloned free energy of spherical p-spins with replicas

—_— (Zm)™ /anb el |

x@ =25 a1+ hogano
ab

Due to mean field structure:
Final integral over global replica overlaps Qg , with an action ~N

—> Saddle point over Q! ?

N —o0 N n—0

But recall: ®(m,T) = ~T lim — lim 9, / dQab exp [NX(Q)]

Saddle point requires exchange of limitsto  n — 0, N — oo !

Find a saddle point Q*,, for any m,n! & Make sure the second derivatives of X(Q*) are negative!



Cloned free energy of spherical p-spins with replicas

— (Zm)n X /anb eNX(Q) )

Recall clone coupling 32 1
in blocks (B) of m spins: Q=7 %; Qa5 logdet @+ BEXB: bz;; Wor

Saddle point equation for Q,, is complicated: no general solution



Cloned free energy of spherical p-spins with replicas

— (Zm)™ o /anb eNX(@Q)
Recall clone coupling 52 !
inblocks (B) of mspins: X9 =% ;sz + 5 logdetQ+Be) ) Qu

B abeB

Saddle point equation for Q,, is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution): Q B
* Replicas of the same block are coupled in the same valley-> finite overlap azb = 4

o Qaa =1
 aand b in different blocks: uncorrelated Qab =0

“One-step replica symmetry ( (

) \
- q 0 m=3 (clones
breaking structure” : g1 ( )

g ) n=2 (blocks of replica clones) — 0 eventually
1/ )



Cloned free energy of spherical p-spins with replicas

Explicit breaking of replica

3 7 o / dQuy VX (@ P symmetry (permutation of
Recall clone coupling replica indices)
in blocks (B) of m spins: 4 ZQ 6T 3 3 loedetQ +5€§abze3 o

Saddle point equation for Q,, is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution): Q B
* Replicas of the same block are coupled in the same valley-> finite overlap azb = 4

o Qaa =1
 aand b in different blocks: uncorrelated Qab =0

“One-step replica symmetry ( (

) \
- q 0 m=3 (clones
breaking structure” : g1 ( )

g ) n=2 (blocks of replica clones) — 0 eventually
1/ )



Cloned free energy of spherical p-spins with replicas

Explicit breaking of replica

3 7 o / dQuy VX (@ / symmetry (permutation of

Recall clone coupling i replica indices)
in blocks (B) of m spins: X(@)="7 ZQab*  logdet @ +5e>° S Qu

B abeB
det (

—_— X(Q) = —Bnmaoirss(m, q,T) + Benm(m — 1)q

1 [B? 5 m —
25{ [1+ (m—1)¢"] +

continuation to n — 0 and real m
®(m,T) = -T0,X(Q*) = mpirss(m,q*,T) —em(m—1)g"
q*: stationary point Choose solution with g* >0

) =(1—-¢)™ "1+ (m—1)q det Q@ = {(1 — @)™ "1+ (m — 1)q)}"

R R
=R
QR

brnsn(m,0,T) = “log(1— )+ - 1og L+ (m ~ 1]}



Cloned free energy of spherical p-spins with replicas

Explicit breaking of replica

3 7 o / dQuy VX (@ P symmetry (permutation of
Recall clone coupling replica indices)

in blocks (B) of m spins: 4 ZQ > 1ogdetQ+56XB:ab2€;Qab
lggq
det (‘1 1 ‘{) =(1—-¢)™ "1+ (m—1)q det Q = {(1 — )™ '[1 4 (m — 1)q]}"
q q

—_— X(Q) = —Bnmaoirss(m, q,T) + Benm(m — 1)q

1 [B? 5 m —
Zﬂ{ [1+ (m—1)¢g?] +

continuation to n — 0 and real m

S(m,T) = -T0,X(QF) = mpirss(m,q",T) —em(m—1)¢*  (cf DPRM on tree)

T
Due to uncorrelated blocks (in this simple model!): ® = annealed average ®(m,7T") = N log Z,,

Srmsn(m,q,T) = “log(1— )+ - 1og L+ (m ~ 1]}



Cloned free energy of spherical p-spins with replicas

Having & (m, T)

Obtain the spectrum of metastable states!



Cloned free energy of spherical p-spins with replicas

spherical 3-spin

1.4
nth
o (k) e :
5 | # Physical range:
! X)) >0 XV(f) <0
0.4
02t N |
/ 9>0 can be found
0 L=l - i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T



Cloned free energy of spherical p-spins with replicas

spherical 3-spin
1.4

1.2  *

L [ R
# Physical range:

CB(H>0 (<0

0.8 r
0.6

04

0.2 | : l
/ 9>0 can be found

O e | 1 1 1 :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T

Achieved: full thermodynamics
AND distribution 2(f) of metastable states!

Typical values of £ ~ 0.01 (quantify how much “informatioh” can be g‘tored! ’



1.4

Marginal stability of threshold states

spherical 3-spin

’Threshold states:

1.2 Fi*

0.8 r

06 r

04

0.2

/ q>0 can be fouhd

/ Physical range:

e

Some eigenvalue of
X"(Q), the “replicon”
become zero!

0

0.1

0.2

0.3

T

0.4

0.5

0.6

0.7
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Marginal stability of threshold states

spherical 3-spin

’Threshold states:

1.2  *

0.8 r

0.6

04

0.2

q>0 can be foupd

/ Physical range:

SR >0 2(f) < 0°G(m')) /om;om;

<> [ Marginally stable!
TAP minima with
gapless fluctuation
spectrum

0

0.1

0.2

0.3
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Marginal stability of threshold states

spherical 3-spin
1.4

1.2 Fi*

0.8 | Physical range:

06 r

04

0.2 , 1
/ 9>0 can be found

0 <| ! I L .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T

Dynamics (after a quench from high T) floats along the nearly
unstable directions, without really settling into the minima

SE(f) >0 B <

’Threshold states:

Marginally stable!
TAP minima with
gapless fluctuation
spectrum

*G(m ™) /om;om;




Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?
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Same structure of calculation with v = nm — 0 replica.
Only difference: there is no clone structure suggesting the block ansatz with definite m




Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?

Same structure of calculation with v = nm — 0 replica.
Only difference: there is no clone structure suggesting the block ansatz with definite m

Q/()O\
\0<>/

Parisi’s proposal (pre-clone!): regard m and q as variational and find stationary point!
feq(T') = maxq o<m<191rsB(M, q)
Imposes the ‘equilibrium’ choice m* = min(1,m) !

QK =
Q=R
QR

KK =
K =RQ
QR



Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica
But what about computing for single copy (with no cloning) directly?

Same structure of calculation with v = nm — 0 replica.
Only difference: there is no clone structure suggesting the block ansatz with definite m

Q_/()O\
\“()/

Parisi’s proposal (pre-clone!): regard m and q as variational and find stationary point!
feq(T') = maxg o<m<191rSB(M, Q)
Imposes the ‘equilibrium’ choice m* = min(1,m) !

QK =
Q=R
R Q

QK =
Q=R
QR



Meaning of replica symmetry breaking

Meaning of the spontaneous block structure
The different replica lie in the lowest available minima of G(m)

A pair of replica thus may lie in the same minimum (and have overlap q)
or in different valleys (no overlap):

((;?g) 0 \ P(Q12)55(Q12_%ZO—Z‘10—§):g%yilzé(Q12_le)
5 i b£1
§= e 1 qgq — (m—1)6(Q12 —q) + (v —m)§(Q12 — 0)
0 (q 1q> =0 v—1
\ 791) )

= (1 =m)d(Q12 — q) + m6(Q12)

Only non trivial for freezing: m=mg, < 1
where O(1) different minima compete!



