

The spherical p-spin solved with replica

- Compute the complexity
- Replica symmetry breaking
and its physics

Computing the complexity from cloning

Reminder
of the clone
method:

$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta f N} \equiv e^{-\beta m \phi(m) N}$$

$$-m\beta\phi(m) = \max_{f|\Sigma(f)\geq 0} [\Sigma(f) - m\beta f]$$

Computing the complexity from cloning

Reminder
of the clone
method:

$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta f N} \equiv e^{-\beta m \phi(m) N}$$

$$-m\beta\phi(m) = \max_{f|\Sigma(f)\geq 0} [\Sigma(f) - m\beta f]$$

Parametric determination of complexity from $\phi(m)$:

$$f = \frac{d(m\phi)}{dm}$$

Computing the complexity from cloning

Reminder
of the clone
method:

$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta f N} \equiv e^{-\beta m \phi(m) N}$$

$$-m\beta\phi(m) = \max_{f|\Sigma(f) \geq 0} [\Sigma(f) - m\beta f]$$

Parametric determination of complexity from $\phi(m)$:

$$f = \frac{d(m\phi)}{dm}$$

$$\Sigma = \beta m^2 \phi'(m)$$

$$\Sigma(f) = \min_m [-m\beta\phi(m) + m\beta f]$$

$$= -\beta m [\phi(m) - f]|_{d(m\phi)/dm=f}$$

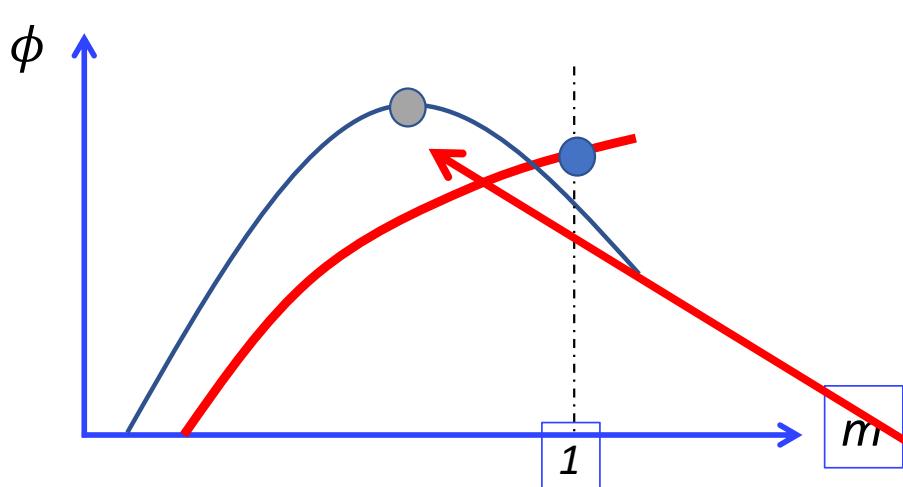
$$= -\beta m \left[\phi(m) - \frac{d(m\phi)}{dm} \right] |_{d(m\phi)/dm=f}$$

$$= \beta m^2 \phi'(m)|_{d(m\phi)/dm=f}$$

Computing the complexity from cloning

$$Z_N^{(m)} = \int df e^{N\Sigma(f)} e^{-m\beta f N} \equiv e^{-\beta m \phi(m) N}$$

$$-m\beta\phi(m) = \max_{f|\Sigma(f)\geq 0} [\Sigma(f) - m\beta f]$$



Physical range of ϕ : $\Sigma > 0 \leftrightarrow \phi' > 0$
 and $\Sigma''(f) < 0 \leftrightarrow (m\phi)'' < 0$

Total quenched free energy:

$$e^{-\beta F} = \int_{\Sigma(f)\geq 0} df e^{N(\Sigma(f)-\beta f)}$$

$$F = \min_{f|\Sigma(f)\geq 0} [f - \beta^{-1}\Sigma(f)] = \phi(1),$$

if $\Sigma(f_{\min}) \sim \phi'(1) \geq 0$,

else

$$= f|_{\Sigma(f)=0} = \phi|_{\phi'=0} = \max_m \phi(m).$$

$$F = F_{\text{qu}} = \max_{m \leq 1} \phi(m)!$$

Cloned free energy of spherical p-spins with replicas

$$Z^{(m)} = \exp(-\beta N \Phi(m)) = ? \quad \Phi(m) \equiv m \phi(m) = ?$$

$$H = H_J[\sigma_1] + \cdots + H_J[\sigma_m] - \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b$$

Clone forming attraction
(dropped in the end)

Cloned free energy of spherical p-spins with replicas

$$Z^{(m)} = \exp(-\beta N \Phi(m)) = ? \quad \Phi(m) \equiv m \phi(m) = ?$$

$$H = H_J[\sigma_1] + \cdots + H_J[\sigma_m] - \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b$$

Clone forming attraction
(dropped in the end)

Quenched average:

$$\Phi(m, T) = -\overline{\frac{T}{N} \log Z_m} = -\overline{\frac{T}{N} \log \int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b}}.$$

$D\sigma = (\prod_i d\sigma_i) \delta(\sum_i \sigma_i^2 = N)$

Cloned free energy of spherical p-spins with replicas

$$Z^{(m)} = \exp(-\beta N \Phi(m)) = ? \quad \Phi(m) \equiv m \phi(m) = ?$$

$$H = H_J[\sigma_1] + \cdots + H_J[\sigma_m] - \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b$$

Clone forming attraction
(dropped in the end)

Quenched average:

$$\Phi(m, T) = \overline{-\frac{T}{N} \log Z_m} = \overline{-\frac{T}{N} \log \int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b}}.$$

$D\sigma = (\prod_i d\sigma_i) \delta(\sum_i \sigma_i^2 = N)$

Replica trick to express the log-average:

$$\Phi(m, T) = -\frac{T}{N} \lim_{n \rightarrow 0} \partial_n \overline{(Z_m)^n}$$

Cloned free energy of spherical p-spins with replicas

$$Z^{(m)} = \exp(-\beta N \Phi(m)) = ? \quad \Phi(m) \equiv m \phi(m) = ?$$

$$H = H_J[\sigma_1] + \cdots + H_J[\sigma_m] - \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b$$

Clone forming attraction
(dropped in the end)

Quenched average:

$$\Phi(m, T) = \overline{-\frac{T}{N} \log Z_m} = \overline{-\frac{T}{N} \log \int D\sigma_1 \cdots D\sigma_m e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_m]) + \beta \epsilon \sum_{a,b} \sum_{i=1}^{1,m} \sigma_i^a \sigma_i^b}}.$$

$D\sigma = (\prod_i d\sigma_i) \delta(\sum_i \sigma_i^2 = N)$

Replica trick to express the log-average:

$$\Phi(m, T) = -\frac{T}{N} \lim_{n \rightarrow 0} \partial_n \overline{(Z_m)^n}$$

For integer n:

$$\overline{(Z_m)^n} = \overline{\int D\sigma_1 \cdots D\sigma_{nm} e^{-\beta(H_J[\sigma_1] + \cdots + H_J[\sigma_{nm}])}}$$

$n \times m$ copies!

Cloned free energy of spherical p-spins with replicas

$$\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right]$$

$a = 1, \dots, nm$

Product over all p-tuples
(clone attraction is now not explicitly written)

Cloned free energy of spherical p-spins with replicas

$$\overline{(Z_m)^n} \propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right]$$

$a = 1, \dots, nm$

$$\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right]$$

Gaussian average over
independent couplings

Get rid of disorder!

Cloned free energy of spherical p-spins with replicas

$$\begin{aligned}
 a &= 1, \dots, nm \\
 \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\
 &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \quad \text{Gaussian average over independent couplings} \\
 &= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] \quad \text{Get rid of disorder!}
 \end{aligned}$$

a = 1, ..., nm
↓
Crossterms with identical indices are subleading by O(1/N)

Cloned free energy of spherical p-spins with replicas

$$\begin{aligned}
 a &= 1, \dots, nm \\
 \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\
 &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \quad \text{Gaussian average over independent couplings} \\
 &= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \quad \text{Get rid of disorder!} \\
 &\quad \uparrow \quad \uparrow \\
 &\quad \text{Crossterms with identical indices are subleading by } O(1/N) \\
 &\quad \text{Overlap (global similarity) between replica a and b :} \\
 &\quad Q(\sigma^a, \sigma^b) = \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b
 \end{aligned}$$

Cloned free energy of spherical p-spins with replicas

$$\begin{aligned}
 \overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\
 &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \\
 &= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \\
 \overline{(Z_m)^n} &\propto \int D\sigma_i^a \int \prod_{a < b}^{1,mn} \left\{ dQ_{ab} \delta \left(Q_{ab} - \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right) \right\} \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \\
 &= \int dQ \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \int d\sigma_i^a \prod_{a \leq b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right)
 \end{aligned}$$

$$dQ = \prod_{a < b} dQ_{ab} \quad \text{and} \quad Q_{aa} = 1$$

Cloned free energy of spherical p-spins with replicas

$$\begin{aligned}
\overline{(Z_m)^n} &\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \int dJ_{i_1 \dots i_p} \exp \left[-J_{i_1 \dots i_p}^2 \frac{N^{p-1}}{p!} + \beta J_{i_1 \dots i_p} \sum_{a=1}^{mn} \sigma_{i_1}^a \dots \sigma_{i_p}^a \right] \\
&\propto \int D\sigma_i^a \prod_{i_1 < \dots < i_p} \exp \left[\frac{\beta^2 p!}{4N^{p-1}} \sum_{a,b}^{1,mn} \sigma_{i_1}^a \sigma_{i_1}^b \dots \sigma_{i_p}^a \sigma_{i_p}^b \right] \\
&= \int D\sigma_i^a \exp \left[\frac{\beta^2}{4N^{p-1}} \sum_{a,b}^{1,mn} \left(\sum_i^N \sigma_i^a \sigma_i^b \right)^p \right] = \int D\sigma_i^a \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} \left(\frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right)^p \right] \\
\overline{(Z_m)^n} &\propto \int D\sigma_i^a \int \prod_{a < b}^{1,mn} \left\{ dQ_{ab} \delta \left(Q_{ab} - \frac{1}{N} \sum_i \sigma_i^a \sigma_i^b \right) \right\} \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \\
&= \int dQ \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] \int d\sigma_i^a \prod_{a \leq b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right) = \int dQ \exp \left[N \frac{\beta^2}{4} \sum_{a,b}^{1,mn} Q_{ab}^p \right] J(Q)
\end{aligned}$$

$$dQ = \prod_{a < b} dQ_{ab} \quad \text{and} \quad Q_{aa} = 1$$

$$J(Q) = \int d\sigma_i^a \prod_{a \leq b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right) = \int d\vec{\sigma}^a \delta(NQ_{ab} - \vec{\sigma}^a \cdot \vec{\sigma}^b)$$

Jacobian $J(Q)$

$$J(Q) = \int d\sigma_i^a \prod_{a \leq b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right)$$

$$J(Q) = \int d\lambda_{a \leq b} \int d\sigma \exp \left(\sum_{a \leq b} N\lambda_{ab} Q_{ab} - \sum_{a \leq b} \lambda_{ab} \sum_{i=1}^N \sigma_i^a \sigma_i^b \right)$$

Important:

Virtue of all-to-all (mean field) setting:

Different sites have been decoupled!

Only single-site interactions between the mn replica

$\sigma_i^{a=1, \dots, mn}$

Jacobian $J(Q)$

$$J(Q) = \int d\sigma_i^a \prod_{a \leq b}^{1,mn} \delta \left(NQ_{ab} - \sum_i \sigma_i^a \sigma_i^b \right)$$

$$J(Q) = \int d\lambda_{a \leq b} \int d\sigma \exp \left(\sum_{a \leq b} N\lambda_{ab} Q_{ab} - \sum_{a \leq b} \lambda_{ab} \sum_{i=1}^N \sigma_i^a \sigma_i^b \right)$$

Saddle point wrt λ_{ab} $\longrightarrow (\lambda_*^{-1})_{ab} = Q_{ab}$

$$J(Q) = \text{const} \cdot \int d\sigma \exp \left(nmN - \sum_{a \leq b} Q_{ab}^{-1} \sum_{i=1}^N \sigma_i^a \sigma_i^b \right) = \text{const} \cdot [\det Q]^{N/2}$$

Cloned free energy of spherical p-spins with replicas

$$\longrightarrow \quad \overline{(Z_m)^n} \propto \int dQ_{ab} e^{NX(Q)} ,$$
$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q$$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\sim N$

→ Saddle point over Q_{ab} ! ?

Cloned free energy of spherical p-spins with replicas

$$\xrightarrow{\hspace{1cm}} \overline{(Z_m)^n} \propto \int dQ_{ab} e^{NX(Q)} ,$$
$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q$$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\sim N$

$\xrightarrow{\hspace{1cm}}$ Saddle point over Q_{ab} ! ?

But recall: $\Phi(m, T) = -T \lim_{N \rightarrow \infty} \frac{1}{N} \lim_{n \rightarrow 0} \partial_n \int dQ_{ab} \exp [NX(Q)]$

Saddle point requires exchange of limits to $n \rightarrow 0, N \rightarrow \infty$!

Find a saddle point Q_{ab}^* for any m, n !

Cloned free energy of spherical p-spins with replicas

$$\xrightarrow{\hspace{1cm}} \overline{(Z_m)^n} \propto \int dQ_{ab} e^{NX(Q)} ,$$
$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q$$

Due to mean field structure:

Final integral over global replica overlaps Q_{ab} , with an action $\sim N$

$\xrightarrow{\hspace{1cm}}$ Saddle point over Q_{ab} ! ?

But recall: $\Phi(m, T) = -T \lim_{N \rightarrow \infty} \frac{1}{N} \lim_{n \rightarrow 0} \partial_n \int dQ_{ab} \exp [NX(Q)]$

Saddle point requires exchange of limits to $n \rightarrow 0, N \rightarrow \infty$!

Find a saddle point Q_{ab}^* for any m, n ! & Make sure the second derivatives of $X(Q^*)$ are negative!

Cloned free energy of spherical p-spins with replicas

$$\overline{(Z_m)^n} \propto \int dQ_{ab} e^{N X(Q)} ,$$

Recall clone coupling
in blocks (B) of m spins:

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_B \sum_{ab \in B} Q_{ab}$$

Saddle point equation for Q_{ab} is complicated: no general solution

Cloned free energy of spherical p-spins with replicas

$$\overline{(Z_m)^n} \propto \int dQ_{ab} e^{N X(Q)},$$

Recall clone coupling in blocks (B) of m spins:

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_B \sum_{ab \in B} Q_{ab}$$

Saddle point equation for Q_{ab} is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution):

- Replicas of the same block are coupled in the same valley \rightarrow finite overlap
- a and b in different blocks: uncorrelated $Q_{ab} = 0$

$$\begin{aligned} Q_{a \neq b} &= q \\ Q_{aa} &= 1 \end{aligned}$$

“One-step replica symmetry breaking structure” :

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix} \begin{array}{l} \text{m=3 (clones)} \\ \text{n=2 (blocks of replica clones) } \rightarrow 0 \text{ eventually} \end{array}$$

Cloned free energy of spherical p-spins with replicas

Recall clone coupling
in blocks (B) of m spins:

$$\overline{(Z_m)^n} \propto \int dQ_{ab} e^{N X(Q)},$$

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_B \sum_{ab \in B} Q_{ab}$$

Explicit breaking of replica
symmetry (permutation of
replica indices)

Saddle point equation for Q_{ab} is complicated: no general solution

But: Physical guess of a sensible structure (confirmed by exact solution):

- Replicas of the same block are coupled in the same valley \rightarrow finite overlap
- a and b in different blocks: uncorrelated $Q_{ab} = 0$

$$\begin{aligned} Q_{a \neq b} &= q \\ Q_{aa} &= 1 \end{aligned}$$

“One-step replica symmetry
breaking structure” :

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

m=3 (clones)

n=2 (blocks of replica clones) $\rightarrow 0$ eventually

Cloned free energy of spherical p-spins with replicas

Recall clone coupling
in blocks (B) of m spins:

$$\overline{(Z_m)^n} \propto \int dQ_{ab} e^{N X(Q)} ,$$

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_B \sum_{ab \in B} Q_{ab}$$

Explicit breaking of replica
symmetry (permutation of
replica indices)

$$\det \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} = (1-q)^{m-1} [1 + (m-1)q] \quad \det Q = \{(1-q)^{m-1} [1 + (m-1)q]\}^n$$

$$X(Q) = -\beta n m \phi_{1\text{RSB}}(m, q, T) + \beta \epsilon n m (m-1)q$$

$$\phi_{1\text{RSB}}(m, q, T) = -\frac{1}{2\beta} \left\{ \frac{\beta^2}{2} [1 + (m-1)q^p] + \frac{m-1}{m} \log(1-q) + \frac{1}{m} \log [1 + (m-1)q] \right\}$$

continuation to $n \rightarrow 0$ and real m

$$\Phi(m, T) = -T \partial_n X(Q^*) = m \phi_{1\text{RSB}}(m, q^*, T) - \epsilon m (m-1)q^*$$

q*: stationary point

Choose solution with $q^* > 0$

Cloned free energy of spherical p-spins with replicas

Recall clone coupling
in blocks (B) of m spins:

$$\overline{(Z_m)^n} \propto \int dQ_{ab} e^{N X(Q)} ,$$

$$X(Q) = \frac{\beta^2}{4} \sum_{ab} Q_{ab}^p + \frac{1}{2} \log \det Q + \beta \epsilon \sum_B \sum_{ab \in B} Q_{ab}$$

Explicit breaking of replica
symmetry (permutation of
replica indices)

$$\det \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} = (1-q)^{m-1} [1 + (m-1)q] \quad \det Q = \{(1-q)^{m-1} [1 + (m-1)q]\}^n$$

$$X(Q) = -\beta nm \phi_{1\text{RSB}}(m, q, T) + \beta \epsilon nm(m-1)q$$

$$\phi_{1\text{RSB}}(m, q, T) = -\frac{1}{2\beta} \left\{ \frac{\beta^2}{2} [1 + (m-1)q^p] + \frac{m-1}{m} \log(1-q) + \frac{1}{m} \log [1 + (m-1)q] \right\}$$

continuation to $n \rightarrow 0$ and real m

$$\Phi(m, T) = -T \partial_n X(Q^*) = m \phi_{1\text{RSB}}(m, q^*, T) - \epsilon m(m-1)q^* \quad (\text{cf DPRM on tree})$$

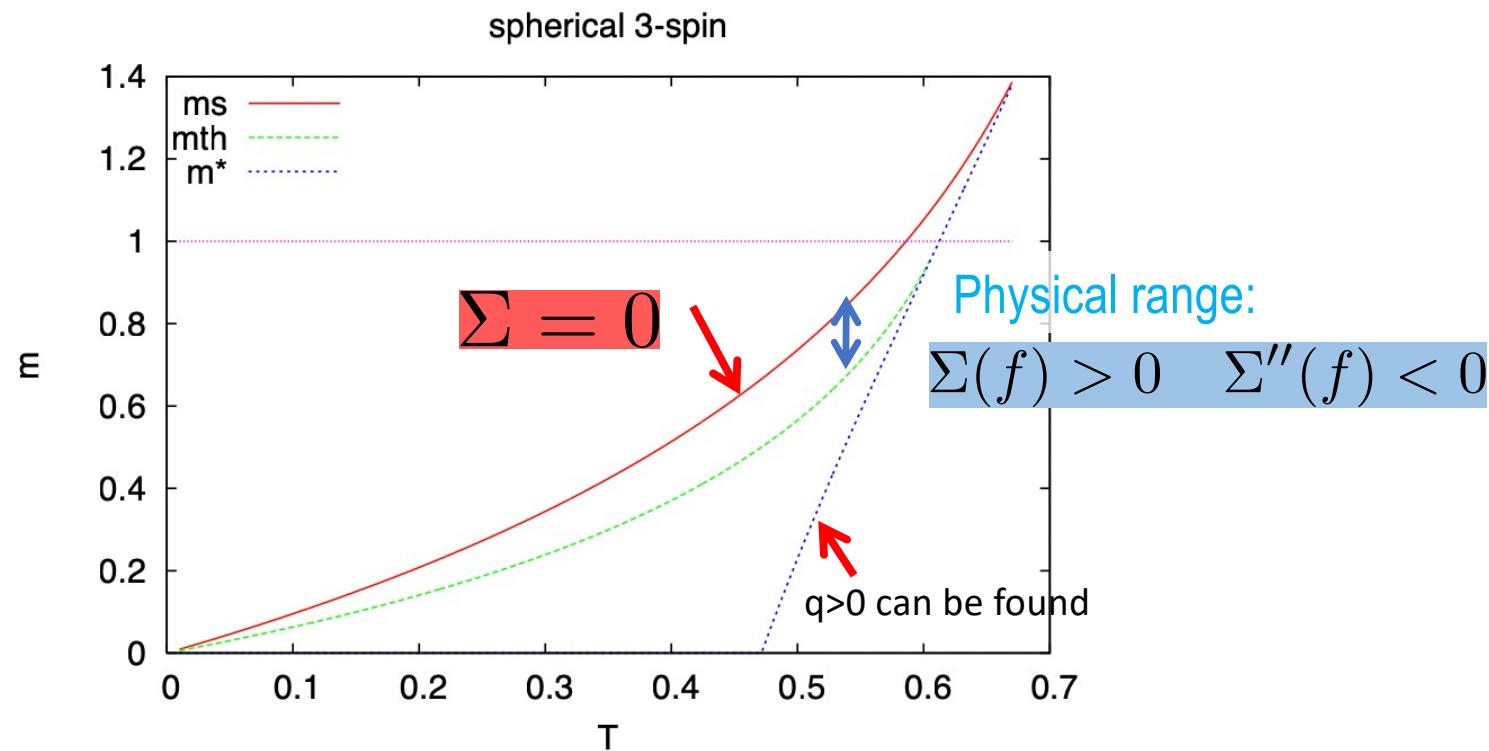
Due to uncorrelated blocks (in this simple model!): Φ = annealed average $\Phi(m, T) = -\frac{T}{N} \log \overline{Z_m}$

Cloned free energy of spherical p-spins with replicas

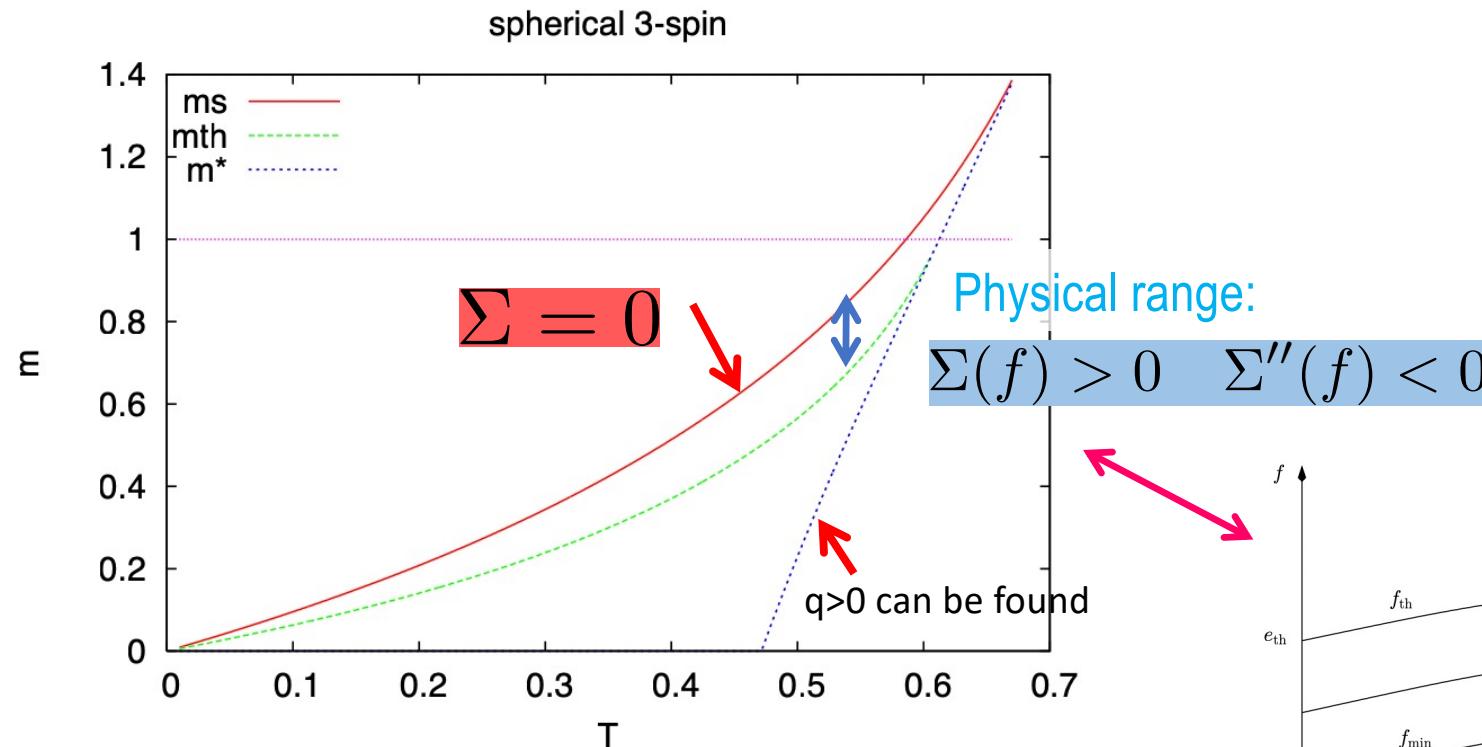
Having $\Phi(m, T)$

Obtain the spectrum of metastable states!

Cloned free energy of spherical p-spins with replicas



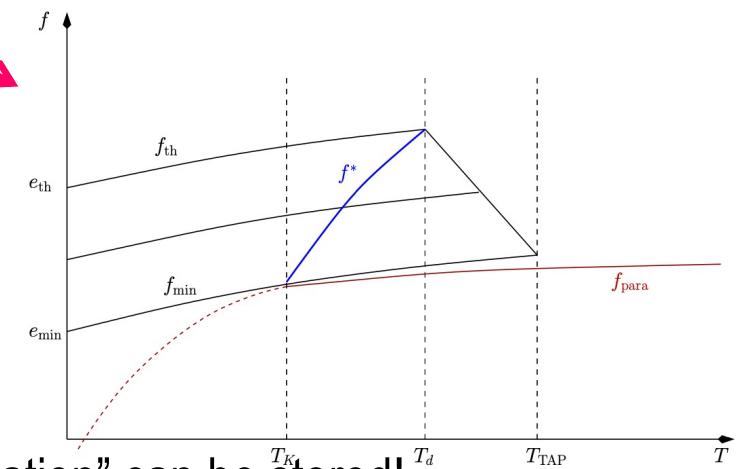
Cloned free energy of spherical p-spins with replicas



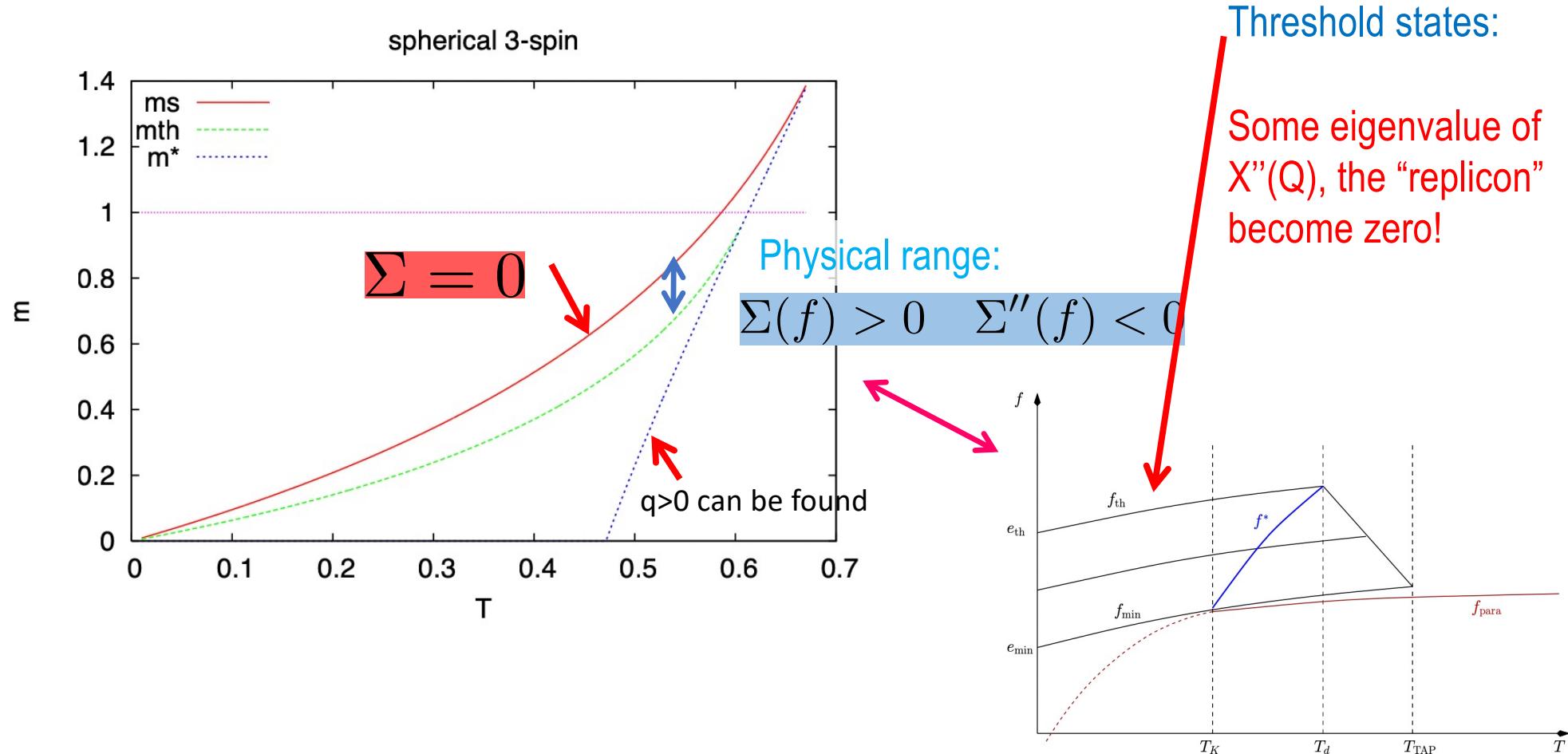
Achieved: full thermodynamics

AND distribution $\Sigma(f)$ of metastable states!

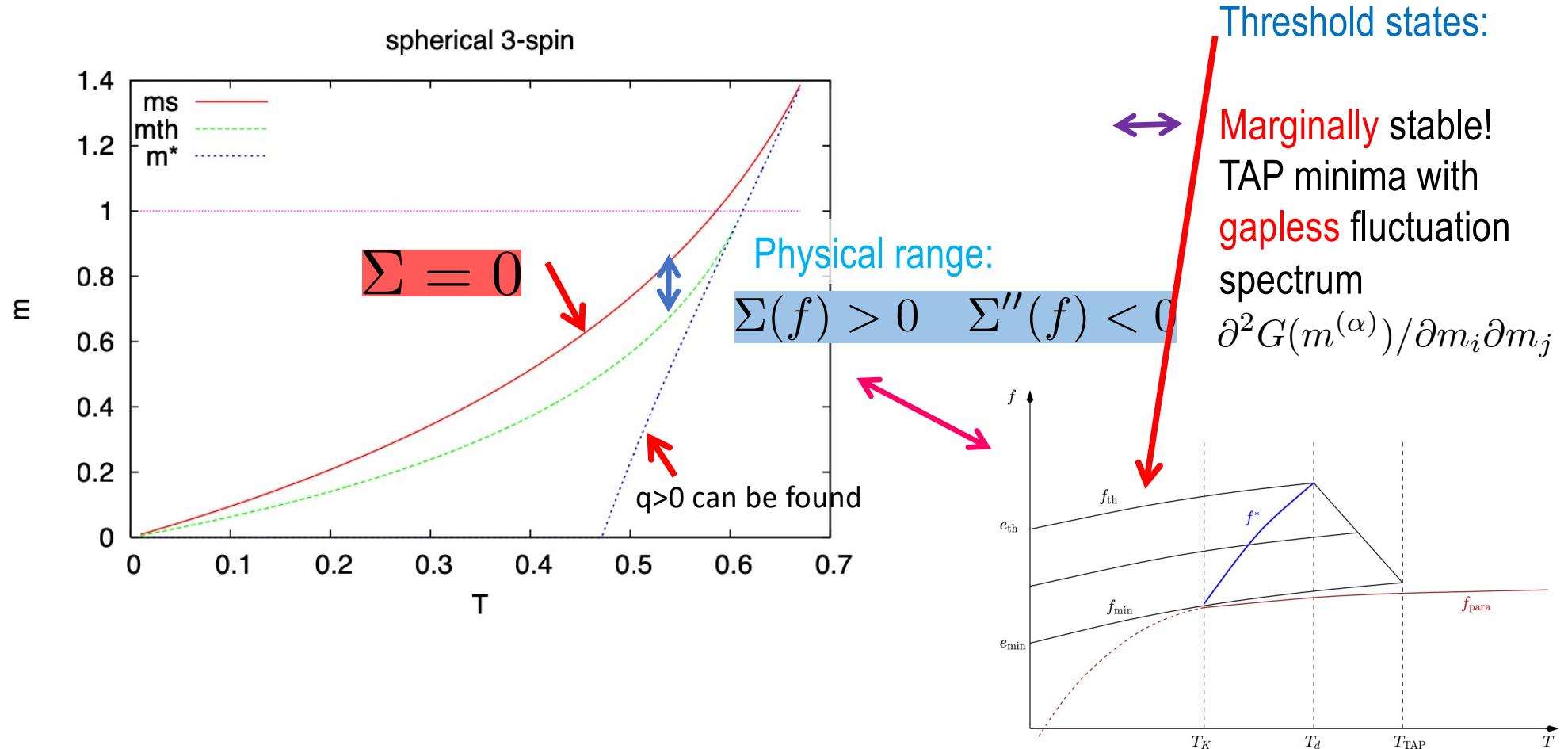
Typical values of $\Sigma \sim 0.01$ (quantify how much “information” can be stored!)



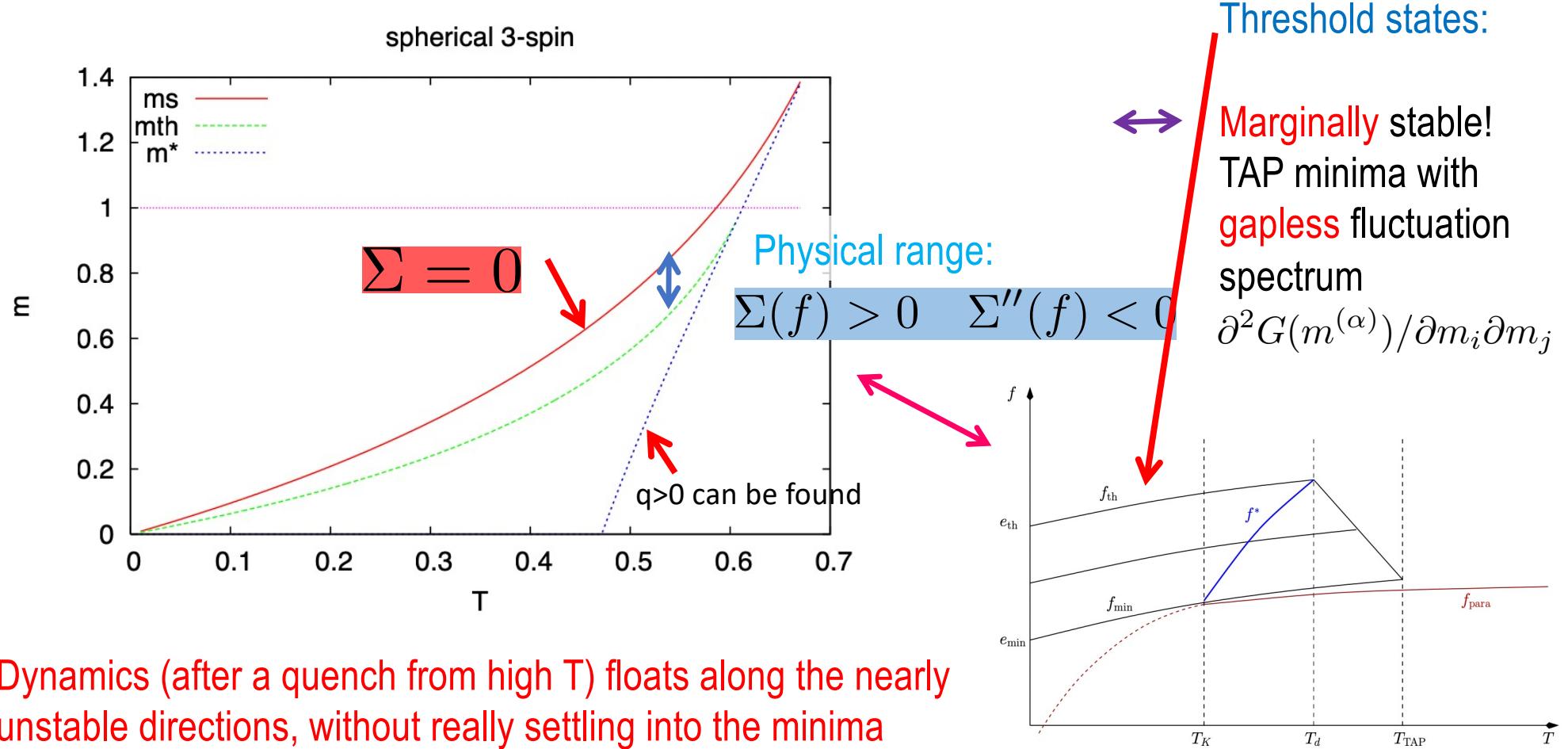
Marginal stability of threshold states



Marginal stability of threshold states



Marginal stability of threshold states



Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?

Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: there is no clone structure suggesting the block ansatz with definite m

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: there is no clone structure suggesting the block ansatz with definite m

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

Parisi's proposal (pre-clone!): regard m and q as variational and find stationary point!

$$f_{eq}(T) = \max_{q, 0 \leq m \leq 1} \phi_{1RSB}(m, q)$$

Imposes the 'equilibrium' choice $m^* = \min(1, m_s)$!

Spontaneous replica symmetry breaking

Clone attraction explicitly breaks permutation symmetry among nm replica

But what about computing for single copy (with no cloning) directly?

Same structure of calculation with $v = nm \rightarrow 0$ replica.

Only difference: there is no clone structure suggesting the block ansatz with definite m

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$T < T_K$: $m^* < 1$!
Saddle point chooses a multi-block structure: *Spontaneous replica symmetry breaking! "RSB"*

Parisi's proposal (pre-clone!): regard m and q as variational and find stationary point!

$$f_{eq}(T) = \max_{q, 0 \leq m \leq 1} \phi_{1RSB}(m, q)$$

Imposes the 'equilibrium' choice $m^* = \min(1, m_s)$!

Meaning of replica symmetry breaking

Meaning of the spontaneous block structure

The different replica lie in the lowest available minima of $G(m)$

A pair of replica thus may lie in the same minimum (and have overlap q) or in different valleys (no overlap):

$$Q = \begin{pmatrix} \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & q & q \\ q & 1 & q \\ q & q & 1 \end{pmatrix} \end{pmatrix}$$

$$\begin{aligned} P(Q_{12}) &\equiv \overline{\delta(Q_{12} - \frac{1}{N} \sum_i \sigma_i^1 \sigma_i^2)} = \lim_{\nu \rightarrow 0} \frac{1}{\nu - 1} \sum_{b \neq 1} \delta(Q_{12} - Q_{1b}) \\ &= \lim_{\nu \rightarrow 0} \frac{(m-1)\delta(Q_{12} - q) + (\nu - m)\delta(Q_{12} - 0)}{\nu - 1} \\ &= (1-m)\delta(Q_{12} - q) + m\delta(Q_{12}) \end{aligned}$$

Only non trivial for freezing: $m=m_{\text{eq}} < 1$
where $O(1)$ **different minima** compete!