

Free energy landscape

Two universality classes of glasses

Two-spin interacting glasses: SK – model
versus
Multi-spin interactions: p-spin model

With very different phenomenology!

Free energy landscape

Two universality classes of glasses

Two-spin interacting glasses: SK – model
versus
Multi-spin interactions: p-spin model

Motivation for multi-spin models:

- Optimization problems (3-SAT) have multi-spin interactions
- Langevin dynamics of mean field p-spin model is identical to mode-coupling approximation to supercooled liquids!

Simple model for liquids

Kirkpatrick, Thirumalai, Wolynes

Simple liquid Hamiltonian

$$H = \frac{\mu(t)}{2} \phi^2 + \frac{g}{p!} \phi^p$$

$\phi(r)$: local density

Langevin equation

$$\frac{\partial \phi}{\partial t} = -\mu(t)\phi - \frac{g}{(p-1)!} \phi^{p-1} + \eta$$

The dynamical evolution equations for such a liquid are identical to those of a p-spin model (see later).

→ Conjecture / belief: The glass transition and the structure of the glass phase of models with interactions between $p > 2$ spins captures the essence of the physics of structural glasses (that have no intrinsic disorder!)

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Gaussian disorder with zero mean and variance:

$$\overline{J_{i_1 \dots i_p}^2} = \frac{p!}{2N^{p-1}}$$

ensures O(1) local fields and O(N) total energy.

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional -- Zeroth order (entropy):

$$\begin{aligned} e^{A^0[m]} &= \int d\sigma \delta \left(\sum_i \sigma_i^2 - N \right) e^{\sum_i \lambda_i^0 (\sigma_i - m_i)} = \int_{-i\infty}^{i\infty} \frac{d\mu}{2\pi} \int d\sigma e^{-\mu \sum_i \sigma_i^2 + \mu N + \sum_i \lambda_i^0 (\sigma_i - m_i)} \\ &= \int_{-i\infty}^{i\infty} \frac{d\mu}{2\pi} \exp \left[N\mu + \frac{N}{2} \log \left(\frac{\pi}{\mu} \right) + \frac{1}{4\mu} \sum_i (\lambda_i^0)^2 - \sum_i \lambda_i^0 m_i \right]. \end{aligned}$$

Saddle point:

$$\begin{aligned} \frac{\partial A^0}{\partial \lambda_i^0} = 0 \rightarrow \lambda_i^0 &= 2\mu m_i & A^0[m] &= N \text{st}_\mu \left[\mu(1-q) + \frac{1}{2} \log \left(\frac{\pi}{\mu} \right) \right] \\ \mu &= \frac{1}{2(1-q)} & A^0[m] &= N \frac{1}{2} \log(1-q) \end{aligned}$$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional -- First order (mean energy):

$$\frac{dA^\beta}{d\beta} = -\langle H \rangle \quad (\beta = 0) \quad \rightarrow \quad = \quad \frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p}$$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional -- Second order (Onsager / vdW-like term):

$$\frac{d^2 A^\beta}{d\beta^2} = \langle U_0^2 \rangle$$

$$U = H - \langle H \rangle - \sum_i \partial_\beta \lambda_i^\beta (\sigma_i - m_i) \quad \partial_\beta \lambda_i^\beta |_{\beta=0} = \frac{d}{dm} \langle H \rangle_0$$

$$\rightarrow \quad U_0 = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} [\sigma_{i_1} \dots \sigma_{i_p} - m_{i_1} \dots m_{i_p} - p(\sigma_{i_1} - m_{i_1})m_{i_2} \dots m_{i_p}]$$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional -- Second order (Onsager / vdW-like term):

$$\frac{d^2 A^\beta}{d\beta^2} = \langle U_0^2 \rangle = \langle U_0 (H - \langle H \rangle_0) \rangle =$$

$$U = H - \langle H \rangle - \sum_i \partial_\beta \lambda_i^\beta (\sigma_i - m_i) \quad \partial_\beta \lambda_i^\beta |_{\beta=0} = \frac{d}{dm} \langle H \rangle_0$$

$$\rightarrow U_0 = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} [\sigma_{i_1} \dots \sigma_{i_p} - m_{i_1} \dots m_{i_p} - p(\sigma_{i_1} - m_{i_1})m_{i_2} \dots m_{i_p}]$$

Use $\langle U(\sigma_i - m_i) \rangle = 0$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional -- Second order (Onsager / vdW-like term):

$$\frac{d^2 A^\beta}{d\beta^2} = \langle U_0^2 \rangle = \langle U_0 (H - \langle H \rangle_0) \rangle = \frac{N^p}{p!} \frac{p!}{2N^{p-1}} (1 - q^p - pq^{p-1}(1 - q)) = \frac{N}{2} (1 - q^p - pq^{p-1}(1 - q))$$

\uparrow

$$U = H - \langle H \rangle - \sum_i \partial_\beta \lambda_i^\beta (\sigma_i - m_i) \quad \partial_\beta \lambda_i^\beta |_{\beta=0} = \frac{d}{dm} \langle H \rangle_0$$

$\rightarrow \quad U_0 = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} [\sigma_{i_1} \dots \sigma_{i_p} - m_{i_1} \dots m_{i_p} - p(\sigma_{i_1} - m_{i_1})m_{i_2} \dots m_{i_p}]$

Use $\langle U(\sigma_i - m_i) \rangle = 0$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional: (0th +1st +2nd order)

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional:

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G !

free energy $Nf_\alpha = G(\{m_i^\alpha\})$

weight of pure state in the full Gibbs measure

$w_\alpha \propto \exp(-\beta Nf_\alpha)$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional:

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G !

free energy $Nf_\alpha = G(\{m_i^\alpha\})$

weight of pure state in the full Gibbs measure $w_\alpha \propto \exp(-\beta Nf_\alpha)$

Can show: metastable states capture the essential phase space: $\overline{\log(\sum_\alpha w_\alpha)} = \overline{\log(Z_{\text{full}})}$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional:

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G !

Write $m_i = \sqrt{q}n_i$ $\sum n_i^2 = N$

The spherical p-spin model

Hamiltonian

$$H[\sigma] = -\frac{1}{p!} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p} = - \sum_{i_1 < i_2 < \dots < i_p} J_{i_1 \dots i_p} \sigma_{i_1} \dots \sigma_{i_p}$$

Spherical constraint (easy to compute - but for p=2 trivializes the model)

$$\sum_i \sigma_i^2 = N$$

Free energy functional:

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Pure states = Minima of G !

Write $m_i = \sqrt{q} n_i \quad \sum n_i^2 = N$

Peculiarity of spherical model:

- Minimization of G wrt n_i is independent of T !
- Minima have constant “angular” texture n_i . Only $q = q(T)$ changes with T , until instability occurs at T^* .

The spherical p-spin model

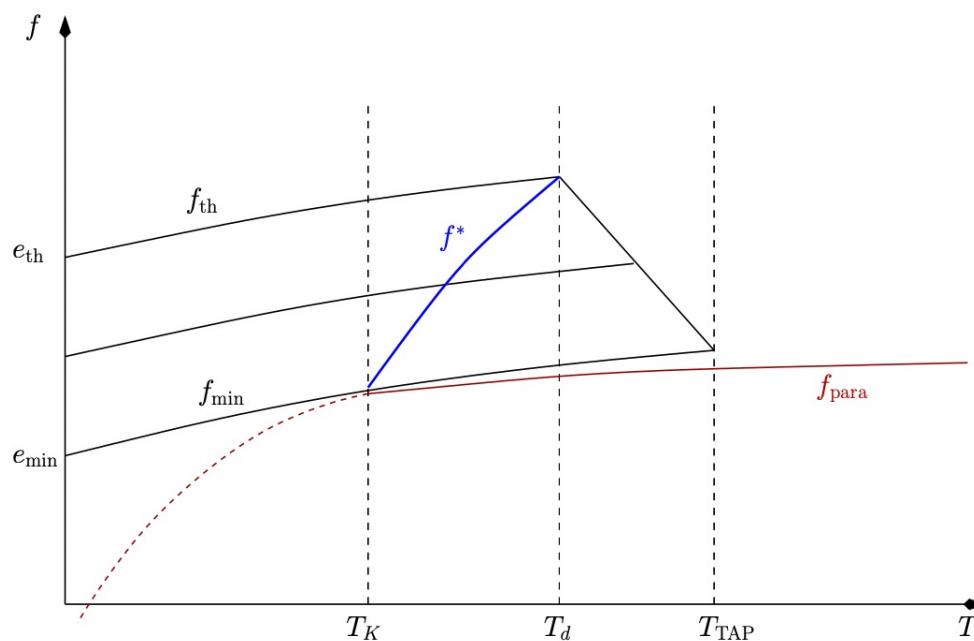
Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$

$e > e_{\text{th}}$: energy landscape dominated by saddles, not by minima

threshold



The spherical p-spin model

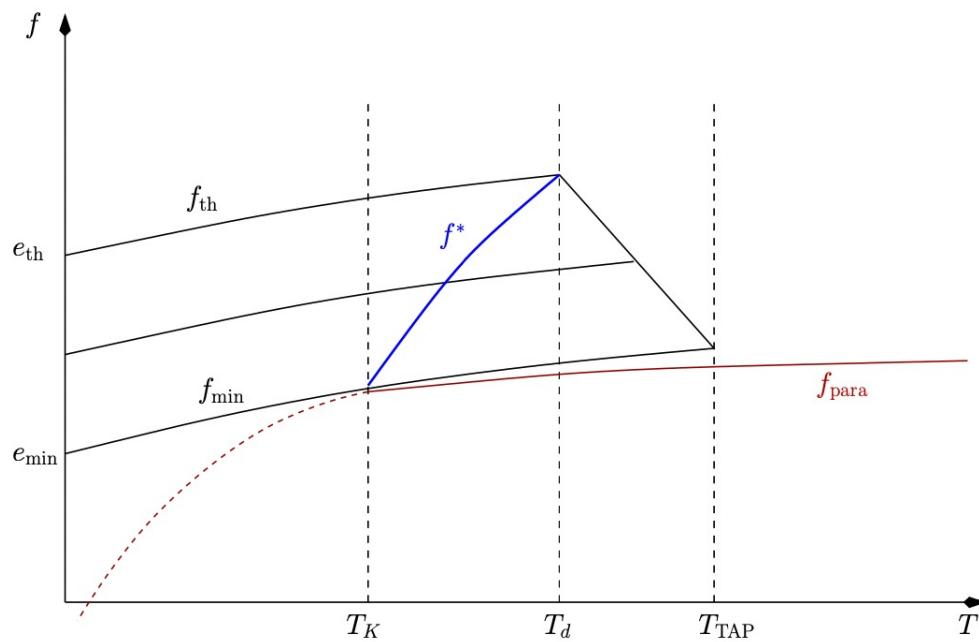
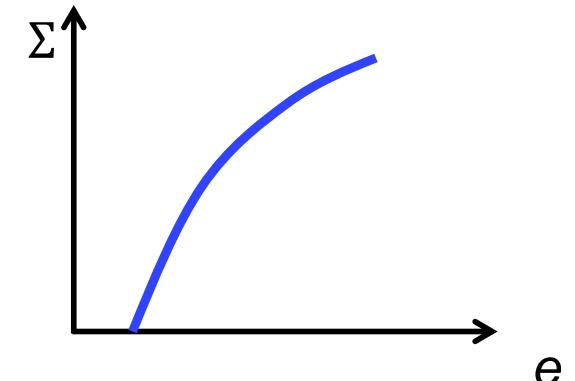
Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

$e > e_{\text{th}}$: energy landscape dominated by saddles, not by minima

threshold



The spherical p-spin model

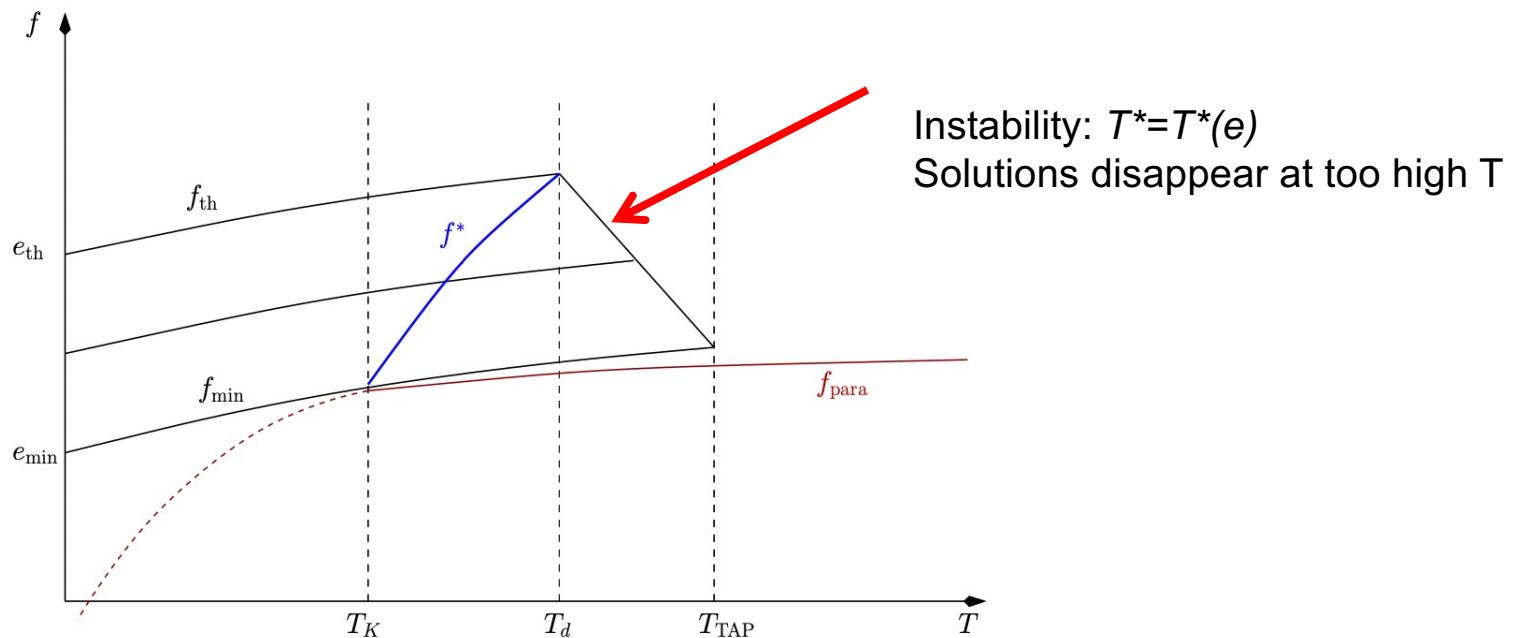
Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

$e > e_{\text{th}}$: energy landscape dominated by saddles, not minima

threshold

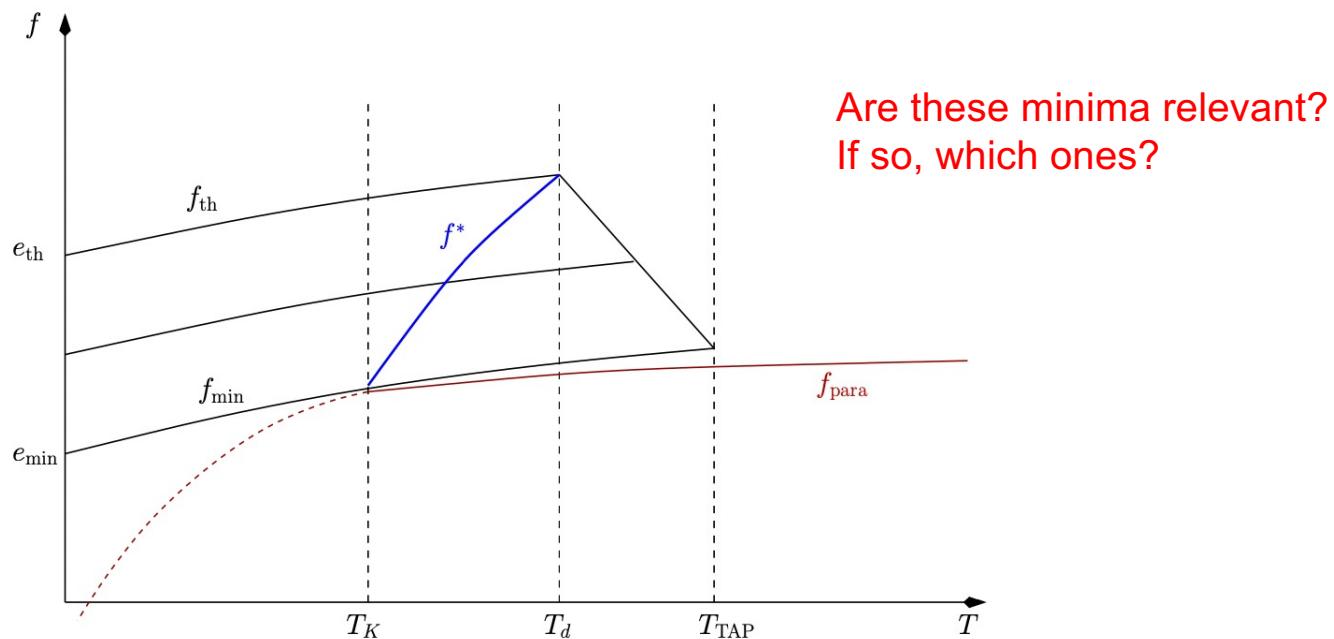


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

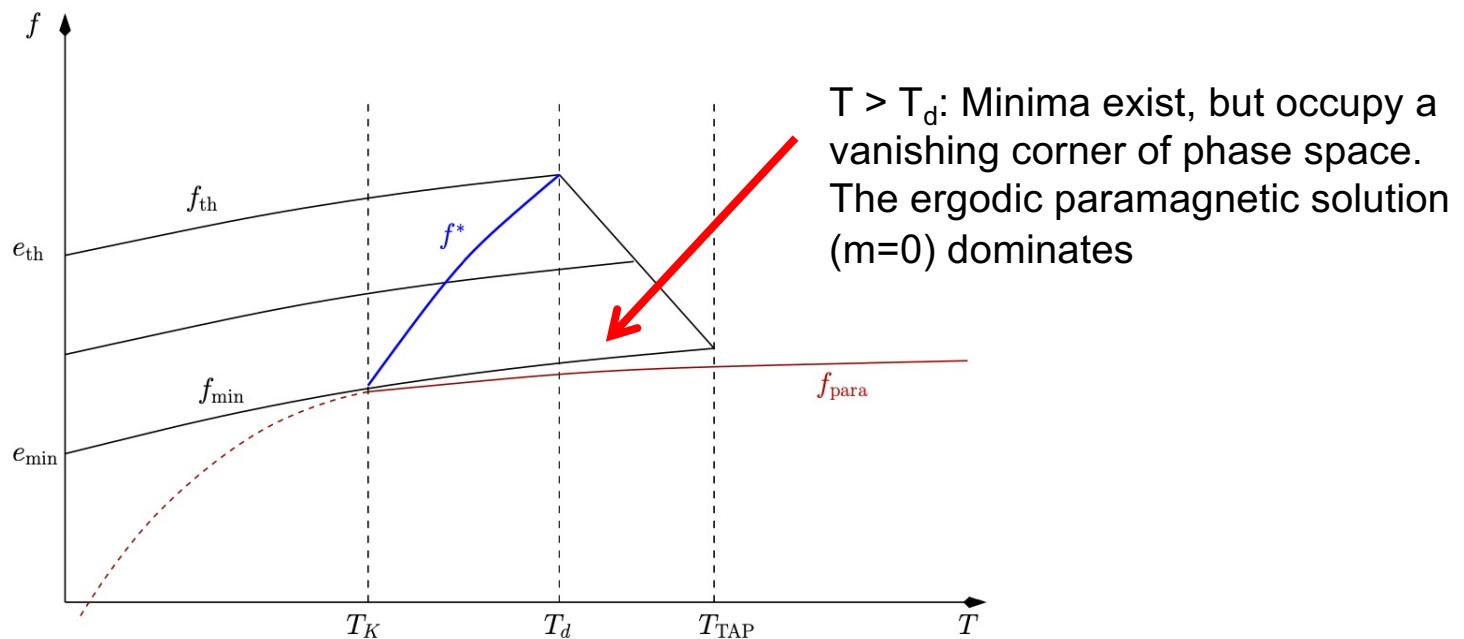


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

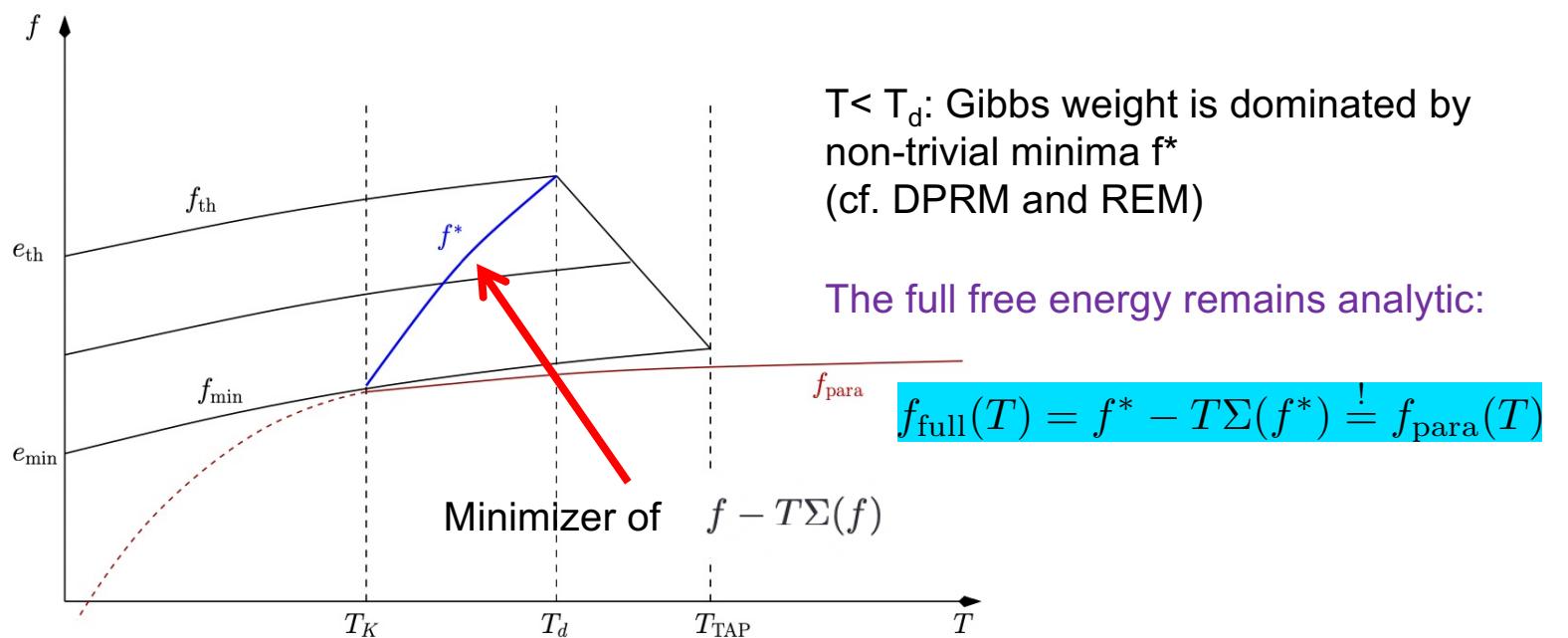


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

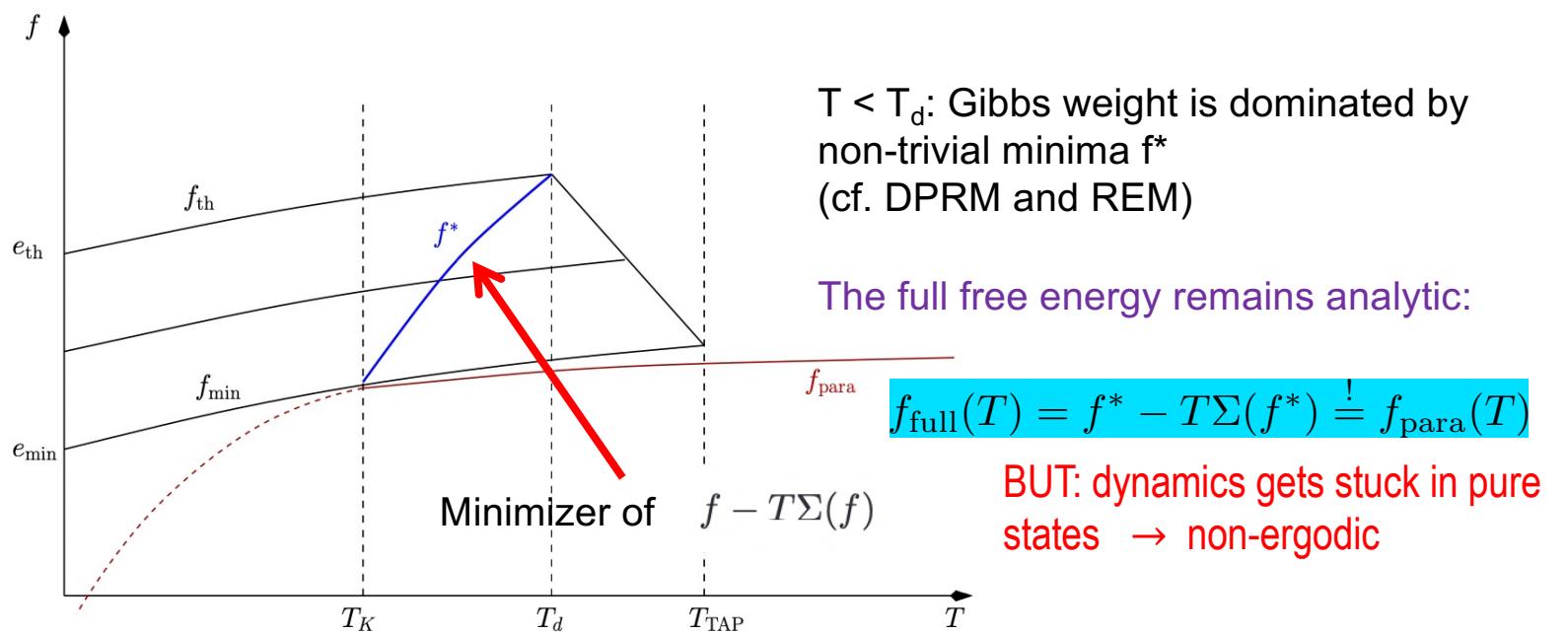


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

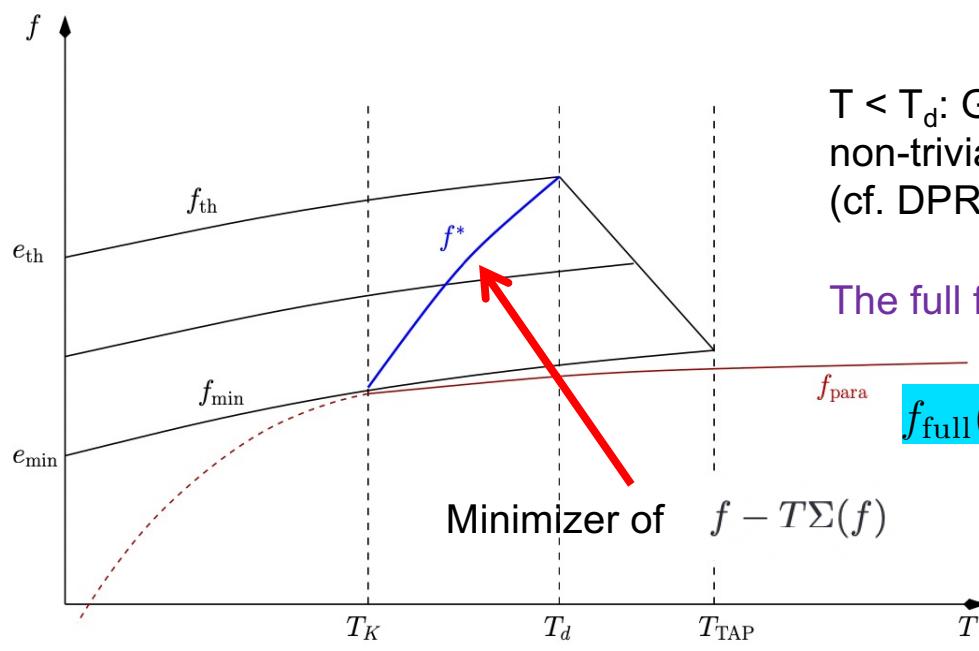


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e



$T < T_d$: Gibbs weight is dominated by non-trivial minima f^*
(cf. DPRM and REM)

The full free energy remains analytic:

$$f_{\text{full}}(T) = f^* - T\Sigma(f^*) \stackrel{!}{=} f_{\text{para}}(T)$$

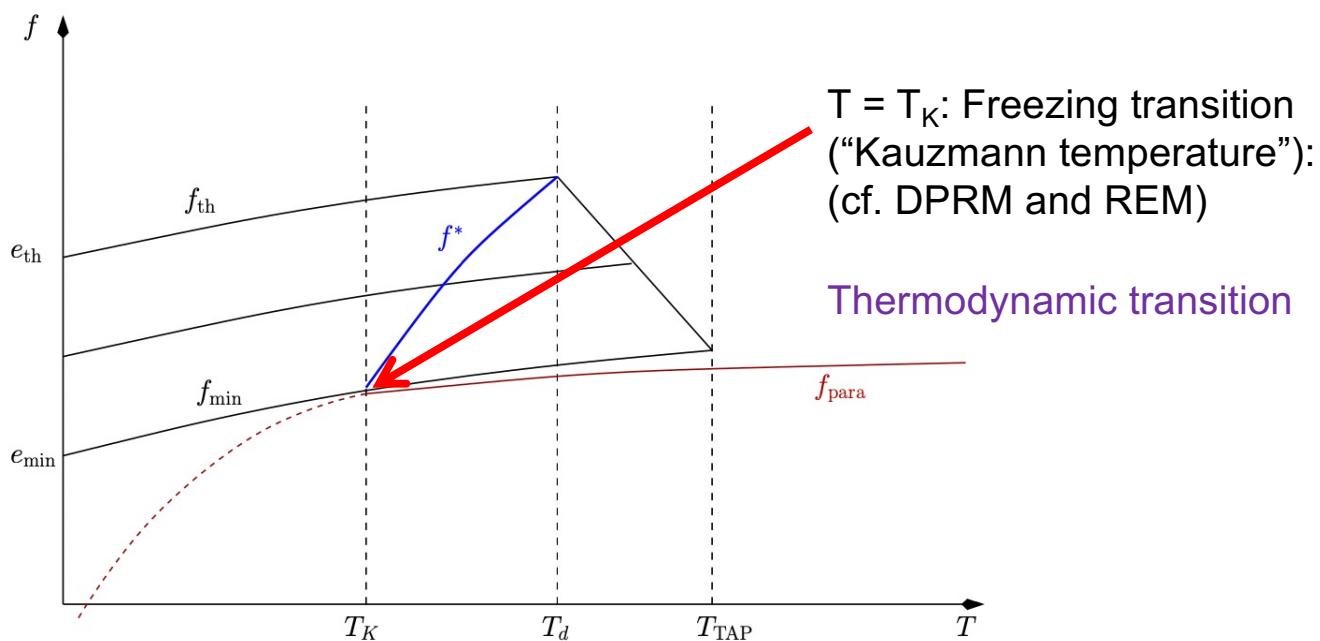
BUT: dynamics gets stuck in pure states \rightarrow non-ergodic
Beyond mean field: onset of activated dynamics across (finite barriers)

The spherical p-spin model

Solutions to the angular equations:

T = 0 :

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e

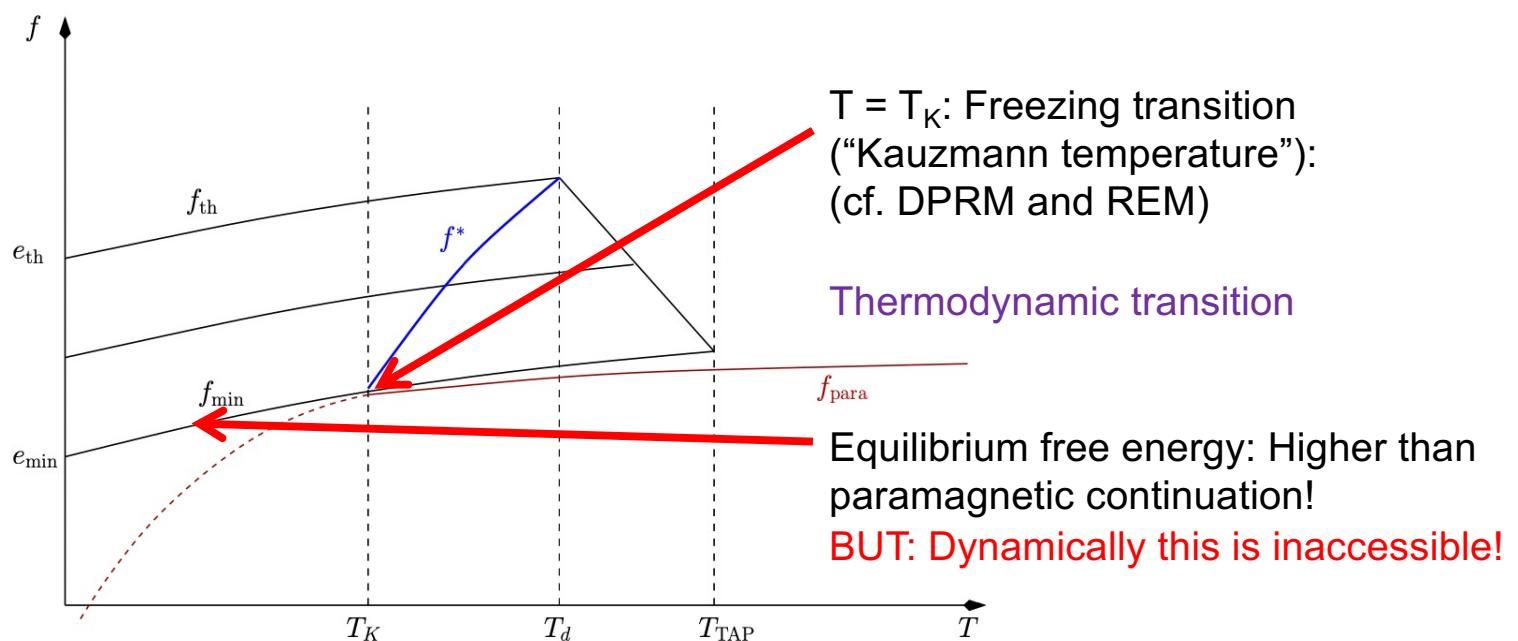


The spherical p-spin model

Solutions to the angular equations:

$T = 0$:

- minima exist with energies $e \in [e_{\min}, e_{\text{th}}]$
- There is an exponential number of them $\mathcal{N}(e) = \exp(N\Sigma(e))$
- $\Sigma(e_{\min}) = 0$, and Σ is concave, increases with e



First order nature of the dynamic transition

Important difference to $p=2$ spin glasses:

Paramagnetic state $m = 0$ has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

First order nature of the dynamic transition

Important difference to $p=2$ spin glasses:

Paramagnetic state $m = 0$ has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Energy-entropy balance of freezing:

$$p > 2, m \ll 1$$

Energy gain: $O(m^p)$ \ll Entropic cost: $O(m^2)$

Continuously emerging minima with very small m are possible only for $p=2$!

First order nature of the dynamic transition

Important difference to $p=2$ spin glasses:

Paramagnetic state $m = 0$ has no instability!

$$\frac{G(\{m_i\})}{N} = -\frac{1}{2\beta} \log(1 - q) - \frac{1}{p!N} \sum_{i_1 \dots i_p} J_{i_1 \dots i_p} m_{i_1} \dots m_{i_p} - \frac{\beta}{4} [1 - pq^{p-1} + q^p(p-1)]$$

Energy-entropy balance of freezing:

$$\text{Energy gain: } O(m^p) \quad \ll \quad \text{Entropic cost: } O(m^2)$$

$p > 2, m \ll 1$

Continuously emerging minima with very small m are possible only for $p=2$!

For $p > 2$: self-overlap q **jumps** to finite value in the minima!

- Discontinuous (first-order-like) onset of frozen magnetization
- No instability of paramagnetic state

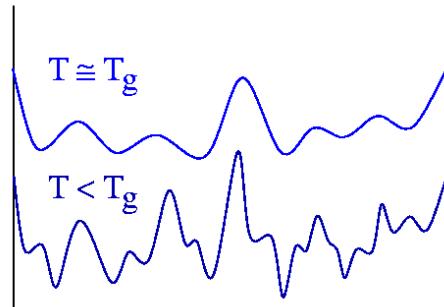
Spin glass universality classes

Two different types of (mean field) spin glasses

Continuous

$$\text{SK-model} \quad H = \sum_{i < j} J_{ij} s_i s_j$$

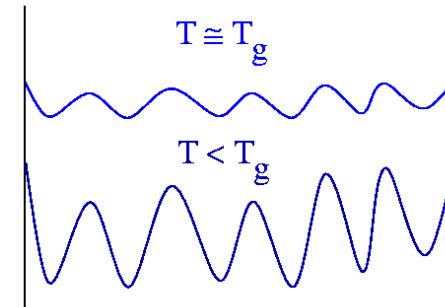
$$q_{EA} = \frac{1}{N} \sum_i \langle s_i \rangle^2 \xrightarrow{T \rightarrow T_g} 0$$



Discontinuous

$$\text{p-spin models} \quad H = \sum_{i_1 < \dots < i_p} J_{i_1 \dots i_p} s_{i_1} \cdots s_{i_p}$$

$$q_{EA} \xrightarrow{T \rightarrow T_g} q_c > 0$$



Next time:

“Full replica symmetry breaking”

MF-Model for real spin glasses

“One step replica symmetry breaking”

MF-analogon for structural glasses