Free enery landscape

Two universality classes of glasses
Two-spin interacting glasses: SK — model
versus
Multi-spin interactions: p-spin model

With very different phenomenology!



Free enery landscape

Two universality classes of glasses

Two-spin interacting glasses: SK — model
versus
Multi-spin interactions: p-spin model

Motivation for multi-spin models:

Optimization problems (3-SAT) have multi-spin interactions

* Langevin dynamics of mean field p-spin model is identical
to mode-coupling approximation to supercooled liquids!



Simple model for liquids
Kirkpatrick, Thirumalai, Wolynes

Simple liquid Hamiltonian 7 — @qbz + L $(r): local density
p!
Langevin equation ¢ g B
5 = M) - (p—l)!¢p +7

The dynamical evolution equations for such a liquid are identical to those of
a p-spin model (see later).

— Conjecture / belief: The glass transition and the structure of the glass
phase of models with interactions between p>2 spins captures the essence
of the physics of structural glasses (that have no intrinsic disorder!)



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ipai1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
2'01;2 —i '

Gaussian disorder with zero mean and variance;

|
2 I
Tiviy = e

ensures O(1) local fields and O(N) total energy.



The spherical p-spin model

Hamiltonian
H[O’] = Z le po'h ’L'p = — Z Ji1---ip0i1 "'O'z'p
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Spherical constraint (easy to compute - but for p=2 trivializes the model)
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Free energy functional -- Zeroth order (entropy)
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The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ip0i1 "'Uip = — Z Ji1---ip0i1 "'O'z'p
D i1-++ip i1 <ia<---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
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Free energy functional -- First order (mean energy):
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The spherical p-spin model

Hamiltonian
H[U] = —l' Z Jz’1...z‘p0'i1 "l — Z Ji1...7;pa7;1 el
D i1-++ip i1 <ia<---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
2.
Lr
Free energy functional -- Second order (Onsager / vdW-like term):
d?AP
A (U§)
d
U:H_<H>_Zaﬁ)‘?(az_mz) 85)\?]5_0: %<H>0
- Up = _Z% Z Ji, ip {0'1,1 "0, — My, mg, p(gzl mll)mw mlp]



The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ipai1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
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The spherical p-spin model

Hamiltonian
H[O’] = —l' Z Ji1---ip0i1 "'Uip = — Z Ji1---ip0i1 "'in
P2 i1-ip i1 <2 <---<ip
Spherical constraint (easy to compute - but for p=2 trivializes the model)
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Free energy functional -- Second order (Onsager / vdW-like term):
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The spherical p-spin model

Hamiltonian

H[O’] = Z le po'h ’L'p = — Z Ji1---ip0'z'1 "'O'z'p
"y “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
z-az-2 =N
Free energy functional: (Oth +1st +2"9 order)
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The spherical p-spin model

Hamiltonian
H[O’] = Z le po'h ip = — Z Ji1---ip0i1 "'O'z'p
" dq- “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
Z-O'? =N

Free energy functional:
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Pure states = Minima of G |

free energy INUfa = G({mi})
weight of pure state in the full Gibbs measure Wa o< exp(—SN fo)
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The spherical p-spin model

Hamiltonian
H[O’] = Z JZ1 po'h %8 e ,'p = — Z Ji1---ip0i1 a5 'Uip
" dq- “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
e

Free energy functional:
G({mi}) _L - . — é N, o (-
— N = 28 log(1 p'N Z Jiy iy My 4[1 pg"" +¢°(p—1)]

i1+ lp

Pure states = Minima of G |

free energy [INifa = G({m;})
weight of pure state in the full Gibbs measure Wa o< exp(—SN fo)

Can show: metastable states capture the essential phase space: log()_ wa) = log(Zun)




The spherical p-spin model

Hamiltonian
H[O’] = Z le po'h %8 e ’L'p = — Z Ji1---ip0i1 a5 'Uip
"y “lp 11 <2< <lp
Spherical constraint (easy to compute - but for p=2 trivializes the model)
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Free energy functional:
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Pure states = Minima of G |

Write m; = \/qn; Z n? =N



The spherical p-spin model

Hamiltonian

H[O’] = _]% Z Ji1---ip0i1 . 'Uip = — Z Ji1---ip0i1 (0

i1-ip 11<12<-+-<1p

Spherical constraint (easy to compute - but for p=2 trivializes the model)
>0 22 =N

P

Free energy functional:

G({mz}) . _L — — L o . ﬁ e D1 Pl
T log(1 — q) N Z JigoeigMiy oMy, — =[1 — pg®— +¢°(p — 1)]
Pure states = Minima of G |

Write m; = \/anz Z

Peculiarity of spherical model:
 Minimization of G wrt n; is independent of T'!

» Minima have constant “angular” texture n;. Only g = q(T) changes with T, until instability occurs at T*.




The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]

e> ey,. energy
landscape /4
dominated by
saddles, not by
minima

threshold =——> .,

f para
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The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
« There is an exponential number of them N(e) = eXp(NZ(e))
e> ey, energy * X(emin) =0, and X is concave, increases with e
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The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

« There is an exponential number of them N(e) = exp(NX(e))
e> ey, energy * Z(emin) = 0, and X is concave, increases with e

landscape /4

dominated by
saddles, not minima | | | Instability: T*=T*(e)
: ; : Solutions disappear at too high T

threshold == .,

f para
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The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e
fé

Are these minima relevant?
If so, which ones?

€th

f para
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The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
« There is an exponential number of them N(e) = eXp(NZ(e))
* X(emin) =0, and X is concave, increases with e
fé

T > T4 Minima exist, but occupy a
vanishing corner of phase space.
The ergodic paramagnetic solution
(m=0) dominates

€th

f para
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Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies € S [emina 6th]

- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e

T< T4: Gibbs weight is dominated by
non-trivial minima f*
(cf. DPRM and REM)

€th

The full free energy remains analytic:

U S = = TEE) S foaa(T)

Minimiizer of f—T%(f)

€min
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The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies € S [emina 6th]
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T < T4: Gibbs weight is dominated by
non-trivial minima f*
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The full free energy remains analytic:
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BUT: dynamics gets stuck in pure
states — non-ergodic

€min

Minimiizer of f—T%(f)

Ny

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:

* minima exist with energies € S [emina 6th]

- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e

e

T < T4: Gibbs weight is dominated by
non-trivial minima f*
(cf. DPRM and REM)

€th

The full free energy remains analytic:

U S = = TEE) S foaa(T)

BUT: dynamics gets stuck in pure
states — non-ergodic

~ Beyond mean field: onset of activated
dynamics across (finite barriers)

€min

Minimiizer of f—T%(f)
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The spherical p-spin model

€th

Solutions to the angular equations:

T=0:

* minima exist with energies S [emina 6th]

- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e

T = Tk: Freezing transition
(‘Kauzmann temperature”):
(cf. DPRM and REM)

Thermodynamic transition

f para

Sy

Tk Ty Trap



The spherical p-spin model

Solutions to the angular equations:

T=0:
* minima exist with energies S [emina 6th]
- There is an exponential number of them N(e) = exp(NX(e))
* X(emin) =0, and X is concave, increases with e
fé

T = Tk: Freezing transition
(‘Kauzmann temperature”):
(cf. DPRM and REM)

€th

Thermodynamic transition

f para

Equilibrium free energy: Higher than
paramagnetic continuation!
BUT: Dynamically this is inaccessible!
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First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability'

G({m}) _ L1 o b _é B
— N Blogl p'N Z']’Ll dp Mhiy 4[1 pg" +¢"(p—1)]
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First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability!

G({m; B L p
%: —%logl—q _p’—N Z Jiywiy My - _Z[l_pq "+ ¢P(p—-1)]

21 'l/p

Energy-entropy balance of freezing:
p>2mK<l1

Energy gain: O(mP) & Entropic cost: O(m?)

Continuously emerging minima with very small m are possible only for p=2!



First order nature of the dynamic transition

Important difference to p=2 spin glasses:
Paramagnetic state m = 0 has no instability!

G({m; B p— p
¥: —%logl—q —p,—N D JireiyMay o miy, — 21— pg”~' +¢°(p — 1)]

Zl zp

Energy-entropy balance of freezing:
p>2mK<l1

Energy gain: O(mP) & Entropic cost: O(m?)

Continuously emerging minima with very small m are possible only for p=2!

For p > 2: self-overlap q jumps to finite value in the minima!
« Discontinuous (first-order-like) onset of frozen magnetization
* No instability of paramagnetic state



Spin glass universality classes

Two different types of (mean field) spin glasses

Continuous

SK-model H = ZJUSZSJ

z<]

dE4 = - Z
T—>T

\i_\Tg/\,A/\/\/

T<Tg

Next time: “Full replica symmetry breaking”

Discontinuous

p—spin>n;0dels H = Z iy Siy i
p=

“One step replica symmetry breaking”



