
Spin glasses
Prototype of a complex system

combining

• Disorder (randomness, no translational invariance)
• Competing interactions



'Glassiness’ so far

Directed polymer / elastic interfaces:

Interactions = simple elasticity: favors flat interface

Position dependent disorder: favors roughness

Competition                metastability: many local energy minima

• Thermally assisted creep motion over energy barriers between valleys
• Minimal scale Lc where metastability occurs → finite pinning force fc at T=0
• Non-linear (in f), cooperative motion for f > fc :   Depinning transition



'Glassiness’ so far

Directed polymer / elastic interfaces:

Interactions = simple elasticity: favors flat interface

Position dependent disorder: favors roughness

Competition                metastability: many low local energy minima

Result: Distortion of the simple flat state  
(very much like a ferromagnet in random fields)



Spin glasses: New ingredients
Spin glasses (experimentally discovered in th 1960’s)

Interactions are complex/random in themselves! 

(there is no simple reference state to distort)



Spin glasses: New ingredients
Spin glasses (experimentally discovered in th 1960’s)

Interactions are complex/random in themselves! 

(there is no simple reference state to distort)

Of broad interest :

• At low T: Plethora of complex condensed “ordered phases” with no simple pattern

• Special and highly unusual phase transition

• Very interesting properties of the low T glass phase: extremely slow dynamics, non-
equilibrium, (memory, “aging”)

• New concepts & new tools,   with ...

• ... applications far beyond physics in general complex systems 



Spin glasses: Challenging conceptual 
questions

• Is there an order parameter for glass transitions?

• Is there a broken symmetry? 
What if the Hamiltonian has no symmetry to break? Dynamic transitions?

• Statistical mechanics in these disordered systems: How and what to compute?

• How to handle/describe the many low T minima (phases)?





Spin glasses  =  Representative of a large class of systems:

Many physical systems share ingredients of disorder and competing interactions:

• Glass forming liquids (where randomness is self-generated through their amorphous 
structure)

• Electron glasses (doped semiconductors below the metal-insulator transition)
• Neural networks; machine learning
• Complex biological systems (protein folding, gene networks etc)
• Economical systems, markets; societal phenomena

And also:
• Optimization problems 

Spin glasses - An example of complex systems



Spin glasses - An example of complex systems

An instance of a more general setting:

Optimization problems:

Given a large set X of configurations C (e.g. {s!= ±1})
and a cost function E(C) 

• Find the optimal C ∈ X that minimizes E(C)

Or:

• Decide whether there are C’s such that E(C) < E0



Travelling salesman problem

Problem:

Find shortest route through all sites (cities)
Given: distances between two cities

Configuration space:
𝑁! orders in which to visit of the cities 

This is hard!



3-coloring

Problem:

Find coloring of network sites with 3 colors such that
no pair of linked sites has the same color! 

Configuration space:
3"color assignments, most of which are 
bad! 

Hard!



Königsberg bridge problem (L. Euler, 1735)

Problem:

Finde a closed path that uses all 
7 bridges (links) exactly once
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Problem:

Finde a closed path that uses all 
7 bridges (links) exactly once

Easy to prove impossibility!

(that problem gave birth to graph theory!)

In general: “Euler circuit” exists (and is easy to 
construct) iff every node has even degree



Königsberg bridge problem (L. Euler, 1735)

Problem:

Finde a closed path that uses all 
7 bridges (links) exactly once

Easy to prove impossibility!

In general: “Euler circuit” exists (and is easy to 
construct) iff every node has even degree

Not every optimization problem is hard!

(that problem gave birth to graph theory!)



K-satisfiability
 3-SAT on 4 variables with 3 clauses: 

Random K-SAT: N variables, M clauses. Randomly choose a      
K-tuple of variables for each clause. Negate with probability 1/2. 

(¬x1 _ x2 _ ¬x3) ^ (x1 _ x3 _ ¬x4) ^ (x2 _ ¬x3 _ x4)

xi 2 {TRUE, FALSE}

Cook 1971

Variables (N=6)

3-clauses (M=4)

(Courtesy: L. Zdeborova)



K-satisfiability
(Courtesy: L. Zdeborova)

Boolean constraints can be 
translated into spin interactions:
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(x1 _ x2 _ ¬x3) = 1 $ 1� s1
2

1� s2
2

1 + s3
2

= 0

3-spin interaction ≥ 0!

Satisfying assignment of xi‘s ↔ sum of all spin interactions is zero!
Satisfiability ↔ 𝐸#$ = 0 ↔ generalized spin glass problem



Random 3-satisfiability: Hardness transition!

Phase 
transition at a 
satisfiability 
threshold 
𝛼% ≈ 4.26!

Random K-SAT

What makes problems hard to solve ?

Experiment : 

 random 3-SAT  
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Random K-SAT

What makes problems hard to solve ?

Experiment : 

 random 3-SAT  
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↵ = M/N

random 3-SAT: N variables, M clauses.

(Courtesy: L. Zdeborova)

= #clauses per variable
Threshold:  
→ hardest samples



Suggestion: Hardness related to phase transitions, akin to glasses

2021 Nobel Prize

(Courtesy: L. Zdeborova)

Metastability makes 
the problem hard!

But glass physics 
insights help in 
solving them! 



K-satisfiability: structure of solution space

 

− Cluster with frozen variables 

− Cluster without frozen variables

 CondensationClustering Rigidity Satisfiability

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, LZ, PNAS’07, LZ’s PhD thesis. 

Clustering = cluster containing almost all solution breaks. 

Algorithmic conjecture:                                         
Approximate* sampling gets computationally hard (Montanari, 
Semerjian’06).  

*obtaining correct leading order of quantities that concentrate

α

(Courtesy: L. Zdeborova)

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.

(There are many more clusters of unsatisfiable configurations!) 

= M/N

One giant 
cluster of 
solutions
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K-satisfiability: structure of solution space

 

− Cluster with frozen variables 

− Cluster without frozen variables

 CondensationClustering Rigidity Satisfiability

Krzakala, Montanari, Ricci-Tersenghi, Semerjian, LZ, PNAS’07, LZ’s PhD thesis. 

Clustering = cluster containing almost all solution breaks. 

Algorithmic conjecture:                                         
Approximate* sampling gets computationally hard (Montanari, 
Semerjian’06).  

*obtaining correct leading order of quantities that concentrate

α

(Courtesy: L. Zdeborova)

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.

(There are many more clusters of unsatisfiable configurations!) 

Cluster formation : Akin to dynamic glass transition! 

= M/N

Conjecture: cannot be found in poly time

Many 
disconnected 
clusters

Like freezing 
in DPRM: 
O(1) clusters 
dominate 

One giant 
cluster of 
solutions



Complexity theory
After all these examples: 

Systematising hardness of problem solving?

What do we mean by ‘spin glasses are hard problems to solve’? 



Complexity theory

P

• P (polynomial): there exists algorithm 
which only takes polynomial time for 
system size N, 𝑇 𝑁 ~𝑁'

e.g. DPRM, Euler circuit

=  “EASY”

Problem space:
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• NP: the rest (Non-deterministic 
polynomial = a solution can be 
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

Problem space:
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Complexity theory

P

NP-complete
NP

• P (polynomial): there exists algorithm 
which only takes polynomial time for 
system size N, 𝑇 𝑁 ~𝑁'

e.g. DPRM, Euler circuit

• NP: the rest (Non-deterministic 
polynomial = a solution can be 
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

• NP-complete: any other problem in 
NP can be “polynomially reduced” to 
this problem (i.e. there is a map that 
takes only a polynomial number of 
operations) e.g. 3 SAT, spin glass in 
3d, traveling salesman, many more

Conjecture / belief:

𝑁𝑃 ≠ 𝑃
Or: There are problems that are truly 

harder than others!

Problem space:



Complexity theory

P

NP-complete
NP

• P (polynomial): there exists algorithm 
which only takes polynomial time for 
system size N, 𝑇 𝑁 ~𝑁'

e.g. DPRM, Euler circuit

• NP: the rest (Non-deterministic 
polynomial = a solution can be 
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

• NP-complete: any other problem in 
NP can be “polynomially reduced” to 
this problem (i.e. there is a map that 
takes only a polynomial number of 
operations) e.g. 3 SAT, spin glass in 
3d, traveling salesman, many more

1979: Golman: most instances of a particular 
structure are easy, only in the worst case they are 

hard (namely, e.g., close to a phase transition) 

But: What is hard (= no good algorithm known) shifts 
with time - due partly to physics-inspired algorithms

Problem space:



Upshot:

Spin glasses are clean, physical examples of NP 
complete problems

Understanding spin glasses gives us insight into many 
other complex problems

Physics ideas help solving complex problems



A smart problem-solving idea ?



A smart problem-solving idea ?
If spin glasses are NP complete:

Use classical «analogue computer» to solve complex problems:

1. Translate your problem into a spin glass 
(and build the glass with all its couplings)

2. Cool the spin system down to low T   
(«thermal annealing»)

3. Read out the ground state!



A smart problem-solving idea ?
If spin glasses are NP complete:

Use classical «analogue computer» to solve complex problems:

1. Translate your problem into a spin glass 
(and build the glass with all its couplings)

2. Cool the spin system down to low T   
(«thermal annealing»)

3. Read out the ground state!

Why is this idea flawed?



A yet smarter problem-solving idea ?
If spin glasses are NP complete:

Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

2. Turn on strong quantum fluctuations (transverse field hx for 
Ising spins) and cool to low T: 

Start in simple paramagnetic ground state
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A yet smarter problem-solving idea ?
If spin glasses are NP complete:

Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

2. Turn on strong quantum fluctuations (transverse field hx for 
Ising spins) and cool to low T: 

Start in simple paramagnetic ground state

3. Adiabatically reduce the transverse field

4. Invoke adiabatic theorem: A system stays (with high 
probability) in the ground state if one changes/anneals 

parameters adiabatically 
→ elegant way to find the ground state !?

<latexit sha1_base64="mXi6pWW17i8lH23f8dD1NyTIco0="></latexit>

H =
X

ij

s
z
i Jijs

z
j � hx

X

i

s
x
i

<latexit sha1_base64="+IlDSRIennhFgYi3KDdQw1ZhRAQ=">AAAB8nicdVDLSgMxFM3UVx1fVZdugqXgqmRKqe2u6MZlBfvAdiiZNG1DM5khuSOW0r9wJSiIW//GlX9jpq2gogcCh3PuJfecIJbCACEfTmZtfWNzK7vt7uzu7R/kDo9aJko0400WyUh3Amq4FIo3QYDknVhzGgaSt4PJZeq377g2IlI3MI25H9KREkPBKFjpdty/xz2IMMH9XJ4UiUWlglPiVYlnSa1WLZVq2FtYhOTRCo1+7r03iFgScgVMUmO6HonBn1ENgkk+dwu9xPCYsgkd8a6liobc+LPFyXNcsMoADyNtnwK8UN1vGzMaGjMNAzsZUhib314q/uV1ExhW/ZlQcQJcseVHw0RiGzLNjwdCcwZyagllWthjMRtTTRnYllzbwldU/D9plYpepVi+LufrF6s+sugEnaIz5KFzVEdXqIGaiCGFHtATenbAeXRenNflaMZZ7RyjH3DePgHwcZBd</latexit>

hx ! 0

«Adiabatic algorithm»
Kadowaki and 

Nishimori, 1998 



A yet smarter problem-solving idea ?
If spin glasses are NP complete:

Use a quantum analogue computer to solve complex problems:

1. Translate your problem into a spin glass

2. Turn on strong quantum fluctuations (transverse field hx for 
Ising spins) and cool to low T: 

Start in simple paramagnetic ground state

3. Adiabatically reduce the transverse field

4. Invoke adiabatic theorem: A system stays (with high 
probability) in the ground state if one changes/anneals 

parameters adiabatically 
→ elegant way to find the ground state !?

<latexit sha1_base64="mXi6pWW17i8lH23f8dD1NyTIco0="></latexit>

H =
X

ij

s
z
i Jijs

z
j � hx

X

i

s
x
i

<latexit sha1_base64="+IlDSRIennhFgYi3KDdQw1ZhRAQ=">AAAB8nicdVDLSgMxFM3UVx1fVZdugqXgqmRKqe2u6MZlBfvAdiiZNG1DM5khuSOW0r9wJSiIW//GlX9jpq2gogcCh3PuJfecIJbCACEfTmZtfWNzK7vt7uzu7R/kDo9aJko0400WyUh3Amq4FIo3QYDknVhzGgaSt4PJZeq377g2IlI3MI25H9KREkPBKFjpdty/xz2IMMH9XJ4UiUWlglPiVYlnSa1WLZVq2FtYhOTRCo1+7r03iFgScgVMUmO6HonBn1ENgkk+dwu9xPCYsgkd8a6liobc+LPFyXNcsMoADyNtnwK8UN1vGzMaGjMNAzsZUhib314q/uV1ExhW/ZlQcQJcseVHw0RiGzLNjwdCcwZyagllWthjMRtTTRnYllzbwldU/D9plYpepVi+LufrF6s+sugEnaIz5KFzVEdXqIGaiCGFHtATenbAeXRenNflaMZZ7RyjH3DePgHwcZBd</latexit>

hx ! 0

«Adiabatic algorithm»
Kadowaki and 

Nishimori, 1998 

How good 
is this 
idea?



A yet smarter problem-solving idea ?

No, both thermal and quantum annealing fail:
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minima. Thermal activation and quantum tunneling are both 

exponentially slow.
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A yet smarter problem-solving idea ?

No, both thermal and quantum annealing fail:

In the glass phase (low T, low hx) : High barriers between 
minima. Thermal activation and quantum tunneling are both 

exponentially slow.

Glasses fall out of equilibrium below Tg and usually do not fall 
into their ground state on experimentally accessible times

This is not only bad, it has also very useful sides!

As we will see it manifests itself in interesting ways in 
experiments.



Manifestations of 
out-of-equilibrium behavior in 

spin glasses



Spin glasses: protocol dependence of susceptibility 𝜒

𝜒 = lim;→=
𝑀
𝐵
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Figure 4.3: The experimental results for the FC (field cooled) and the ZFC
(zero field cooled) magnetisation (higher and lower curve respectively) vs.
temperature in a spin glass sample (Cu87Mn13.5) for a very small value of
the magnetic field. For a such a low field, non-linear effects can be neglected
and the magnetisation is proportional to the susceptibility.

order parameter

qEA =
1

N

∑

i

〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.

Zero field cooled (ZFC)

𝜒 = lim;→=
𝑀
𝐵

ZFC

• B=0 at T > Tc
• Cool to T < Tc
• Apply finite B 

𝑇 ↓
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order parameter

qEA =
1

N

∑

i

〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.
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Figure 4.3: The experimental results for the FC (field cooled) and the ZFC
(zero field cooled) magnetisation (higher and lower curve respectively) vs.
temperature in a spin glass sample (Cu87Mn13.5) for a very small value of
the magnetic field. For a such a low field, non-linear effects can be neglected
and the magnetisation is proportional to the susceptibility.
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〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.

Zero field cooled (ZFC)

𝜒 = lim;→=
𝑀
𝐵

Final state (M) depends on protocol! → Out of equilibrium, ergodicity is broken!
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(zero field cooled) magnetisation (higher and lower curve respectively) vs.
temperature in a spin glass sample (Cu87Mn13.5) for a very small value of
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and the magnetisation is proportional to the susceptibility.

order parameter

qEA =
1

N

∑

i

〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.

Zero field cooled (ZFC)

𝜒 = lim;→=
𝑀
𝐵

Final state (M) depends on protocol! → Out of equilibrium, ergodicity is broken!
Difference with hysteresis in ferromagnets? 
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Figure 4.3: The experimental results for the FC (field cooled) and the ZFC
(zero field cooled) magnetisation (higher and lower curve respectively) vs.
temperature in a spin glass sample (Cu87Mn13.5) for a very small value of
the magnetic field. For a such a low field, non-linear effects can be neglected
and the magnetisation is proportional to the susceptibility.

order parameter

qEA =
1

N

∑
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〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.

Zero field cooled (ZFC)

𝜒 = lim;→=
𝑀
𝐵

Final state (M) depends on protocol! → Out of equilibrium, ergodicity is broken!
Difference with hysteresis in ferromagnets? MFC ~ B , not just ∝ sign(B) 

Field cooled (FC)

FC

• B=0 at T > Tc
• Apply finite B
• Cool to T < Tc ZFC

• B=0 at T > Tc
• Cool to T < Tc
• Apply finite B 

Depends on B
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Figure 4.3: The experimental results for the FC (field cooled) and the ZFC
(zero field cooled) magnetisation (higher and lower curve respectively) vs.
temperature in a spin glass sample (Cu87Mn13.5) for a very small value of
the magnetic field. For a such a low field, non-linear effects can be neglected
and the magnetisation is proportional to the susceptibility.

order parameter

qEA =
1

N

∑
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〈si〉2 (4.4)

It is zero at T > Tc and increases continuously from zero when T decreases
below Tc.

An experimental manifestation of the spin glass transition is found when
measuring the magnetic susceptibility. There are two ways of measuring the
susceptibility:

• Zero-field-cooled susceptibility: Cool the system in zero field below Tc.
Add a small magnetic field B, measure the magnetisation M . For small
enough B, it is a linear function of B and the ratio M/B = χZFC.

• Field-cooled susceptibility: at high temperature, T > Tc, place the
system in a small magnetic field B. Cool the system below Tc, measure
the magnetisation M . For small enough B, it is a linear function of B
and the ratio M/B = χFC .

These two susceptibilities are shown in Fig. 4.3. Their difference at T < Tc

is clear and signals the appearance of ergodicity breaking and irreversible
processes characteristic of the spin glass phase.

Zero field cooled (ZFC)

𝜒 = lim;→=
𝑀
𝐵

Final state depends on protocol! → Out of equilibrium, ergodicity is broken!
Interesting:  System remembers the past! → Store information! 

Field cooled (FC)

FC

• B=0 at T > Tc
• Apply finite B
• Cool to T < Tc ZFC

• B=0 at T > Tc
• Cool to T < Tc
• Apply finite B 



Spin glasses: Aging - Dynamics gets slower with ‘age’

Protocol:

• Apply a field B at high T.
• cool to 9K = T < Tc = 10.4K
at t= 0
• Wait for tw
• Switch off B
• Measure the decay of M 
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Figure 4.4: The aging part of the thermoremanent magnetization Mag(tw +
τ, tw) (normalized by the zero field cooled value Mfc) vs. τ/tw for AgMn2.6

in a log10 scale (data from the group of E. Vincent at CEA-Saclay). The
sample was cooled in a small magnetic field from above the glass transition
Tg = 10.4K to a sub-critical temperature T = 9K. It waited for tw =
300, 1000, 3000, 10000, 30000 sec. under the field that was suddenly switched
off at tw. The decaying magnetization was recorded during all subsequent
times τ + tw. The plot shows a scaling behaviour close to t/tw, meaning
that the characteristic relaxation time scale of a system of age tw is basically
t = tw: this is called aging.

Protocol:

• Apply a field B at high T.
• cool to 9K = T < Tc = 10.4K
at t= 0
• Wait for tw
• Switch off B
• Measure the decay of M 
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Figure 4.4: The aging part of the thermoremanent magnetization Mag(tw +
τ, tw) (normalized by the zero field cooled value Mfc) vs. τ/tw for AgMn2.6

in a log10 scale (data from the group of E. Vincent at CEA-Saclay). The
sample was cooled in a small magnetic field from above the glass transition
Tg = 10.4K to a sub-critical temperature T = 9K. It waited for tw =
300, 1000, 3000, 10000, 30000 sec. under the field that was suddenly switched
off at tw. The decaying magnetization was recorded during all subsequent
times τ + tw. The plot shows a scaling behaviour close to t/tw, meaning
that the characteristic relaxation time scale of a system of age tw is basically
t = tw: this is called aging.

Protocol:

• Apply a field B at high T.
• cool to 9K = T < Tc = 10.4K
at t= 0
• Wait for tw
• Switch off B
• Measure the decay of M 
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Dynamic time scale grows with tw: the older the slower
→ the sample is not at equilibrium!



Spin glasses: Aging - Dynamics gets slower with ‘age’
Understanding:  Exercise on trap model

Waiting time determines the typical time scale of dynamics and response!

Very different from equilibrium: Waiting longer does not change response



Spin glasses: Rejuvenation
Protocol:

• Cool to 12K < Tc
• Measure 𝜒 (still relaxing!)
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Figure 4.5: This experimental data on spin glass relaxation, obtained again
in the group of E. Vincent at CEA-Saclay, gives an idea of the fascinating
effects seen in spin glasses. The figure shows the magnetic susceptibility χ
as a function of time. At time t = 0 the system is brought to 12K, in its
spin glass phase, in a very small field. χ still evolves even after 400 min,
showing that the system has not yet reached equilibrium. At 400 min. the
temperature is suddenly decreased to 10K. This induces a new dynamics and
relaxation, an effect called “rejuvenation” because the dynamics is exactly
the same as if the system had been brought directly at 10K, without stopping
for 400 min at 12K! At 800 min. the temperature is brought back to 12K.
The surprising feature is shown in the inset: if you cut out the data in the
range 400 min - 800 min, and glue together the two remaining pieces, you
obtain the same regular relaxation that you would have obtained by keeping
the system at 12K all along. This shows that, although the system has been
rejuvenated when brought down to 10K, it kept a perfect memory of its
relaxation at 12K!
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• Cool further to 10K → 𝜒 jumps 

up as if one had directly 
cooled to 10K (= 
“rejuvenation”)
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as a function of time. At time t = 0 the system is brought to 12K, in its
spin glass phase, in a very small field. χ still evolves even after 400 min,
showing that the system has not yet reached equilibrium. At 400 min. the
temperature is suddenly decreased to 10K. This induces a new dynamics and
relaxation, an effect called “rejuvenation” because the dynamics is exactly
the same as if the system had been brought directly at 10K, without stopping
for 400 min at 12K! At 800 min. the temperature is brought back to 12K.
The surprising feature is shown in the inset: if you cut out the data in the
range 400 min - 800 min, and glue together the two remaining pieces, you
obtain the same regular relaxation that you would have obtained by keeping
the system at 12K all along. This shows that, although the system has been
rejuvenated when brought down to 10K, it kept a perfect memory of its
relaxation at 12K!



Spin glasses: Rejuvenation
Protocol:

• Cool to 12K < Tc
• Measure 𝜒 (still relaxing!)
• Cool further to 10K → 𝜒 jumps 

up as if one had directly 
cooled to 10K (= 
“rejuvenation”)

• Heat back to 12K: 𝜒(t) 
continues, as if one hadn’t 
made a break at 10K!!

Memory of relaxation at higher T!

4.2. SPIN GLASSES 67

Figure 4.5: This experimental data on spin glass relaxation, obtained again
in the group of E. Vincent at CEA-Saclay, gives an idea of the fascinating
effects seen in spin glasses. The figure shows the magnetic susceptibility χ
as a function of time. At time t = 0 the system is brought to 12K, in its
spin glass phase, in a very small field. χ still evolves even after 400 min,
showing that the system has not yet reached equilibrium. At 400 min. the
temperature is suddenly decreased to 10K. This induces a new dynamics and
relaxation, an effect called “rejuvenation” because the dynamics is exactly
the same as if the system had been brought directly at 10K, without stopping
for 400 min at 12K! At 800 min. the temperature is brought back to 12K.
The surprising feature is shown in the inset: if you cut out the data in the
range 400 min - 800 min, and glue together the two remaining pieces, you
obtain the same regular relaxation that you would have obtained by keeping
the system at 12K all along. This shows that, although the system has been
rejuvenated when brought down to 10K, it kept a perfect memory of its
relaxation at 12K!

Explanation? Landscape and relaxation dynamics at 10K is apparently totally different from that at 12K!
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Figure 4.5: This experimental data on spin glass relaxation, obtained again
in the group of E. Vincent at CEA-Saclay, gives an idea of the fascinating
effects seen in spin glasses. The figure shows the magnetic susceptibility χ
as a function of time. At time t = 0 the system is brought to 12K, in its
spin glass phase, in a very small field. χ still evolves even after 400 min,
showing that the system has not yet reached equilibrium. At 400 min. the
temperature is suddenly decreased to 10K. This induces a new dynamics and
relaxation, an effect called “rejuvenation” because the dynamics is exactly
the same as if the system had been brought directly at 10K, without stopping
for 400 min at 12K! At 800 min. the temperature is brought back to 12K.
The surprising feature is shown in the inset: if you cut out the data in the
range 400 min - 800 min, and glue together the two remaining pieces, you
obtain the same regular relaxation that you would have obtained by keeping
the system at 12K all along. This shows that, although the system has been
rejuvenated when brought down to 10K, it kept a perfect memory of its
relaxation at 12K!

Explanation? Landscape and relaxation dynamics at 10K is apparently totally different from that at 12K!
See later: free energy minima depend (a lot) on T:
Relaxing under T does not imply anything on properties at T’ F ({mi}) = F ({mi};T )


