Spin glasses

Prototype of a complex system
combining

» Disorder (randomness, no translational invariance)
« Competing interactions



—

'Glassiness’ so far

Directed polymer / elastic interfaces: N@\ }(?%fﬁ\ Q

Interactions = simple elasticity: favors flat interface o //)KQ”\\KA C
S /})\
Position dependent disorder: favors roughness ﬁ//@/

Competition —>  metastability: many local energy minima

« Thermally assisted creep motion over energy barriers between valleys

« Minimal scale L, where metastability occurs — finite pinning force f, at T=0
* Non-linear (in f), cooperative motion for > f,: Depinning transition



'Glassiness’ so far

Directed polymer / elastic interfaces:

Interactions = simple elasticity: favors flat interface

Position dependent disorder: favors roughness

Competition —>  metastability: many low local energy minima

Result: Distortion of the simple flat state
(very much like a ferromagnet in random fields)



Spin glasses: New ingredients

Spin glasses (experimentally discovered in th 1960’s)
Interactions are complex/random in themselves!

(there is no simple reference state to distort)



Spin glasses: New ingredients

Spin glasses (experimentally discovered in th 1960’s)
Interactions are complex/random in themselves!

(there is no simple reference state to distort)

Of broad interest :
» Atlow T: Plethora of complex condensed “ordered phases” with no simple pattern
 Special and highly unusual phase transition

 Very interesting properties of the low T glass phase: extremely slow dynamics, non-
equilibrium, (memory, “aging”)

* New concepts & new tools, with ...

... applications far beyond physics in general complex systems



Spin glasses: Challenging conceptual
questions

s there an order parameter for glass transitions?

s there a broken symmetry?
What if the Hamiltonian has no symmetry to break? Dynamic transitions?

Statistical mechanics in these disordered systems: How and what to compute?

How to handle/describe the many low T minima (phases)?






Spin glasses - An example of complex systems

Spin glasses = Representative of a large class of systems:

Many physical systems share ingredients of disorder and competing interactions:

« Glass forming liquids (where randomness is self-generated through their amorphous
structure)

« Electron glasses (doped semiconductors below the metal-insulator transition)

 Neural networks; machine learning

« Complex biological systems (protein folding, gene networks etc)

« Economical systems, markets; societal phenomena

And also:
 Optimization problems



Spin glasses - An example of complex systems

An instance of a more general setting:

Optimization problems:

Given a large set X of configurations C (e.g. {sj= +1})
and a cost function E(C)

 Find the optimal C € X that minimizes E(C)
Or:

 Decide whether there are C’s such that E(C) < E,



Travelling salesman problem

Problem:;

Find shortest route through all sites (cities)
Given: distances between two cities

Configuration space:
N'! orders in which to visit of the cities

This is hard!



3-coloring

Problem:

Find coloring of network sites with 3 colors such that
no pair of linked sites has the same color!

Configuration space:
3N color assignments, most of which are
bad!

Hard!



Konigsberg bridge problem (L. Euler, 1735)

Problem:;

Finde a closed path that uses all
7 bridges (links) exactly once




Konigsberg bridge problem (L. Euler, 1735)

Problem:;

Finde a closed path that uses all
7 bridges (links) exactly once

Easy to prove impossibility!

In general: “Euler circuit” exists (and is easy to
construct) iff every node has even degree
(that problem gave birth to graph theory!)



Konigsberg bridge problem (L. Euler, 1735)

Problem:;

Finde a closed path that uses all
7 bridges (links) exactly once

Easy to prove impossibility!

In general: “Euler circuit” exists (and is easy to
construct) iff every node has even degree
(that problem gave birth to graph theory!)

—> Not every optimization problem is hard!



(Courtesy: L. Zdeborova)
K-satisfiability Cook 1971

3-SAT on 4 variables with 3 clauses:  z; € {TRUE, FALSE}
(ki s e sy ) B lao ) s )

Random K-SAT: N variables, M clauses. Randomly choose a
K-tuple of variables for each clause. Negate with probability 1/2.

Variables (N=6)

3-clauses (M=4)




(Courtesy: L. Zdeborova)

K-satisfiability

Boolean constraints can be
translated into spin interactions:

(ﬂazl V I9 N —ILU3) N (xl V I3 V —1174) N\ (332 V Y V 374)

ri =105 =1,-1 1—s511—591+4 s3

v = (1+50)/2 Vi Vo) =16 ey =0

3-spin interaction = 0!

Satisfying assignment of x;'s < sum of all spin interactions is zero!
Satisfiability < E;¢ = 0 < generalized spin glass problem



(Courtesy: L. Zdeborova)

Random 3-satisfiability: Hardness transition!

4000 median time
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a = M/N = #clauses per variable

random 3-SAT: N variables, M clauses.



(Courtesy: L. Zdeborova)
Suggestion: Hardness related to phase transitions, akin to glasses

2016 Lars Onsager Prize

Analytic and Algorithmic 2002
Solution of Random

Satisfiability Problems

M. Mézard," G. Parisi,'? R. Zecchina'>* 2021 Nobel Prize

We study the satisfiability of random Boolean expressions built from many
clauses with K variables per clause (K-satisfiability). Expressions with a ratio «
of clauses to variables less than a threshold o, are almost always satisfiable,
whereas those with a ratio above this threshold are almost always unsatisfiable,
We show the existence of an intermediate phase below «_, where the prolif-
eration of metastable states is responsible for the onset of complexity in search

algorithms. We introduce a class of optimization algorithms that can deal with

these metastable states; one such algorithm has been tested successfully on the But glass physics
existing ark of K-satisfiability InSIthS help in
PR g 49 - solving them!
\ " { ‘_;F’
\ L ?_)/ .~ (/.'. \, -



(Courtesy: L. Zdeborova)

K-satisfiability: structure of solution space

fe: = e
98 || e || S
® © ‘0 @® o - ®
| | | \
@ - Cluster with frozen variables Clust‘ering Conde‘:nsation Rig‘idity Satisfllability Va = M/N
. — Cluster without frozen variables 1
One giant
cluster of
solutions

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.
(There are many more clusters of unsatisfiable configurations!)



(Courtesy: L. Zdeborova)

K-satisfiability: structure of solution space

Cluster formation : Akin to dynamic glass transition!
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: ; : :
@ - Cluster with frozen variables Clustering Condensation Rigidity Satisfiability o = M/N
. — Cluster without frozen variables
. Many
One giant :
disconnected
cluster of
) clusters
solutions

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.
(There are many more clusters of unsatisfiable configurations!)



(Courtesy: L. Zdeborova)

K-satisfiability: structure of solution space

Cluster formation : Akin to dynamic glass transition!
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@ - Cluster with frozen variables Clustering Condefpsation Rigidity Satisfiability o = M/N
@ - Cluster without frozen variables Like freezing
: Many ; _
One giant disconnected in DPRM:
clust_er of clusters O(1 ). clusters
solutions dominate

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.
(There are many more clusters of unsatisfiable configurations!)



(Courtesy: L. Zdeborova)

K-satisfiability: structure of solution space

Cluster formation : Akin to dynamic glass transition! Conjecture: cannot be found in poly time

A
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@ - Cluster with frozen variables Clustering Condefpsation Rigidity Satisfiability o = M/N
@ - Cluster without frozen variables Like freezing
: Many ; _
One giant disconnected in DPRM:
clust_er of clusters O(1 ). clusters
solutions dominate

Many transitions on approach to satisfiability threshold!
Clusterisation renders solution finding increasingly difficult.
(There are many more clusters of unsatisfiable configurations!)



Complexity theory

After all these examples:
Systematising hardness of problem solving?

What do we mean by ‘spin glasses are hard problems to solve’?



Complexity theory

« P (polynomial): there exists algorithm
which only takes polynomial time for
systemsize N, T(N)~N¢

e.g. DPRM, Euler circuit

Problem space:

= "EASY”
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« NP: the rest (Non-deterministic
polynomial = a solution can be
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this problem (i.e. there is a map that
takes only a polynomial number of
operations)



Complexity theory

« P (polynomial): there exists algorithm
which only takes polynomial time for
systemsize N, T(N)~N¢

e.g. DPRM, Euler circuit

Problem space:

« NP: the rest (Non-deterministic
polynomial = a solution can be
checked in polynomial time), e.g. 3-
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* NP-complete: any other problem in

Are there any NP-complete problems? - YES NP can be “polynomially reduced” to
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1971: Cook shows 3-SAT to be NP-compIete takes 0n|y a po|ynomia| number of

operations)



Complexity theory

Problem space:

Are there any NP-complete problems? - YES

1971: Cook shows 3-SAT to be NP-complete

« P (polynomial): there exists algorithm

which only takes polynomial time for
systemsize N, T(N)~N¢
e.g. DPRM, Euler circuit

NP: the rest (Non-deterministic
polynomial = a solution can be
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

NP-complete: any other problem in
NP can be “polynomially reduced” to
this problem (i.e. there is a map that
takes only a polynomial number of
operations) e.g. 3 SAT, spin glass in
3d, traveling salesman, many more



Complexity theory

« P (polynomial): there exists algorithm
which only takes polynomial time for
systemsize N, T(N)~N¢

e.g. DPRM, Euler circuit

Problem space:

« NP: the rest (Non-deterministic
polynomial = a solution can be
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

* NP-complete: any other problem in
NP can be “polynomially reduced” to
this problem (i.e. there is a map that
takes only a polynomial number of

NP #P operations) e.g. 3 SAT, spin glass in

Or: There are problems that are truly 3d, traveling salesman, many more

harder than others!

Conjecture / belief:



Complexity theory

Problem space:

1979: Golman: most instances of a particular
structure are easy, only in the worst case they are
hard (namely, e.g., close to a phase transition)

But: What is hard (= no good algorithm known) shifts
with time - due partly to physics-inspired algorithms

« P (polynomial): there exists algorithm

which only takes polynomial time for
systemsize N, T(N)~N¢
e.g. DPRM, Euler circuit

NP: the rest (Non-deterministic
polynomial = a solution can be
checked in polynomial time), e.g. 3-
coloring, travelling salesman,...

NP-complete: any other problem in
NP can be “polynomially reduced” to
this problem (i.e. there is a map that
takes only a polynomial number of
operations) e.g. 3 SAT, spin glass in
3d, traveling salesman, many more



Upshot:

Spin glasses are clean, physical examples of NP
complete problems

Understanding spin glasses gives us insight into many
other complex problems

Physics ideas help solving complex problems



A smart problem-solving idea ?



A smart problem-solving idea ?

If spin glasses are NP complete:
Use classical «analogue computer» to solve complex problems:

1. Translate your problem into a spin glass
(and build the glass with all its couplings)

2. Cool the spin system down to low T
(«thermal annealing»)

3. Read out the ground state!



A smart problem-solving idea ?

If spin glasses are NP complete:
Use classical «analogue computer» to solve complex problems:

1. Translate your problem into a spin glass
(and build the glass with all its couplings)

2. Cool the spin system down to low T
(«thermal annealing»)

3. Read out the ground state!

Why is this idea flawed?



A yet smarter problem-solving idea ?

If spin glasses are NP complete:
Use a quantum analogue computer to solve complex problems:
«Adiabatic algorithm»

1. Translate your problem into a spin glass Kadowaki and
Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h, for

Ising spins) and cool to low T: H=N"¢7J .6 _h :
Start in simple paramagnetic ground state %: e XZ: Z
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Ising spins) and cool to low T: H=N"¢7J .6 _h e
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3. Adiabatically reduce the transverse field ~ h; — 0

4. Invoke adiabatic theorem: A system stays (with high

probability) in the ground state if one changes/anneals
parameters adiabatically

— elegant way to find the ground state !?



A yet smarter problem-solving idea ?

If spin glasses are NP complete:

Use a quantum analogue computer to solve complex problems:
«Adiabatic algorithm»

1. Translate your problem into a spin glass Kadowaki and
Nishimori, 1998

2. Turn on strong quantum fluctuations (transverse field h, for

Ising spins) and cool to low T: H=N"¢7J .6 _h e
Start in simple paramagnetic ground state %: e z,: Z

3. Adiabatically reduce the transverse field ~ h; — 0

4. Invoke adiabatic theorem: A system stays (with high How good
probability) in the ground state if one changes/anneals is this
parameters adiabatically ideg?

— elegant way to find the ground state !?
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No, both thermal and quantum annealing fail:

In the glass phase (low T, low h,) : High barriers between
minima. Thermal activation and quantum tunneling are both
exponentially slow.
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Into their ground state on experimentally accessible times



A yet smarter problem-solving idea ?

No, both thermal and quantum annealing fail:
In the glass phase (low T, low h,) : High barriers between
minima. Thermal activation and quantum tunneling are both
exponentially slow.

Glasses fall out of equilibrium below Tg and usually do not fall
into their ground state on experimentally accessible times

This is not only bad, it has also very useful sides!

As we will see it manifests itself in interesting ways in
experiments.



Manifestations of
out-of-equilibrium behavior in
spin glasses



Spin glasses: protocol dependence of susceptibility y

M

= limp_,, —
X 1mp 0p



Spin glasses:

Tl

protocol dependence of susceptibility y

M

= limp_,, —
X 1mpg 0 g
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Spin glasses: protocol dependence of susceptibility y

FC

e B=0atT>T,
* Apply finite B
e CooltoT<T,
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e B=0atT>T,
e CooltoT<T,
« Apply finite B




Spin glasses: protocol dependence of susceptibility y

M

= limp_ o —
X 1mpg 0 g

FC 1.4

CB=0atT>T. 3 mT

* Apply finite B | Field cooled :

« CooltoT<T, ; L . |zFc

0.8 - | e B=0atT > TC

071 .~ Zerofield cooled (ZFC) » Coolto T<T;
0.6 > | ! | \ \ \ ® Apply f|n|te B

20 30 40 50 60 70 80 90

T (K)

Final state (M) depends on protocol! — Out of equilibrium, ergodicity is broken!



Spin glasses: protocol dependence of susceptibility y

x = limp_,

FC

e B=0atT>T,
* Apply finite B L1l
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e B=0atT>T,
e CooltoT<T,
« Apply finite B

Final state (M) depends on protocol! — Out of equilibrium, ergodicity is broken!

Difference with hysteresis in ferromagnets?




Spin glasses: protocol dependence of susceptibility y

_ M
x = limp_,g B
FC 1.4
 B0atT>T. 12
* Apply finite B | .|
e« Coolto T<T, 51 ZFC
s + B=0atT>T,
0.7 - Zero field cooled (ZFC) » Cool tO.T. <
0'6200 3‘0 4‘0 50, (K)60 7‘0 éo 90 ’ Apply finite B
S~ Final state (M) depends on protocol! — Out of equilibrium, ergodicity is broken!
Depends on B ' ’ '

Difference with hysteresis in ferromagnets? Mgc~ B, not just o sign(B)



Spin glasses: protocol dependence of susceptibility y

M

= limp_ o —
X 1mpg 0 g

FC .4
« B=0atT>T, - EET

121 |

. Apply finite B L Field cooled ' |

« Coolto T<T, 5 - i ZFC
0.9 - i
0.8 - | e B=0atT>T,
071 " Zero field cooled (ZFC) * Cool tO_T_ <Te
"% 30 w0 501 i) 0 80 9% : Apply finite B

Final state depends on protocol! — Out of equilibrium, ergodicity is broken!
Interesting: System remembers the past! — Store information!



Spin glasses: Aging - Dynamics gets slower with ‘age’
Protocol:

« Apply a field B at high T.

« coolto9K =T <Tc=10.4K
att=0

« Wait for t,

* Switch off B

* Measure the decay of M



Spin glasses: Aging - Dynamics gets slower with ‘age’
Protocol:

« Apply a field B at high T.

S T « cool to 9K =T < Tc = 10.4K
S 008F att= 0
' « Wait for t
Moo (@) = 5 %] . Switch off B
= 0% _,  Measure the decay of M
; 0,02} N
10° 10™* 10° 102 10" 10° 10" 10? M(r) = Mfast(T) + Mgow (7)
il M (t)=A(t—0)a
fast T

T

Msiow (t) = f (_)

tw



Spin glasses: Aging - Dynamics gets slower with ‘age’
Protocol:

« Apply a field B at high T.

e « coolto 9K =T < Tc = 10.4K
_:o 0,08 | att=0
_ < 0,06 | « Wait for tw
Msiow(T) = . Switch off B
= » Measure the decay of M
; 0,02 | -

10° 10* 10 10 107" 10° 10" 10 M(7) = Mfase(T) + Msion ()

T/ to\¢

PT . y Mfast(t) = A (—)
Dynamic time scale grows with £,. the older the slower T T
— the sample is not at equilibrium! My, (0) = f (J)



Spin glasses: Aging - Dynamics gets slower with ‘age’

Understanding: Exercise on trap model

-—

Waiting time determines the typical time scale of dynamics and response!

Very different from equilibrium: Waiting longer does not change response



Spin glasses: Rejuvenation
Protocol:

e Coolto 12K < Tc

(au.) * Measure y (still relaxing!)
I=12K

400 800 time (min)



Spin glasses: Rejuvenation
Protocol:

 Coolto 12K < Tc
(au.) * Measure y (still relaxing!)
T=12K » Cool further to 10K — y jumps
up as if one had directly
T=10K cooled to 10K (=
“rejuvenation”)

time (min)



Spin glasses: Rejuvenation
Protocol:

 Coolto 12K < Tc

* Measure y (still relaxing!)

» Cool further to 10K — y jumps
up as if one had directly
cooled to 10K (=
“rejuvenation”)

« Heat back to 12K: x(t)
continues, as if one hadn't
made a break at 10K!!

(a.u.)
T=12 K

400 800 time (min)



Spin glasses: Rejuvenation
Protocol:

 Coolto 12K < Tc

* Measure y (still relaxing!)

» Cool further to 10K — y jumps
up as if one had directly
cooled to 10K (=
“rejuvenation”)

« Heat back to 12K: x(t)
continues, as if one hadn't
made a break at 10K!!

(a.u.)
T=12 K

400 800 time (min) Memory of relaxation at higher T!



Spin glasses: Rejuvenation
Protocol:

 Coolto 12K < Tc
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» Cool further to 10K — y jumps
up as if one had directly
cooled to 10K (=
“rejuvenation”)

« Heat back to 12K: x(t)
continues, as if one hadn't
made a break at 10K!!

(a.u.)

- — time (min) Memory of relaxation at higher T!
Explanation? Landscape and relaxation dynamics at 10K is apparently totally different from that at 12K!



Spin glasses: Rejuvenation
Protocol:

 Coolto 12K < Tc

* Measure y (still relaxing!)

» Cool further to 10K — y jumps
up as if one had directly
cooled to 10K (=
“rejuvenation”)

« Heat back to 12K: x(t)
continues, as if one hadn't
made a break at 10K!!

(a.u.)

- — time (min) Memory of relaxation at higher T!
Explanation? Landscape and relaxation dynamics at 10K is apparently totally different from that at 12K!
See later: free energy minima depend (a lot) on T:
F({m:}) = F({m:}; T)

Relaxing under T does not imply anything on properties at T’



