2

Disordered electronic systems

The properties of disordered solids are very different from their crystalline coun-
terparts. This chapter focuses on some of the fundamental electronic properties of
disordered solids. It begins with an outline of the basic phenomena and types of
relevant disordered systems. Then the model Hamiltonians used to study disordered
systems are introduced. The basic concepts of the two relatively well-understood
limiting cases of strong localization and weak localization are described, followed
by an analysis of the general localization problem with emphasis on the metal-
insulator transition. The chapter ends with an introduction to percolation theory,
which plays an important role in the electric properties of disordered systems.

2.1 Disordered solids

Conventional research in solid state physics focused on ordered crystals in which
the electronic states are largely influenced by the symmetries of the crystal lattice
and thus take the form of periodic Bloch functions, which extend throughout the
entire material. In this picture, the material is either insulating or metallic depending
on whether the Fermi level, Ef, lies between bands or within a conduction band.
Conductivity in the metal is hindered by the presence of static impurities and by
phonons that determine the resistance and its 7" dependence. In the insulator, con-
ductivity at finite temperature is achieved by thermal activation to the conduction
band and thus

Eg
Jocexp{—ﬁ} (2.1)

where Eg is the gap between bands.

With increasing interest in disordered systems, initiated by the seminal works of
Anderson and Mott, it became clear that the behavior of electrons in noncrystalline
solids, in which crystal symmetry is absent, can differ greatly from the behavior of
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8 Disordered electronic systems

electrons in crystals. The basic difference lies in the fact that in a crystal an elec-
tron cannot tell the difference between one primitive cell and another so it spreads
all over the crystal. In the disordered system, each site looks different from each
other site due to a different environment so an electron might prefer one location
over others. This basic difference makes the disordered solid much more difficult
to treat theoretically. One dramatic consequence of strong disorder is that the elec-
tronic wavefunctions are localized in space and are characterized by a localization
length, &£. At zero temperature, the electrons are immobile, and thus the material
is an insulator even though EF is within a finite density of states. Conductivity
is achieved at finite temperature by phonon assisted tunneling (hopping) between
localized states. Thus in these materials, the presence of phonons increases conduc-
tivity, opposite to the situation in systems with extended states. Another qualitative
difference is that in the disorder-localized systems the conductivity increases with
frequency while the opposite is true in extended states systems.

2.1.1 Energy scales

In disordered systems, four energy scales play an important role. The first is the
disorder energy, W, which is the size of fluctuations of the local random potential
due to lack of translational symmetry. The second is the quantum transfer energy, ¢
(sometimes called hopping energy), between localized states. This is the energy to
elastically transfer a charge between two localized states and is determined by the
overlaps of the wavefunctions. For example, in a hydrogen molecule, this represents
the energy difference between the odd and even wavefunctions. The localization
of the wavefunctions depends on the ratio W/¢. The limit W/t > 1 corresponds to
the strongly localized regime, whereas W/t < 1 is the weak localization or dirty
metal limit.

The third energy scale is the electronic interaction, Ee_o ~ o2 /(kr), where «
is the dielectric constant and r is a typical distance between carriers. In general,
the more localized are the states the smaller is the screening and the larger the
importance of interactions. In the weak localization regime, interactions can be
usually treated perturbatively, whereas in the strongly localized regime they are
similar in magnitude to the disorder energy, and one has to treat both on the same
footing.

Two limits are considered throughout this book. The first, E._. < W will be
called the noninteracting case, and the second E._. ~ W will be termed the inter-
acting case. In the opposite limiting case E._. > W, the disorder plays a very small
role. This case will not be treated in the book.

The fourth energy scale is the thermal energy, Ey, = k7. This book deals with
low temperatures (i.e., the case where Ey, < W).
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2.1 Disordered solids 9
2.1.2 Types of disordered solids

There are a number of disordered systems that may exhibit hopping conductivity
and/or glassy effects and are discussed extensively in this book. Some of their main
properties are reviewed below.

o Amorphous and polycrystalline solids Anderson insulators composed of non-
crystalline metals or semi-metals which become insulating due to the disorder.
Polycrystalline samples are obtained from amorphous samples by heating above
the crystallization temperature. Disorder in these systems can be varied in a
number of ways depending on the specific material; for example, the substrate
temperature of thin film evaporation, thermal annealing, carrier concentration
manipulation, and film thickness in ultrathin films. In compounds (e.g., indium
oxide, zinc oxide), the disorder may be due to lack of chemical stoichiometry;
hence, it may be controlled by varying the stoichiometry. The disorder depends
on the range of atomic correlations. Long-range order is always absent, but short-
range atomic order may exist. An experimental way to determine the degree of
disorder is to measure the R(7T) curve and to extract, in the insulating phase,
the localization length via the hopping conductivity expressions discussed later.
These systems undergo a metal—insulator transition as a function of disorder. The
position of the transition can be quantified via the loffe—Regel parameter, kgl,
where kg 1s the Fermi wavenumber, and [ is the mean free path determined by
the disorder. The sample is metallic if it obeys the loffe—Regel criterion kgl > 1;
otherwise, it is an insulator. Finite-sized 2D films undergo a similar transition,
where a different criterion for critical disorder is via the sheet conductance, G.
For G > ¢?/ h the film shows metallic-like behavior while in the opposite limit,
G < €?/h, the film exhibits insulating behavior. Disordered metals are usually
characterized by an occupation of many electrons within a localization volume
and a significant overlap between localized wavefunctions. Hence, the transfer
energy, t, compares with the disorder energy, W, and must be taken into account.

o Granular metals Systems of metallic islands embedded in an insulating matrix.
In this case, localization is due to geometrical confinement in the grains and
small transfer energy between them. The conductivity is determined by hopping
between grains, whereas the conductivity within a grain is taken to be infinite.
The transfer energy is determined by the distance between grains, which depends
on the percentage of the material occupied by the metal. When the metallic part
percolates or the transfer energy is large enough, the system acts as a metal;
when the grains do not percolate and the transfer energy is small, it behaves as an
insulator. In these systems, each grain contains many electronic states that may
be correlated and thus it is important to consider intragrain correlation effects. An
important energy in these systems is the charging energy to add a single charged
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10 Disordered electronic systems

particle to the grain (Coulomb blockade), which may play an important role in the
hopping rates. Usually, most of the grains are ionized, and the determination of the
charge of each grain is a complicated problem involving also the Coulomb gap.
This becomes even more complicated when one considers background charges
present in the substrate or in the oxide between grains. These contribute a random
potential that affects the charging of the grains.

e Doped semiconductor In these systems, conductivity at low temperatures is
governed by hopping among impurity states (impurity conduction). The wave-
function of an isolated impurity can, in many cases, be approximated by an
hydrogen-like wavefunction with a very large radius. The overlap between wave-
functions, and so the transfer energy varies exponentially with distance. The
interaction energy and the disorder energy are usually similar as both arise from
Coulomb interactions between impurity sites and they vary as the inverse of
the distance. The density of impurities or concentration is a key parameter in
this problem. Increasing the impurity concentration increases the transfer energy
exponentially and the disorder only algebraically. Thus, there is a critical density
above which states are extended and below which states are localized. In these
materials the on-site interaction energy is usually much larger than the other ener-
gies, and it is assumed that a state can be occupied at most by a single carrier
and the occupation on each site can be either O or 1. Another relevant parameter
in these materials is the compensation, the ratio between minority impurities and
majority impurities. It corresponds to the percentage of unoccupied sites of the
majority type. The importance of interactions is maximal at half compensation.
At small compensation, the carrier concentration equals the minority impurity
concentration, which corresponds to the unoccupied sites on the majority impu-
rities. At large compensation the carriers are the occupied sites on the majority
impurities. The minority impurities are all ionized and responsible for much of
the disorder.

o Two-dimensional electron gases (2DEG) These are not disordered systems
per se. On the contrary, the main technical effort is invested in maximizing sample
mobility, i. Nevertheless, these systems can undergo a metal-insulator transition
because of the ability to vary their carrier concentration and therefore are men-
tioned in this book in several contexts. A 2DEG is a gas of electrons free to
move in two dimensions, but tightly confined in the third. This is achieved by
electronic band engineering. The two most common systems are Si MOSFET
and GaAs/AlGaAs heterostructures. The former consists of a metal/oxide/silicon
trilayer where the metal is a gate electrode, the oxide an insulator and the sili-
con the disordered system under study. Applying a negative voltage between the
metal and the semiconductor bends the electronic bands and confines electrons
to a very thin layer (a few nm) adjacent to the oxide. In the latter the different
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2.2 Hamiltonians for disordered systems 11

band structure of GaAs and AlGaAs confines electrons to the interface between
the two layers. In these systems, applying a gate voltage to the 2DEG (utilizing
metallic electrodes) can be used to finely control the carrier concentration, n. For
low n, this allows us to tune the system through the metal-insulator transition.

2.2 Hamiltonians for disordered systems

To avoid undue complications not relevant to the disorder, one generally adopts
the tight-binding approximation. The Hamiltonian representing the system can be
written in second quantized form as

+ ! + +
H = Zhn,man am, + 5 Z Vikimnay, a,,anay . (2.2)
n,m kimn
where a”, a, are the creation and annihilation operators of an electron in the

state m, and h, , and Vi, are matrix elements. The first term represents the
one-particle energies, and the second the interaction energies. In the tight-binding
approximation, one chooses a basis of local functions with one orbital per site
described by the site index i and the spin o.

The most important one-particle contribution is the diagonal part

Zé‘iai—f—aai,a (2.3)
i,o

where ¢; is the (generally random) energy on site i. This contribution can be
rewritten in terms of the number operator on site i, n; , = a;r @i o - If the site wave-
functions are not extremely localized, one has to consider the (generally random)
intersite quantum tunneling energy

D) hijalaio (2.4)
i#] J.o
which is responsible for the delocalization of the wavefunction. In models with
sites at random positions, it is customary to consider an exponential dependence of
t;,j on distance

ti,j=(i|7'l|j)=lo€xp{—%} 2.5)

where & is the decay length of the wavefunction of an isolated impurity, and I
is a characteristic energy of the order of the Coulomb energy at a distance &j. In
models on regular lattices, #; ; is generally approximated by a constant between
nearest neighbors and zero otherwise.
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12 Disordered electronic systems

The most important interaction term is when all four operators are on the same
site and corresponds to the interaction of two electrons on the same site (and so
with opposite spins)

ZUi,inmnu (2.6)
i

U, i 1s often called the Hubbard energy. The Hubbard model only retains this term
and the one-particle contributions of Equations (2.3) and (2.4). Other important
interaction contributions are the diagonal elements m = n, k =, that is, the direct
interaction between two particles on different sites

% Z ZUi,jnianja/ (2.7)

i#j.0 j.o'

The corresponding matrix elements are

2
,J—fd3 /d3r’|¢<r P o~ 2.8)

For very localized wavefunctions, this expression can be approximated by
Ui,j = e?/ (krij), with r; ; = |r; —r;| being the (generally random) intersite
distance.

The Hamiltonian in (2.2) also includes exchange interactions involving only two
wavefunctions, but coupled in the opposite order than in the direct interactions. They
may be very important in certain cases (e.g., in magnetism) but are usually neglected
in the electronic glass literature because they are a factor |; ; > smaller than the
corresponding direct terms. The most relevant terms of the Hamiltonian are then

H= Zgln10+zztl]a] GalG+ZUllannlJ,+ Z ZU jlioN jo’

i#] J,o 1#1010
(2.9)

The disorder can be positional due to randomness in the location of sites (so-
called off-diagonal disorder), which will affect the second and fourth terms in
(2.9), or energetic due to a randomness in the site energies (the so-called diagonal-
disorder), which will affect the first term in (2.9), or both types can occur together.

When considering long-range interactions, it is interesting to conserve charge
neutrality, which can be done automatically by redefining the occupation number
as njy, = al.+ ,4i,c — K, K being the ratio n/N of the number of electrons (more
precisely, rﬁajority carriers) to number of sites in the system. Usually one then
considers a positive charge |en/N | to reside on every site. Some alternative models
are briefly discussed in Pollak (1971).

Dealing with the full Hamiltonian of (2.9) is very difficult, and, depending on
application, various simplifications may be appropriate. In many cases the intrasite
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2.3 Strong disorder 13

interaction is much greater than other energies which justifies the elimination of
the second term and the prohibition of double occupation of a site. If one also
neglects the exchange energy, already not included in (2.9), the spin then becomes
unimportant, and for most purposes one can just consider a system of spinless
electrons. The above near-ubiquitous approximations simplify the Hamiltonian to

H:Z‘si”i+Zztis1“i+“f+%zzl]i’f”i”f (2.10)

i i#j J i#j ]
In this simplified version, the first term is the random energy, the second term is
the intersite tunneling energy, and the last term is the intersite Coulomb interaction
energy. For special purposes, H is further simplified. Keeping the first and third
term has been often used as a model for the electron glass whereas using the first
two terms was used by Anderson in his classic paper on (single-particle) local-
ization (Anderson, 1958). A further simplification in his model was to assume a
structurally ordered system (a simple cubic lattice) and nearest neighbor tunneling
only (thus rendering #; ; fixed) and to relegate the disorder to the site energies.
Such a model may seem oversimplified, but it does capture the important physical
features leading to localization while it still turns out to be a very nontrivial system
to solve quantitatively.

Throughout the book macroscopic homogeneity shall be assumed. This means
that one can divide the system into a statistically large enough number of equal
sized parts such that each part is large enough and statistically identical to the other
parts.

2.3 Strong disorder
2.3.1 Strong localization

When the disorder is very strong the electronic wavefunctions are localized. This
book focuses on this regime. Localized wavefunctions have large magnitude around
a central region and decay exponentially outside this region. Their wavefunctions
can be written in the form

Va(r) = Zcm(r)exp{—'”“s;”'} (2.11)

where i refers to the sites in the solid (r; being their locations), ¢; are randomly
fluctuating amplitudes, ¢; (r) is the wavefunction at site i, and r,, is the “center” of
wavefunction «. & is termed the localization length. It is a measure of the typical
size of a state and is a basic lengthscale in the strongly localized regime. It should
be noted that the exponential form of the wavefunction in (2.11) is an idealization
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14 Disordered electronic systems
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Figure 2.1. Two localized wavefunctions with very similar energy but different
spatial location. Bottom part: modulus square of the same two wavefunctions on
a logarithmic scale.

since there is not a well-defined center, except for strongly localized wavefunctions
(Markos, 2006). More importantly, theoretical calculations, including many that
will appear later in the book, assume a single £ that is taken to be uniform for all sites.
This is a very crude approximation that is probably unrealistic and may be one of
the reasons for discrepancies between theory and experiment (Somoza and Ortufio,
2005). In the upper part of Figure 2.1 two numerically obtained wavefunctions
Yy (x) with very similar energy are shown and, in the lower part, their moduli
square, In |, (x)|?, are represented on a logarithmic scale. These logarithms decay
approximately as straight lines, whose slope is proportional to the localization
length.

If the Fermi level lies in a region of localized states, the dc conductivity at 7 =0
is zero. However, for finite samples, the conductivity is finite and depends on the
localization length

Gaexp{—%} (2.12)

where L is the size of the system. This dependence of conductivity on length is, in
principle, the experimental and numerical way to determine the localization length
(Kramer and MacKinnon, 1993).

In the strongly localized regime, each wavefunction can be associated with a
site, j, where its amplitude is maximal. One can treat the transfer energy 7; x as a
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2.3 Strong disorder 15

perturbation, and the zero order state is just the site state | j). To first order the state,
|j) 18

t;
My +Z - Jok (2.13)
_E

where E; is the energy of site j. To first order, the energies are just the unperturbed
energies. It is easy to see that the perturbation expansion converges rapidly if the
disorder is strong so higher-order terms beyond (2.13) become unimportant. States
that are nearby in space are in general very different in energy and their contribution
to (2.13) is small because of the large energy denominator. States that have very
similar energies are in general very far apart, and their overlap is exponentially
small (Lee and Ramakrishnan, 1985).

If the transfer energy decays exponentially, #; ; o exp(—r; /&), comparing
Equation (2.11) with (2.13) one notices that the localization length is, to first order
in the perturbation, equal to the single site decay length &.

2.3.2 Density of states — the coulomb gap

Interactions are usually very important in the localized regime because the low
mobility of charges results in a drastic reduction of screening. Then the two most
relevant energies are the disorder and the long-range Coulomb interaction. The
competition between them leads to a depletion of the single-particle density of
states (DOS) near the Fermi energy known as the Coulomb gap. This gap was
predicted by Pollak (1970) and its shape was obtained by Efros and Shklovskii
(ES) (1975). The single-particle DOS is defined as the distribution of the energy
E; required to add (or remove) an electron to the system in site i, holding the rest
of electrons fixed. The energy E; is defined as the random energy of site i plus its
Coulomb interaction energy with all other sites, depending on their occupation in
a ground state. The DOS in the Coulomb gap is (see Chapter 4)

N(E) x |E|4! (2.14)

E is the energy measured with respect to the Fermi level, and d is the dimensionality
of the system. In 1D systems, the gap is logarithmic, not constant as could be
extracted from (2.14).

In localized interacting systems, the density of excitations cannot be obtained
as a convolution of the DOS. If an electron is transferred from site i to site j, the
energy of this one-electron hop is

e2

AE;;=Ej—E; —

(2.15)

Kri’j
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16 Disordered electronic systems

Notice that in the definition of the site energies full sites refer to an n-electron
system while vacant sites refer to an n + 1 electron system (i.e., the energy of an
electron on a vacant empty site). This is very appropriate for the definition of a
one-particle DOS but may become confusing when dealing with excitations that
do not change the number of electrons in the system.

The last term in (2.15) is the interaction of an electron with the hole it leaves
behind and is responsible for the Coulomb gap. It also causes an increase of short
low-energy excitations, with respect to the noninteracting case. This is easy to
understand because such an excitation from one site to another is conditioned by a
single occupation of the pair of sites. This condition is facilitated by the electron—
electron repulsion. A more rigorous treatment of the Coulomb gap will be provided
in Chapter 4 where it will also be made clear that this treatment, based on the
single-particle DOS, may be modified when one considers correlated effects.

2.3.3 Hopping conduction

At finite temperature, the conduction in the localized phase is by hopping between
states. The energy difference between the states is provided by phonons, which
interact with electrons by changing their environment. The probability of a hop
with an energy increase AE; ; is thus proportional to the probability of finding a
phonon of this energy o< exp(—AE; ;/kT). The reverse hop involves the emission
of a phonon. The probability of a hop also depends on the overlap between the
states involved, which according to (2.11) depends exponentially on the distance
between them, r; ;. The transition rate between two states is of the form

Al 2 } (2.16)

F,’JO(GXP{— T %_

The first exponential factor represents the number of phonons of energy AE; ;, the
second factor represents the transition matrix element squared in accordance with
the golden rule.

Two important conclusions can be extracted from (2.16):

o The rates are exponentially distributed and so mean field approaches are usually
not adequate. Instead, percolation approaches are much more appropriate.

o Energy difference and space separation play similar roles and a trade-off between
them is to be expected.

At relatively high T that approaches the range of the disorder energy, W, only
the spatial factor in (2.16) has to be minimized and hopping is through nearest
neighbors. The conduction path is independent of 7', which results in activated
behavior with the activation energy corresponding to the highest energy jump in
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2.3 Strong disorder 17

the path. However, this cannot extend over a very large range of temperature since
the Arrhenius dependence becomes a poor approximation for the Fermi distribution.

In the usually larger range where the energy in (2.16) is significantly smaller than
W, there is a trade-off between energy and distance. The conduction path depends on
T and so does the typical hopping distance. The latter increases with decreasing T
and the activation energy, decreases with decreasing 7'. This conduction mechanism
was discovered by Mott who named it variable range hopping (VRH). In this regime,
the conductivity is of the form

o X exp {— (?) } (2.17)

where the exponent s depends on dimensionality s = 1/(d 4+ 1). Coulomb inter-
actions change the relation between the typical energy of a jump and its distance,
modifying the exponent in (2.17), which becomes s = 1/2 independent of dimen-
sionality. The value of this exponent was obtained by Efros and Shklovskii (1975)
by extending Mott’s argument for VRH to the DOS of the Coulomb gap of (2.14).
Figure 2.2 shows the resistivity as a function of 7~1/2 for seven ion-implanted
Si:P,B samples (Zhang et al., 1993). The straight lines are fits to (2.17) withs = 1/2,
corresponding to VRH with interactions. To the extent that the fit is adequate to
determine well the value s = 1/2, this can be taken as evidence for interaction.
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Figure 2.2. Resistivity vs. 7~!/2 for ion-implanted Si:P,B samples. The straight
lines are fits to equation (2.17) with s = 1/2, after Zhang et al. (1993). Copyright
by the American Physical Society.
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18 Disordered electronic systems

2.4 Weak disorder
2.4.1 Weak localization

Even for mild degrees of disorder, electronic localization may play a role in the
transport properties, but in this regime the influence of disorder amounts to quantum
correction to the classical Drude conductivity

nezt

op = (2.18)

m
where n is the carrier concentration, m is the electron, mass and 7 is the mean
free time. For weakly disordered systems, it is useful to consider two characteristic
length scales. The first is the elastic scattering length, L.j, which is the average
distance between impurities. The second is the inelastic length, L;,, which is the
distance traversed by a charge between two inelastic scattering events, such as
scattering by another electron or by a phonon. The latter is often identified with
the phase breaking length, Ly, which is the length over which phase memory is
maintained by the particle (though some slight differences may occur between the
two length scales). These length scales are associated with the elastic mean free
time, T, the inelastic time, 7;,, and the phase breaking time, 7, through the relation
L = /Dt where D is the diffusion constant. In the Drude formula of (2.18),

—=—t—. (2.19)

If Loy < Ly <&, L, where L is the sample size, the electric conductivity can be
treated by a diffusion approach in which an electron diffuses between static scatter-
ers without losing phase memory for distances smaller than L. The probability to
traverse from point a to point b should include all possible trajectories « and thus

2
=) AP+ YD AuA} (2.20)
o

is given by
2 A
@ a#p B

where each A, is the amplitude of a possible trajectory. The first term on the
right-hand side of (2.20) is the classical probability of propagation and the second
term is the quantum contribution due to interference between different electronic
trajectories. This is a sum over random phases from different sections of the sample
and thus, for most cases, this term averages out to zero. However, there is a special
set of trajectories (i.e., closed loops in which the electron returns to its original
position), where the interference term adds a finite contribution. This is because
every such trajectory is accompanied by its time-reversed trajectory, traveling in
an opposite direction and providing the same phase shift. Each such pair of closed

Pab:
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2.4 Weak disorder 19

Figure 2.3. An illustration of two trajectories moving in opposite directions,
contributing identical phase shifts. After Bergmann (1984). With permission by
Elsevier.

loops interferes constructively thus increasing the probability of an electron to
remain in its origin. Hence, in the case of quantum diffusion the probability to
return to the origin is twice as great as in classical diffusion since the amplitudes
add coherently. This phenomenon, which hinders the motion of electrons and adds
a negative contribution to the conductivity, is termed “weak localization.” A set of
two time-reversed trajectories is illustrated in Figure 2.3.

The dimension of a sample governed by these physics is determined by L.
For example, if the thickness, z, is smaller than L, the system can be considered
two dimensional as far as weak localization is concerned. Most research on weakly
localized systems has been performed on thin films which fulfill the above condition,
hence this section will focus on the 2D case. The correction to the conductivity in
2D is given by (Abrahams et al., 1979)

o 3 1 L¢

|

————1n (2.21)
oD Zk%ZLel L

where op is the Drude conductivity. Usually Ly o< T* where o = 1-2; hence,
T
Ao =0 —op xIn T (2.22)

The above treatment applies to simple disordered systems. Strong spin-orbit
scattering adds an opposite contribution to the conductivity named weak antilocal-
ization (Bergmann, 1984). This effect will be ignored here.
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As disorder is increased and § becomes smaller than L the system crosses over
to the strong localization limit in which conductivity is governed by hopping.

2.4.2 Magnetoresistance

Weak localization is suppressed when a magnetic field, H, is applied, due to the
Aharonov-Bohm effect. A magnetic flux that penetrates the loop trajectories induces
a different phase shift for the two time-reversed paths. In other words, the magnetic
field breaks time reversal symmetry and destroys the constructive interference,
thus delocalizing the electronic wave functions. Such a process leads to negative
magnetoresistance, which is proportional to H? atlow fields and saturates at high H .
The magnetic field scale of saturation is determined by the magnetic length Ly =
V®o/H where @y = h/e is the flux quantum. For large fields in which Ly < Lg,
the delocalization process no longer increases with increasing H.
The weak localization magnetoresistance in 2D is given by (Rammer, 1998)

AO’WL 3 1 3 L%—I 1 3 L%—I
- - S A - — 4+ -2 2.23
o(H=0) 2k%zLel |:1ﬂ (2 4 Ly ’ 2 4 Lé o

where ¥ is the digamma function. Figure 2.4 shows a set of magnetoresistance
curves performed on Mn thin films with fits to (2.23).

This “orbital” effect depends on the dimension of the sample. In 2D where
z < Ly, the magnetoresistance will be anisotropic. Application of a field perpen-
dicular to the film will yield a magnetoresistance of the form of (2.23). However,
in the case of a parallel field, Ly will be substituted by z, and the field scale for
magnetoresistance will be much wider.

2.4.3 Mesoscopic fluctuations

A special case is when all lateral dimensions are smaller than L. In this regime,
called the mesoscopic regime, the right-hand term in (2.20) will yield a certain value
for each sample, and this will determine its conductivity. An ensemble of samples
having the same thermodynamic properties (i.e., size, geometry, mean free path) will
differ from each other by their conductivity since o is affected by the off-diagonal
phase term, which is determined by the microscopic configuration of the scatterers.
The amplitude of these sample-to-sample conductance fluctuations was found to be
universal in the sense that they did not depend on geometry, lateral extent (as long as
it was smaller than L) or resistance and was always of the order of 2 / h (Altshuler,
1985). Hence, these fluctuations were termed “universal conductance fluctuations.”
The conductivity is so sensitive to the microscopic configuration of impurities that
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Figure 2.4. The magnetoresistance of a thin Mn film for different temperatures as
a function of the applied field. The units of the field are given on the right side of
the curves. The points represent the experimental results. The full curves are fits
of the theory (Bergmann, 1984). With permission by Elsevier.

shifting so much as a single scatterer by more than a Fermi wavelength will cause
a substantial change of order ¢?/ h in the conductance.

A similar effect can be observed on a single sample by sweeping a bias that
changes the interference pattern, such as magnetic field or gate voltage. Magnetic
field modifies the interference via the Aharonov-Bohm effect in loops of trajec-
tories. Gate voltage shifts the Fermi level causing the electron to experience a
different environment. In both cases, the conductivity exhibits universal conduc-
tance fluctuations of amplitude ~ 2/ h. Since each microscopic arrangement leads
to a different interference pattern, o (H) or o (V,) is different for each sample, thus

https://doi.org/10.1017/CBO9780511978999.002 Published online by Cambridge University Press



22 Disordered electronic systems

0.730K

0.300K

AR

0.118K

00 02 04 06 08 10 12

Figure 2.5. Temperature dependence of the magnetoresistance from 0 to 1.2 T of
a Au ring. The inside diameter of the ring was 280 nm, and the width of the lines
forming the ring was roughly 45 nm. The zero-field resistance of the ring was
7.7 2. After Umbach et al. (1984). Copyright by the American Physical Society.

the curve can be viewed as a “fingerprint” of that specific sample. An example for
magnetoresistance mesoscopic fluctuations is shown in Figure 2.5.

As the sample size is increased so that L >> Ly, the fluctuation amplitude
decreases like (Ly /L) 1/2 This represents the fact that the magnitude of the quantum
interference contributions decay as the squareroot of the number of independent
phase coherent units. Similarly, the temperature dependence of Ly determines the
ability to observe fluctuations as T is increased. Since Ly o< T%, the amplitude of
the universal conductance fluctuations decreases with temperature like a power law.

If disorder is increased so that Ly > &, quantum interference effects become less
prominent. However, small samples in the strong localization regime also exhibit
mesoscopic conductance fluctuations. These arise from a different physical origin
and will be treated in Chapters 5 and 6.

2.4.4 Density of states — zero bias anomaly

The effect of electron—electron interactions in the weakly disordered regime was
considered by Altshuler and Aronov (1985). They showed that the interactions cause
a depletion of the DOS around the Fermi level, a phenomenon that became known
as the zero bias anomaly (ZBA). In two dimensions (z smaller than the thermal
length, L7 = +/hD/kT), the correction to the DOS is given by

No max(kT,E) temax(kT, E)

N(E.T)— No = — 1 1 224
ED)=No=—g 5D Doy O ) (2.24)
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where E is the energy, Ny is the 2D normal (non interacting) DOS measured at
high energies, D is the diffusion constant, and 7] = Lgl / D is the elastic mean free
time. The ZBA amplitude increases with increasing disorder.

A useful parameter used to define the degree of disorder in dirty metals is the
dimensionless conductance

=S —NoD (2.25)

Go

where G is the conductance, and Gy is the quantum of conductance e?/h. The
Altshuler and Aronov theory applies only to mildly disordered metals, g > 1. As the
disorder is increased and g decreases below 1, the sample crosses over to the strong
localization regime in which the Coulomb gap, Equation (2.14), determines the
interacting DOS. Both the ZBA and the Coulomb gap stem from electron—electron
interactions and are due to somewhat similar physics. However, the Coulomb gap is
associated with a Hartree term of interactions, which represents the contribution of
the classical Coulomb interaction, while the ZBA is a consequence of the exchange
term, which corresponds to much subtler quantum effects. In special geometries
the two effects can be observed and separated (Bitton et al., 2011).

The logarithmic dependence of the density of states on energy of Equation (2.24)
was found in many tunneling experiments into 2D-disordered metal films (for a
more detailed explanation on tunneling experiments see Subsection 4.2.2). An early
example is shown in Figure 2.6 where the tunneling DOS of a GaAs film is shown
for different neutron irradiations. The irradiation introduces impurities in the film,
thus enabling to study the effect of disorder on the ZBA amplitude.

Electron—electron interactions affect the conductivity as well. In 2D, they con-
tribute a correction to conductivity, which is proportional to log(7). Hence, it has
the same functional dependence as (2.22) of weak localization. Indeed, both quan-
tum coherence and electron—electron interactions contribute similarly to the 2D
o (T) curve and in many cases it is difficult to tell them apart.

2.5 Anderson localization and metal-insulator transitions

After having discussed the two limiting cases of strongly localized states and of
extended states with weak disorder, it is interesting to address the case of interme-
diate disorder. This is a very complicated theoretical problem even in the absence
of interactions, but the results most relevant to the issues discussed in this book are
fairly well understood by now.

To obtain some physical insight into Anderson localization, it is useful to have a
closer look at the perturbation expansion of (2.13) considering only two sites with
energy difference AE ;. For strong disorder, most of the links obey the condition
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Figure 2.6. Tunneling conductance as a function of voltage for a Pb-GaAs tunnel
junction at different neutron irradiation times, increasing disorder successively
from 1 to 7 (Mora et al., 1971). Copyright by the American Physical Society.

AEj > tj i, and the states of the electron are approximately

tik
i)+ k),  ——I|j)+k 2.26
1) AEj,k| ) AEj,km k) (2.26)
In this case the electron is strongly localized (with a probability 1 — (7; x /AE}, %)
on one site or the other. However in some rare links AE; ; < 1} i, the states for the

electron become ) .
lJ) +1k) lJ) —1k)

V2 o V2

Here the electron is evenly delocalized on the two sites. The transition between the
two cases is reasonably sharp at around 7; , = AE ;.

The links for whichz; /A E ; > 1 are called resonating bonds, and their number

increases with decreasing W/¢. Intuitively one may think that if one can pairwise

propagate through resonating bonds over a macroscopic distance, then this would

(2.27)
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constitute a delocalized state. Thinking this way would make delocalization a perco-
lation problem and miss out on the quantum aspects of it. In particular, the resonance
condition is not just a property of i and j alone but depends on hybridization with
other sites. The interference effects between closed trajectories traveling in oppo-
site directions also decreases delocalization. Thus, the quantum aspect suppresses
delocalization. This is most important in 2D where the pairwise approach would
allow for delocalization, which is in fact forbidden.

2.5.1 Perturbation expansion

For a better understanding, it is useful to follow Anderson’s original ideas on local-
ization based on a perturbation expansion (Anderson, 1958), of which (2.13) is the
first-order term. For a noninteracting system,

- GIVID KIVIj)GIVID
b= llH_ZE;—EjUH_%;(Ej—Ek)(El—Ej)lk)+

I Z (m|Vin)---kIVIj){JIVI])

(E —FE(E;, — E; ) (E; —Ep,) lm)+--- (2.28)

where |T) is an eigenfunction of the Hamiltonian and |/) is the local function on
site /. The general term above signifies an admixture of |m) to |/). Divergence
of (2.28) conveys delocalization — the very high order terms dominate and the
electron must propagate through macroscopic distances from i to m. Thouless
(1974) pointed out that percolation is a reasonable approximation to the problem.
Figure 2.7 helps to visualize the process. The first term in the perturbation expansion

extends the wave functionon/ to j, j/, ..., the second term to k, k', .. ., the third to
q,q’, ..., and so on. If the successive order terms diminish, the wave function |/)

drops off and stays localized; if they increase, the expansion diverges and the wave
function becomes delocalized. The numerators (i.e., the tunneling energies) clearly
increase with concentration, and the denominators clearly increase with disorder
energy. Thus, for low concentrations and large disorder, one expects the states to be
localized, while for large concentrations and small disorder, one expects the states
to be delocalized.

This simple picture ignores formation of loops namely that the path can intersect
itself. This would enable an indefinite propagation in a closed loop with a divergent
expansion, (2.28), but not necessarily implying delocalization. Furthermore, the
interference between paths that traverse in opposite directions in a loop causes
localization and it is the underlying physics of weak localization described in the
previous section.
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Figure 2.7. Visualization of the processes leading to (2.28). The solid lines rep-
resent terms in the first sum which admix functions on close by sites. The dashed
lines are for terms through there to further sites, and so on.

Alternatively, the transition can be approached from the extended phase. The
elastic scattering length L) decreases with increasing disorder, but it cannot be
smaller than the distance between sites rg. It is thus conceivable that a drastic change
of behavior will take place when approaching this limiting value of L¢ & ry.

2.5.2 Scaling theory

It is clear that the transition must be sensitive to the dimensionality of the system.
In a disordered one-dimensional system, it has been shown early on by Mott and
Twose (1961) that all states must be localized even for small disorder. In higher
dimensions, breaks can be avoided by changing the direction of propagation. It
turns out that in 2D the wave functions also must be localized for any disorder,
while in 3D a transition can occur. A clear picture of the situation was obtained
with the scaling theory of localization (Abrahams et al., 1979). The scaling theory
is based on an argument by Thouless (1974), which relates the conductance to a
diffusive time across a system of linear size L and an average level spacing AE (L)
of (one-electron) levels. One can consider the macroscopic system made up of
subsystems of linear dimensions L arranged next to each other. Since we consider
amacroscopically homogeneous system, the statistical quantities are the same in all
(equally sized) subparts of the system. In order for the electron to propagate from one
subsystem to an adjacent subsystem, the appropriate levels have to match, within
a certain tolerance. The tolerance (level broadening) is given by the uncertainty
principle, namely the magnitude § E(L) = h/7t (L) where 7 (L) is the diffusion time
through the system of size L. The typical level separationis AE = W/L?. Roughly
speaking, if § E > A E, the electron can enter the adjacent site; otherwise, it cannot.
Assuming that the motion is diffusive, 7(L) = L? /Dy, where Dy is the diffusion
constant, SO E/AE o« Dy, L4-2 (i.e., is proportional to the conductance) and is the
relevant magnitude to analyze the behavior of the electron.
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Abrahams et al. (1979) (commonly known as “the gang of four”) formulated a
scaling theory for the conductance g(L) of a cube of d dimensions (d =1, 2, 3) of
linear dimension L at T = 0. They considered scaling the dimension of the cube by a
factor b, such that the linear dimension is b L, and argued that for any dimensionality
the conductance g must be a function of » and of g(L) (i.e., g(bL) = f[b, g(L)]).
It is convenient to make b infinitesimally larger than 1, b =1+ ¢, € < 1. Then,

with e =dL/L,
gbL)=g(L+elL)=g(L+dL)= f[1+e€,g(L)] (2.29)
and
dL;l—i =g(L+dL)—g(L) = fll+e€,g(L)]— fI1,8(L)]= %6 (2.30)
or

10f| dlng(L)
bab|, dnL

The main assumption of the scaling theory is that, for any dimension, 8 remains a
function of g only. The dependences of 8 on L, W, and the Fermi level, all enter
implicitly through g. In other words, g is the only relevant scaling variable of the
problem.

In the macroscopic limit, conduction at 7 — 0 requires the existence of
delocalized states. Thus, lim8(L — o0) > 0 allows for delocalization, while
lim B(L — o0) < 0 implies localization. Whether the systems is characterized by
localization or delocalization depends on dimensionality, as will be shown. In the
limit of small g (large disorder), the conduction is in a strongly localized regime
and thus goes as goexp(—2L/&), where £ is the localization length. On the other
hand, in the limit of very large g, corresponding to a weakly disordered system,
Ohm’s law states that g is proportional to L¢~2. These dependences of g(L) in the
limits of large and small g give

= plg(L)] (2.31)

(2.32)

B> d—2 for g — o0
cg+Ing forg—0

where ¢, is a constant that depends on dimensionality. The value of 8 for interme-
diate values of g is expected to be a smooth monotonous function of g (and so of
In g). This leads to the interpolation showed in Figure 2.8 for systems of dimen-
sions one, two, and three, from bottom to top, respectively. Support for the previous
assumption also came from perturbation theory in the weak disorder regime (Ander-
son et al., 1979; Gorkov et al., 1979) and a solid justification was provided by the
so-called nonlinear o model (Wegner, 1979; Efetov, 1997).
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Figure 2.8. B asafunction of In g for 1D, 2D, and 3D systems, from bottom to top,
respectively. The arrows indicate the flow of the conductance with system size.

According to this picture in one dimension, all states are localized, as expected.
In two dimensions, all states are localized as well for any finite g (i.e., nonzero
disorder) but mildly so at large g. This is so because B is always negative, and
increasing the system size causes the conductivity to diminish. The localization
length may be larger than L for a finite system in which case the system will
behave like a metal in an experiment.

In three dimensions, there is a transition from delocalized to localized states (i.e.,
a metal-insulator transition) where the curve crosses the horizontal axis. If for a
given disorder one starts with 8 < 0, increasing the size will make the system more
and more insulating. On the other hand, if one starts with 8 > 0, the system will
become a better conductor as the size increases.

The scaling theory should be modified in the presence of strong spin-orbit cou-
pling. When spin-orbit coupling is important, the scaling curve for 2D systems
changes drastically. At very large In g, 8 tends to zero from positive values, instead
of negative values as in the standard case. At very small values of In g, the curve
must be negative; hence, it must cross the horizontal axis and the system must
undergo a metal—insulator transition.

2.5.2.1 Interaction effects

The scaling theory was developed for a non-interacting system. A number of the-
oretical works in the early 1980s predicted that high enough electron interactions
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Figure 2.9. Temperature dependence of the resistivity in a dilute lightly disordered
Si MOSFET for 30 different electron densities ranging from 7.12 x 10'© cm? to
1.37 x 10! ¢cm?. From Kravchenko et al. (1995). Copyright by the American
Physical Society.

would lead to the scaling of a 2D film to a metallic state at low temperatures. Exper-
imental indications for a metal-insulator transition as a function of carrier density
in a two-dimensional film were observed only a decade later, first in Si MOSFET
films and later in other materials (for a recent review see Kravchenko and Sarachik
2010). The strength of interaction in 2D films was controlled by applying a back
gate voltage, which varied the 2D carrier concentration, nop. This interaction can
be characterized by the dimensionless Wigner-Seitz radius:

1

ry = W (2.33)

Figure 2.9 shows the resistivity as a function of T for different nyp of a high
mobility (u ~ 4 x 10* cm?/Vs) Si MOSFET film. It is seen that for low carrier con-
centration (ry < 10) the film is insulating; however, for high concentrations, when
rg > 10, the resistance drops significantly with decreasing temperature, apparently
exhibiting 2D metallic behavior.
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The reason for the decade’s delay of experiment versus prediction was attributed
to the advance in semiconductor technology, which enabled the fabrication of very
high mobility samples. The high mobility is required in order to be able to measure
samples with low enough 7 so that the interaction energy is large compared to EF.
Notice that the interaction grows in importance with increasing concentration, but
the Fermi level increases with concentration faster. This is also why the Wigner
transition, described below, occurs at low concentrations.

The “separatrix” resistivity curve, which separates between insulating and metal-
lic curves, was found to be characterized by a sheet resistance R = h/e? at high
temperatures, which approached 3% /e? at low T for all materials independent on
the critical nop.

Various explanations have been suggested for the experimental results and the
option of a metallic state in a two-dimensional system is still under debate. Punnoose
and Finkel’stein (2001) provided an explanation for the observed metal-insulator
transition in 2D by extending the scaling theory to an interacting system. They
obtained two scaling expressions for the resistivity, p = (e2/h) R0, and for the
electron—electron scattering amplitude, y»

__din(p) _
dIn(Tzy)

%)
V2

pZ{nv+-1—(4n§—1)[ ]n(1+w0)—1}} (2.34)

and

dp 4y’

din(Ta) © 2

where n,, is the number of degenerate minima in the electronic spectrum. Equations
(2.34) and (2.35) predict specific temperature-dependence curves for the resistance
and the interaction amplitude. Figure 2.10 shows the comparison between these
theoretical predictions and the experimental results of Anissimova et al. (2007). The
agreement is impressive, especially since there are no fitting parameters. It should
be noted, however, that the Punnoose and Finkel’stein theory assumes diffusive
conductivity, while many of the experimental results were obtained in the ballistic
regime where the theory is not applicable.

(2.35)

2.5.3 The anderson metal-insulator transition

The disorder induced transition is called the Anderson transition and arises from a
competition between disorder energy and kinetic energy (i.e., between the first and
last terms of the Hamiltonian (2.10)). Notice that both parts are one-electron opera-
tors so the Anderson localization is a one-particle phenomenon. The most important
consequence of a transition between systems that are localized, and systems that
are delocalized is the existence of a metal-insulator transition. In the limit of very
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Figure 2.10. Comparison between theory (lines) and experiment (symbols).
(a): p/pmax as a function of pPmax IN(T/Tmax). (b): 2 as a function of
Pmax IN(T' / Tmax ). Vertical dashed lines correspond to 7 = T, the temperature
at which p(T') reaches maximum. Electron densities are 9.87 (squares), 9.58 (cir-
cles), and 9.14 x 10'0 cm? (crosses). From Anissimova et al. (2007). Reprinted by
permission from Macmillan Publishers Ltd.

low temperatures, the localized system cannot carry current, while the delocalized
system will carry current.

The transition is characterized by a set of critical exponents, and the most impor-
tant for the book is the one describing the behavior of the localization length. In the
strongly localized regime, the localization length is equal to the decay length of an
isolated state and increases as the disorder decreases, diverging at the transition as
a power law

Eoxx (W—-We)™" (2.36)

where W, is the critical disorder for the transition (for a given ¢) and v is called
the correlation length exponent. The most precise numerical simulation up to date
found v = 1.57 £0.02 (Slevin and Ohtsuki, 1999).

Atthe transition, the wavefunctions are multifractal, due to the strong fluctuations
at criticality. A multifractal wavefunction is characterized by an infinite set of critical
exponents describing the scaling of its moments

/d3r|w(r)|2‘1 ~ LPaa=D (2.37)

where D, are fractal dimensions. For a localized state D, = 0 and for an extended
state D, = d, while at criticality D, is a nontrivial function of g (Evers and Mirlin,
2008). The most important fractal dimension is D,, which is the normal fractal
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dimension df that will appear in other contexts. Numerical simulations found that
dr 1s equal to 1.3 in 3D systems (Mildenberger et al., 2002). Large localized states
have also a fractal structure down to distances of the order of the localization length.
The conductivity tends to zero as the transition is approached from the extended

phase as a power law
o x (We—W)* (2.38)

The conductivity exponent s is related to the localization length exponent v through
the scaling relation s = v(d — 2) (Markos, 2006).

In 3D the conductivity tends to zero at the transition as the inverse of the correla-
tion length that diverges as the localization length. This is contrary to the concept of
minimum metallic conductivity, proposed by Mott, based on extensive experimen-
tal support at early times. Mott argued that the minimum value of the elastic mean
free path is kpLe = 1, kp being the Fermi wavenumber, and the corresponding
conductivity is the minimum value that a system can have

o2
Omin ~ 0.025 — (2.39)
ha
In hopping experiments, one often sees that the preexponential factor of (2.17)
is close to this value. In 2D a similar argument leads to a minimum metallic
conductivity equal to €2 /.
The dielectric function also diverges at the transition

Kk o (W—=Wy)~¢ (2.40)

A rough estimate of ¢ from tunneling experiments is ¢ ~ v (Lee et al., 1999).
The increase of the dielectric constant as the transition is approached means that
interaction effects are diminished.

2.5.4 The mott metal — insulator transition

A Mott transition as originally conceived (Mott, 1958) occurs in an ordered (i.e.,
crystalline) system; however, it can play an important role in disordered systems as
well. The Mott metal-insulator transition relates to monovalent systems and arises
from a competition between intrasite Coulomb interaction and kinetic energy. It
is sometimes called the Mott-Hubbard transition because it can be derived from
a Hamiltonian due to Hubbard (1963), which incorporates the intrasite repulsion
energy and the kinetic energy, basically the second and the last term of (2.9).

For insight, it is again useful to first consider a two-site system, now with two
electrons (e.g., a hydrogen molecule). Coulson and Fisher (1949) discussed in some
detail this system, concurrent with Mott’s paper (Mott, 1949). The basic idea is the
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following: in the absence of electron—electron interaction, the two-electron states
correspond to the various possible occupations of the one-electron states of (2.27).
The assumption here is that there is no energy disorder. The lowest energy state is
then the state with both electrons in |j) + |k):

[(1jn) + k) () + 1k2) + (Lj2) + [k2)) (L) + [ki)1/v/2 (2.41)

and by symmetry must of course be a singlet. The subscripts 1 and 2 label the
two electrons. In comparison with the energy of two electrons on isolated sites the
energy is lowered by 2¢; i proportional to the overlap exp(—r;j 1 /&). There are four
excited states with one electron in |j) + |k) and one in |j) — |k) (a singlet and a
triplet), and a singlet state with both electrons in | j) — |k). Clearly any of the above
six states is delocalized in the sense that each electron has a probability 1/2 to be
on either site.

The dominant electron—electron interaction is the intrasite interaction
~ ¢? /(2k&). Equation (2.41) is a fair description of the ground state if 2 /(2k&) 1s
small compared to 7 . On the other hand, if e? /(2 ) is large compared to ¢ ik (e,
when the spacing r;  is large), the electrons prefer to stay on each site separately,
that is, in the (singlet) state

[ j1)ka2) + 1 j2) k1)1 /+/2 (2.42)
or in one of the triplet states
[ j1)ka) — | j2) k1)1 /+/2 (2.43)

Exchange energy usually makes the singlet state have the lower energy. On this
microscopic two-site crystal, the singlet ground state can be considered as anti-
ferromagnetic. The remaining two singlet states are |ji)|j2) and |k1)|kp) states
with both electrons on the same sites (i.e., one negative and one positive ion). In
passing, it should be commented that, in analogy with a negative hydrogen ion, one
should expect the negative ion to have an appreciably larger localization length,
which violates the assumption of the tight-binding approximation. This fact is often
suppressed but has been emphasized in some contexts (Kamimura, 1979; Kurobe
and Kamimura, 1982).

Expanding now to a macroscopic crystal with N sites, the high-density case
becomes a band of 2N (the 2 is for two possible spins) states

Zexp{ik-q}li) (2.44)
J

filled with N electrons in the lowest energy levels. It is thus a metal since the
band is half occupied. In the low-density (large r) case, the small gain in kinetic
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energy (i.e., small ¢) loses with respect to the intrasite Coulomb interaction and the
electrons are localized on the sites with n; =1 for all j (i.e., an antisymmetrized
product of | j, o) where o stands for the spin on site ;).

The N-electron ground state has an antiferromagnetic arrangement of spins, due
to exchange, and the low-energy excitations within this system of states are spin
rearrangements. There are 2 possible spin arrangements while the total number
of states (i.e., the dimension of the Hilbert space) is (2N!)/(N!)?, which is much
larger. The other states involve doubly occupied sites and an equal number of empty
sites. This is the so-called upper Hubbard band. For large r, there is a gap between
this band and the lower 2% states so such a system is an insulator, and thus there
exists an insulator to metal transition as r increases from small to large values.

In disordered systems, Anderson and Mott localizations usually reinforce each
other. In impurity conduction, for example, the disorder may produce an overlap
of the two Hubbard bands, but the DOS in the overlapping region is small, and it is
likely that the states will be Anderson localized, the system being still an insulator.

2.5.4.1 The Wigner transition

The Wigner transition is probably the first proposal of a metal-insulator transition,
dating back to 1938 (Wigner, 1938). It is similar to the Mott transition in the sense
that it results from a competition between kinetic energy and Coulomb interac-
tions — this time, interactions among free electrons. Although free electrons are not
directly a subject of this book, we mention the Wigner transition in passing since
localization into a Wigner crystal is sometimes invoked in the literature on elec-
tron glasses. Since it also arises from competition between kinetic and Coulomb
energies the Coulomb interactions (and with it localization) wins at low electron
concentration. The reason is that the kinetic energy increases faster with concentra-
tion than the Coulomb energy. It should be emphasized that this contrasts with the
case of Anderson localized electrons where the role of (intersite) Coulomb interac-
tion becomes more important as the electron concentration increases because the
electrons are already localized by disorder.

2.6 Percolation theory

As noted in Section 2.3.3, the fact that the hopping rates, given by (2.16), are
exponentially distributed makes mean field approaches not suitable for calculating
the resistance of a strongly disordered sample. A more appropriate treatment is
based on the percolation theory. This treatment provides profound physical insight
and shows that the conductivity is governed by a set of critical resistances and that
the current flows in a very nonhomogeneous network. The rigorous derivation of
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the percolation approach for hopping conductivity will be provided in Chapter 5.
Here we outline the basic foundations of percolation theory.

2.6.1 Percolation — basic concepts

Percolation theory addresses the question of transport through strongly inhomoge-
neous media. It was originally introduced in connection with hydrology of rocks
(Broadbent and Hammersley, 1957) and lately this application of percolation the-
ory witnessed a strong revival (Hunt and Ewing, 2009). A simple example of a
percolation problem is a space-filling random arrangement of volumes, some fluid-
transmitting, the others fluid blocking. The central question is the fraction of volume
filled by the fluid-transmitting sections that separates between blocking and trans-
mitting fluid over a macroscopic distance. Several books dedicated to percolation
theory exist (Hunt and Ewing, 2009; Stauffer and Aharony, 1992; Efros, 1986) and
review articles (Kirkpatrick, 1973).

The simplest cases of percolation problems are defined on a lattice. The lat-
tice consists of a set of lattice points forming a regular array, and bonds between
these points. Usually only the bonds between nearest neighbors are considered. In
the so-called bond percolation problem, each bond has a certain probability p of
connecting two corresponding lattice points, and a probability 1 — p of not con-
necting them. The problem is to know for what value of p there is a continuous
connection over macroscopic distances. As p increases, these bonds combine into
clusters of two, three, and more bonds. With increasing p, larger and larger clusters
are formed until for large enough p a large cluster that spans the entire system is
established. For an infinite system, this happens at a sharply defined critical perco-
lation probability p.. The value of p. differs from lattice to lattice, and it depends
primarily on the coordination number (number of nearest neighbors), z, and on the
dimensionality d. Shante and Kirpatrick (1971) pointed out that this approximate

dependence is
d

ZPc ~ 71 (2.45)
Another lattice model is site percolation, where the connectivity criteria is not a
property of a bond, but rather a property of a site. When a lattice site allows passage
that occurs with probability p, all the bonds linked to this site allow passage up
to the midpoint of the bond. Again there is a critical percolation probability p,
the smallest p for which an infinite cluster exists. p. is different for bond and site
percolation and depends on the type of lattice.
Percolation can be also formulated for random lattices, a problem directly appli-
cable to hopping conduction. Lattice sites are at random, and usually one considers

bonds between all pairs of sites. The condition for passage includes the bond length
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in such a way that longer bonds are less likely to be connecting bonds. If we con-
sider an infinite number of bonds for each site, p. obviously vanishes. In place
of p one uses P, the average number of connecting bonds per site, which is well
defined. A simple random lattice model is r-percolation — one inserts bonds with
increasing length, beginning from the shortest, up to the length where there is a
macroscopic path. Pike and Seager (1974) determined by simulations that in this
model P, =2.4. In all that follows a disordered lattice is considered and therefore
P will be used. Similar derivations can be applied to ordered latices where the use
of p is more natural.

A first quantity of interest is the mean number of bonds in a cluster, (s), defined as

_ > s2ng
B Zs Shs

where s is the number of bonds in a cluster and rn; 1s the number of cluster of size s.
The denominator in the definition of (s) is the total number of connecting bonds in
the sample. Above P, it is understood that the contribution from the infinite cluster
is not included in Equation (2.46). Near P, (s) diverges as

(s) (2.46)

(s) < |P— P77 (2.47)

where y is a critical exponent. The quantity (s) is analogous to the susceptibility
in magnetic phase transitions.

To study the typical linear dimension of clusters, one introduces the correlation
function C(r), defined as the probability that a bond at distance r from a bond
in a certain cluster also belongs to the same finite cluster. The correlation length,
L p, which plays an important role in hopping conduction, is the average distance
between two bonds belonging to the same cluster

>, r2C(r)
>, Cr)

Near P, the correlation length is the average radius (defined as the mean distance
between two bonds in the cluster) of the largest clusters and diverges as

L3 = (2.48)

Lpx|P—P|™" (2.49)

The correlation length exponent v is 4 /3 in two dimensions and 0.88 in three. Above
P., L p is the size of the largest “holes” in the extended cluster.
The average radius r(s) of a large cluster of s bonds is related to the number of
bonds s through
r(s) ocs™ (2.50)
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where df is the fractal dimension, which is another critical exponent. The fractal
dimension df also characterizes the behavior of the extended percolation cluster
at P., which for a finite system of linear size L contains an average of L bonds.
Clusters near P, are fractals, while far above P, they are extended objects with the
dimensionality of the lattice.

The correlation length Lp is the only relevant length dominating the critical
behavior. As in thermal phase transitions, the existence of only one relevant length
implies single-parameter scaling, which results in scaling relations between the
critical exponents. Only two of them are independent, and the rest can be obtained
by the scaling relations. For example, the exponents defined above are related by

v(2df —d) =y (2.51)

2.6.2 Percolation conductivity

One can associate a conductance 1 with every connecting bond and zero with
the nonconnecting bonds and ask what is the total conductivity of a macroscopic
sample as a function of P when this is connected to two electrodes on opposite
sides. Obviously, the conductivity is zero if there is no extended cluster. One could
then naively think that the conductivity is proportional to the number of bonds in
the percolation cluster. However, this is not the case. Sequences of bonds that are
connected to the percolation cluster by only a single bond cannot contribute to the
current. These are called dead ends. The collection of bonds through which current
flows is known as the backbone cluster. A bond belongs to the backbone cluster if
and only if it is connected to the two electrodes by nonintersecting paths.
The percolation conductivity o goes to zero at P, as

o x (P — P)* (2.52)

This new exponent A is not directly related to previously defined exponents through
scaling relations. To obtain it, extra assumptions must be made about the topology
of the backbone cluster. Monte Carlo simulations found A = 0.975v in 2D systems
(Normand et al., 1988) and 2.28v in 3D systems (Gingold and Lobb, 1990).

The real structure of the backbone network is very complicated, including struc-
tures at many length scales. A useful simple model was proposed by Skal and
Shklovskii (1975) and De-Gennes (1976). For P > P., one can simulate the situ-
ation by a periodic network whose nodes are separated a distance L p with links
connecting them. The number of links along the direction of the current is pro-
portional to the length of the system, while the number of links in each section
perpendicular to the current is proportional to the cluster area. The difficult task is
the calculation of the typical conductance of a link, which can be fairly winding
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and which can include parallel paths in some sections. Pike and Stanley (1981)
improved the nodes and links model with the inclusion of blobs, sections of links
with parallel paths. They also realized that the number of singly connected bonds
in a link, which must be roughly proportional to the conductance of the link Gy,
grows as (P — P.)!. The conductivity of the system is

Go(L/Lp)?=2 Gy _
o= = =77 % (P — P,)!+v@d=2 (2.53)
P

in reasonable agreement with the previously mentioned numerical simulations.

2.6.2.1 Exponential spread of resistances

A problem of interest is a network of resistances with an exponentially wide
distribution, that is, of the form

R,'J' = R()e’7 (2.54)

where 71 i1s some random variable, which for this analysis can be assumed to be
uniformly distributed in the interval —ng < n < no. The underlying lattice can
be of any dimension and can be regular or disordered. Most of the rationale for
solving this problem for hopping conduction with large o comes from the fact that
a parallel (series) connection of exponentially widely distributed resistances has a
resistance nearly equal to the smallest (largest) resistance. Starting by connecting
the smallest resistances of the system and gradually connecting larger and larger
resistances, one gets finite clusters that increase in size. At and beyond criticality,
Pe = (mc+10)/(2np), one gets an infinite cluster that can carry current. The critical
value, 7., needed for percolation determines the conductivity of the system as will
be shown bellow. In the finite cluster regime, the statistics of clusters allows one to
calculate the frequency dependent conductivity.

According to the previous arguments, at criticality the conductivity is still zero
because the distance, L), between current carrying paths is infinite. To reduce
L p, one needs to increase the critical resistance above R, to arrive at an optimal
resistance, Rqpt, Which minimizes the ratio L, /R, with respect to L, (Friedman
and Pollak, 1981). This results in

dnopt 1
=—— = L,xn, 2.55
dL, L, p X1 ( )
The conductivity is then proportional to
o X nge” TPt A ppe (2.56)
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Usually the increase in 1, with respect to 7., needed to establish the current carrying
network is very small and can be neglected as will be discussed in Chapter 5. The
previous argument indicates that the prefactor is proportional to 7.

Le Doussal (1989) showed for hierarchical lattices that the exponent y of
the preexponential of the conductivity for an exponentially wide distributed
resistances is

y=(d-2)v (2.57)

in agreement with the previous intuitive calculation and with Shklovskii and Efros
(1984). He also suggested that this result applies to all lattices for d < 6. The result
y = 0 is exact for the square lattice, see Strelniker et al. (2005). Also, Equation
(2.57) has been verified numerically for several two and three-dimensional lattices
(Tyc and Halperin, 1989). Strelniker et al. (2005) studied the distribution function
of the resistance of finites samples and found that it depends only on L /ng and is
approximately log-normal.
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