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Questions from last week?
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History

* Mira the wonderful: first pulsating star

e Edward Pigott & John Goodricke discover
eta Aquilae & delta Cephei

* Henrietta Leavitt (1908):
1777 variables in the SMC (25 periodic)

e "cluster variables" => RR Lyrae variables (globular clusters)

* Baade (1956): two stellar populations
* Delta Cephei types => type-l "classical" Cepheids

* Nomenclature remains confusing:
* Type-ll Cepheids encompass 3 subtypes w/ different evolution paradigms
* Anomalous Cepheids even less understood; nothing like type-I Cepheids




Establishing stellar pulsations

* Doppler : cluster variables change

-> ' ion? : .
color ->fast orbital motion The Calculation of Stellar Pulsation®

* Hertzsprung 1912: 3-peaked
distribution (0.5, 7, 300 d)

* Shapley (1914): pulsation

ROBERT F. CHRISTY 1962, ApJ 136, 887
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Kippenhahn (1962): first detailed
models of pulsations



Pulsating stars across the
Hertzsprung Russell Diagram

* Classes of pulsating stars clump in
HRD

 Certain regions devoid of pulsations

* Pulsating stars all move diagonally:
why?

* HRD relates luminosity, temperature,
radius

* Pulsation intimately linked with
stellar structure
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https://www.aanda.org/articles/aa/abs/2019/03/aa33304-18/aa33304-18.html
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https://www.aanda.org/articles/aa/abs/2019/03/aa33304-18/aa33304-18.html

Gaia Pulsating stars in LMC and SMC
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https://arxiv.org/abs/2206.06416
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Classifying Pulsations: ‘
Period-amplitude diagram

RR Lyr

* How to distinguish
classes of variable stars?

e CMD is useful, but:

overlaps & needs color
information

Log(Amplitude[Hp])

* Pulsations group
according to amplitude
and timescales

* Can be used with single R - - | 7
filter i | 1

Log(Period[days])


https://ui.adsabs.harvard.edu/abs/2008JPhCS.118a2010E/abstract

Pulsation mechanisms

* Epsilon mechanism (change of nuclear energy generation rate)
* Gamma mechanism (adding heat by conduction)

* VVerbal, non-equation description of pulsations:
http://astro.physics.uiowa.edu/~kgg/teaching/astrophysicsll/pulsatio
n.html



http://astro.physics.uiowa.edu/~kgg/teaching/astrophysicsII/pulsation.html

The k mechanism (opacity)

e Partial Helium ionization zone

e Stores compression energy by
ionizing He* -> He*" + e-

* lonization increases opacity

* Contraction raises temperature,
increases radiation pressure

e OQutward push until gas cools and
He recombines

* Drop in opacity lets radiation pass

e Gravity causes outer layers to
recontract and cycles starts anew

He
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https://ui.adsabs.harvard.edu/abs/2006ima..book.....C/abstract
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Radial pulsations: Fundamental vs overtone

Contraction Expansion

* Special case of non-radial i SO
oscillation

* Spherical harmonics
guantum numbers n, |, m

e Radial order: n
e Nn=0 : fundamental mode
e n=1 : first overtone

 Special feature: radial
oscillations change size
while maintaining shape

Node lines

Convective core
He II - Ionisationzone



The classical instability strip

400

* kK mechanism requires PIZ to operate
* PIZ requires temperature “just right”
* Too hot: Helium fully ionized

* Too cool: Convection dampens

pulsations 3 1001
* Narrow temperature range where E:
this can work .

* Near vertical region in HRD

* Location of boundary depends on
stellar structure
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https://ui.adsabs.harvard.edu/abs/2021ApJ...911...12J/abstract

On the purity of instability strips

log(L/Lg)
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https://academic.oup.com/mnras/article/485/2/2380/5368359

S \ = \L&gng PenVariabIes

A

Absolute G-band Magnitude

Classical Cepheids

(and a bit on RR Lyrae stars): high-amplitude
radial pulsations in classical instability strip

BP - RP (mag)


https://www.aanda.org/articles/aa/abs/2019/03/aa33304-18/aa33304-18.html

Chromaticity of
pulsational variability

* Pulsations are chromatic!
* When is a pulsating star brightest?
* Temperature dominates variability

* Wavelength dependent phase
offsets

* Amplitudes decrease with
wavelength
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https://archive-ouverte.unige.ch/unige:35356
http://cdsads.u-strasbg.fr/abs/2008yCat.2285....0B

Chromaticity of pulsations
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https://www.aanda.org/articles/aa/full_html/2009/36/aa11464-08/aa11464-08.html

magnitude

Oh pulsation, where art thou?
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https://iopscience.iop.org/article/10.3847/1538-4365/aab766

Time-series analysis: TO, P, phase, O-C

* Time Series Analysis:

* characterizes observed temporal correlation among measurements
(including estimates of significance)

 forecasts future behavior
 Pulsations usually (quasi-)perdiodic
* TO : precisely measurable reference time; often max light (arbitrary?)
* P : the period of the signal = 1/f if f is frequency

* Phase: ¢ = %— int (%)

0 — C : observed minus calculated, tracks variations in period (e.g.
apsidal motion, light time effect)



Period search to allow phase folding

VanderPlas et al. (2007)

Lomb-Scargle Periodogram Phased Data
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https://iopscience.iop.org/article/10.3847/1538-4365/aab766

The Periodogram

e Searches for strictly periodic variations

* Fourier transform of the time series: H(f) = | h(t)e ?™tdt
* Produces the power spectrum of frequencies in the dataset
* Power spectral density (PSD) for 0 < f < oo:
PSD(f) = |H(A)I* + |[H(—)I
* PSD tells power in frequency interval f + df

* Different implementations

e Fast Fourier Transform (FFT) cannot be used on irregularly sampled data
* Lomb-Scargle periodogram: irregular sampling & heteroscedastic errors!



Lomb-Scargle Periodogram
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Generalized LS periodogram (Zechmeister & Kirster 2009) improves on LS by generalizing relation to
Chi”*2 fitting, can also deal with Keplerians



https://ui.adsabs.harvard.edu/abs/2009A%26A...496..577Z/abstract

What if the signal is not a single sinusoid?

 Multi-harmonic Fourier series to the rescue
e y(t) = by + XM _, a,, sin(mwt) + b, cos(mwt)

* Py(w) = —[ m=1 Rin (@) + I3 (w)]

o [ (w) = 71W]y] sm(ma)tj)

R (w) = J L WY, Cos(mwtj)

* For large N (observations), median a posteriori values:
Ay = 2l (w)/N, by = 2R, (w)/N, by =Yy



Choosing the right model for phased data

Phased O-C [km/s]
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N _harm =18

Knowing when to stop (adding harmonics)

* Finding the right N,,, can be
challenging

e Consider sampling and
complexity of variability

e Overfitting can lead to false
predictions

* Tools for model selection

* F-test compares gain in )(2 to
costin Ny, (hypothesis test)

e Bayesian information criterion
(BIC): similar with likelihoods

BIC =klnn—2InL
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Model comparison & brute force method
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The Hertzsprung Progression
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The Hertzsprung Progression
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https://link.springer.com/article/10.1007/s12036-020-09640-z

Not all pulsations periodic

* Fourier analysis requires periodicity

* Residuals showing structure:

e Additional oscillation modes?

e Other noise?
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Time-variable variability
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Strongly modulated variability

Molnar et al. (2021)
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https://arxiv.org/abs/2109.07329

TESS vs OGLE: a matter of precision
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https://arxiv.org/abs/2109.07329

The Blazhko effect
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Resolving changing radius along
line of sight




Tracing pulsations with Doppler Spectroscopy

2.0 —

= e
- (o)) (0]
| | I

Norm. Flux

-
N
T

-
o
T

vr/C - (/1 Ao) /Ao

0.6
6172 6174 6176 6178 6180 6182
Wavelength [A]




Cepheid radial velocity measurements
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Barycentric Radial Velocity v, [km/s]
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https://ui.adsabs.harvard.edu/abs/2016ApJS..226...18A/abstract

Cepheids in binary systems

e Pulsations and orbital
motion superposed in 7
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Cepheids in multiple star systems

 Very frequent: up to “80% are binaries (or higher order)

* Multiplicity fraction among B-stars > 1. What happens to > 20% of B-
stars before they become Cepheids?

* Principal source of mass measurements
* Problem: to get accurate mass you need SB2 systems
* If you also resolve the orbit, you get distance!

* This week’s paper by Pilecki et al. (2021) reports discovery of large
population of SB2 Cepheids : prime targets for mass measurements



Linear radius variations

* Integral of velocity curve yields distance
traveled by surface

* AR =p|[ v,dt

* Projection factor p fairly complicated

* p depends on:
 surface intensity distribution & geometry
* Velocity gradients in atmosphere

* Does p depend on?
 Stellar parameters (period, mass, temperature)
* Time : e.g. pulsation-convection coupling

* Current limitation: p is known to ~10%

Kervella et al. (2004)
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https://www.eso.org/public/news/eso0432/

Resolving pulsations spatially




Resolving
Pulsations
with
Interferometry
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https://www.eso.org/public/news/eso0134/?lang

Kervella et al. (2004)
Angular diameter

Interferometrically
resolved pulsations

* About a dozen Cepheids are close enough to

measure diameter changes Cepheid

* Typical angular sizes ~ 1-3 mas
* Bright & distant: Use the ATs instead of UTs

UD (mas)



https://www.eso.org/public/news/eso0432/



https://www.eso.org/sci/facilities/paranal/telescopes/vlti/tuto/tutorial_interferometry.html

Radius (Rg)

Putting it

Javanmardi et al. (2021)
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https://www.aanda.org/articles/aa/full_html/2015/12/aa25954-15/aa25954-15.html
https://ui.adsabs.harvard.edu/abs/2021ApJ...911...12J/abstract

PLATE XVII

Leavitt’s law

The period-luminosity relation

HENRIETTA SWAN LEAVITT
Source: US library of Congress At about SORESEECRERE



https://blogs.loc.gov/inside_adams/2019/12/henriettaleavitt/

brightness

Leavitt’s law makes Cepheids standard candles

Period indicates true brightness
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https://ui.adsabs.harvard.edu/abs/1912HarCi.173....1L/abstract

OGLE-IV LMC Leavitt Law based on 4620 CCs
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http://acta.astrouw.edu.pl/Vol65/n4/a_65_4_1.html

Questions?



