
Ultramicroscopy 220 (2021) 113162

Available online 4 November 2020
0304-3991/© 2020 Elsevier B.V. All rights reserved.

Lattice resolution of vibrational modes in the electron microscope 
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A B S T R A C T   

The combination of aberration correction and ultra high energy resolution with monochromators has made it 
possible to record images showing lattice resolution in phonon modes, both with a displaced collection aperture 
and more recently with an on –axis collection aperture. In practice the objective aperture has to include Bragg 
reflections that correspond to the observed lattice image spacings, and the specimen has to be sufficiently thick 
for adequate phonon scattered intensity. There has been controversy as to whether the images with the on axis 
detector are really a consequence of lattice resolution in a phonon mode or just a transfer of information from an 
image that was formed by elastically scattered electrons. We present results of calculations based on a theory that 
includes the possibility of dynamical electron diffraction for both incident and scattered electrons and the full 
phonon dispersion relation. We show that Umklapp scattering from the second Brillouin Zone back to the first 
Brillouin Zone is necessary for lattice resolution with the on axis detector and that it is therefore reasonable to 
attribute the lattice resolution to the phonon scattering.   

1. Introduction 

Phonons are the quantized oscillations of atoms in a crystalline solid. 
Electron beams can loose energy by exciting these modes, but can also 
gain energy from destroying phonons that are characteristic of thermal 
equilibrium at finite temperatures. Early work on phonon scattering in 
electron microscopy was concerned with its contribution to “anomalous 
absorption” and its effects on diffraction contrast [1,2]. There was also 
interest in how it gave rise to the diffuse background in diffraction 
patterns, and how the combination of phonon scattering and dynamical 
diffraction scattering led to the formation of Kikuchi lines and bands [3, 
4]. The role of multi-phonon scattering, also known as thermal diffuse 
scattering, as the mechanism by which electrons were scattered to high 
angle annular dark field detectors led to renewed interest in theoretical 
formulation of phonon scattering in electron microscopy [5]. 

Recently electron microscopes have been equipped with a combi
nation of energy loss spectrometers and monochromators that has made 
it possible to directly resolve phonon modes [6]. Originally only the 
higher energy optical modes, and the more complex phonon polariton 
modes characteristic of thin electron microscope specimens, were 
observed [7,8]. As the resolution of the spectrometer and mono
chromator improved, and the background from the tail of the zero loss 
peak was reduced, it became possible to detect acoustic modes, espe
cially from flat regions of the phonon dispersion near Brillouin Zone 

boundaries where the energy was highest [9]. 
The combination of energy resolution sufficient to resolve a phonon 

mode and aberration correction that allows atomic column resolution, 
suggested that it should be possible to from an atomically resolved 
image in a phonon mode. Rez had predicted it should be possible to form 
lattice fringe image in an acoustic mode by selecting a scattering wave 
vector corresponding to a large Umklapp scattering perpendicular to a 
systematic line, giving rise to the fringe image [10]. 

Optic modes correspond to oscillating dipoles, hence the absorption 
of electromagnetic radiation. A consequence of the long-range nature of 
the electrostatic and magnetic interactions is that they can be excited 
with a distant electron beam, even outside the specimen. This can be 
used to advantage in damage free energy loss spectroscopy of beam 
sensitive organic specimens [11], but does seem to preclude atomically 
resolved images of optic phonon modes. The long range of the interac
tion means that the scattering is strongly forward peaked, the charac
teristic angle for a 200 meV loss is only 2 microrads for 60 keV electrons. 
It should therefore be possible to form a high-resolution image, provided 
the spectrometer or collection aperture does not overlap with the probe 
forming or objective aperture. This was demonstrated by Dwyer et al 
[12] who showed that nanometer resolution of the specimen edge was 
possible. 

To achieve lattice resolution in STEM the probe-forming aperture 
should span a range of angles greater than the relevant Bragg angle [13]. 

* Corresponding author. 
E-mail address: Peter.Rez@asu.edu (P. Rez).  

Contents lists available at ScienceDirect 

Ultramicroscopy 

journal homepage: www.elsevier.com/locate/ultramic 

https://doi.org/10.1016/j.ultramic.2020.113162 
Received 8 May 2020; Received in revised form 28 October 2020; Accepted 1 November 2020   

mailto:Peter.Rez@asu.edu
www.sciencedirect.com/science/journal/03043991
https://www.elsevier.com/locate/ultramic
https://doi.org/10.1016/j.ultramic.2020.113162
https://doi.org/10.1016/j.ultramic.2020.113162
https://doi.org/10.1016/j.ultramic.2020.113162


Ultramicroscopy 220 (2021) 113162

2

This is also the case for HAADF imaging. The collection aperture for the 
phonon scattered electrons is then displaced further from the optic axis, 
and the signal collection efficiency reduced. Nonetheless Hage et al [14] 
were able to demonstrate atomic resolution even through the collection 
apertures were displaced by 77 mrad. 

Recently Venkatraman et al [15] demonstrated atomic resolution in 
both optic and acoustic modes in elemental Silicon with an on axis de
tector. Silicon is a special case, even though it has two atoms in each 
primitive cell, resulting in optic as well as acoustic modes, there is no 
charge transfer that gives rise to the oscillating dipole that potentially 
degrades spatial resolution. However it was argued that Venkatraman 
[15] did not really demonstrate lattice resolution in a phonon mode, the 
lattice resolution arose from interference among dynamically diffracted 
elastically scattered electrons. All the phonon did was transfer this in
formation to the spectrometer. The same could be said for HAADF im
aging, the resolution arises from the interference in the coherent 
electron probe, and the thermal diffuse scattering transfers the infor
mation to the detector while not degrading the spatial resolution. The 
recently demonstrated detection of localized modes associated with a 
single substituent atom of a different mass would suggest that atomic 
resolution in phonon modes is possible [16]. 

To disentangle all these effects a comprehensive theoretical model is 
needed that includes dynamical elastic scattering both before and after 
phonon scattering. To see which phonons contribute it is necessary that 
the model incorporate the full phonon dispersion relation. Many for
mulations of the theory for phonon scattering by electrons have been 
published [17–23], though not all have all the key ingredients. Our 
model, based on our earlier work [4,5], is described in the theory sec
tion. From calculations based on our model we show that the dominant 
contributions come from near the Brillouin Zone Boundaries. Large 
proportions of these regions are almost at a two-beam condition for 111 
with a maximum intensity in the 111 beams. The interference that re
sults in atomic resolution arises from the relatively large phonon 
Umklapp terms that direct intensity back into the on axis detector. It’s 
therefore fair to say that the results of Venkatraman et al [15] really do 

represent imaging in a phonon mode and not an image from high res
olution elastic scattering that happens to be directed to the spectrometer 
entrance aperture. 

2. Theory 

Most of the theory has been given before, in this section it is 
rewritten in a form suitable for calculating images in electrons scattered 
by phonons. Phonons are oscillations of the displacements of atoms in a 
crystal from their equilibrium positions. Since crystals are periodic 
phonons are Bloch functions and are uniquely defined by their polari
zation and their wave vector in the 1st Brillouin Zone. Each phonon has 
an energy which is related to the frequency, though it is possible for 
there to be degeneracies in frequency among modes in high symmetry 
directions. The frequencies are the eigenvalues and the displacements of 
the atoms in the unit cell are the eigenvectors of the dynamical matrix D. 
[25] 

D

( k
b b′

α α′

)

=
e− ik.R

b′

Mb′
ϕ

( k
b b′

α α′

)
eik.Rb

Mb
(1)  

where b labels atoms in the cell of mass Mb, α labels polarization and ϕ is 
the potential. 

The number of modes is 3N where N is the number of atoms in the 
unit cell. Elemental semiconductors have 2 atoms in the primitive unit 
cell, so there are a total of 6 modes, 3 acoustic modes that have zero 
frequency at the Γ point, the Brillouin Zone center, and 3 optic modes 
that have finite frequency at the Γ point. In the experiments of Venka
traman et al [15] the crystal was oriented in the 110 orientation. For the 
range of scattering angles appropriate for 60 keV electrons it is only 
necessary to consider a single layer of reciprocal space. The main Bragg 
reflections are the 111, 220, and those related by symmetry. The phonon 
dispersion surfaces were calculated using Phonopy [26] from total en
ergies calculated with VASP [27] for displacements of the two atoms in a 

Fig. 1. (a) Diagram showing the geometry for phonon scattering. q denotes a point in a Brillouin Zone in the Objective aperture, q’ a point in the Brillouin Zone of 
the spectrometer entrance aperture, in this case the first Brillouin Zone. To show the phonon wave vector Q, as the difference between q’ and q, q is translated to the 
first Brillouin Zone and shown as a dashed line. Since the phonon dispersion relation is only defined in the 1st Brillouin Zone, Q has also been translated so that it 
starts at the Gamma point and is now shown as a dashed line. The reciprocal lattice vector for the initial wave vector g = 002 is shown as a red line (b) Schematic 
diagram showing the incident probe and the detector angles in relation to the reciprocal lattice and the Brillouin Zones. The 28 mrad semi-angle incident probe is 
shown as the dark orange circle, the 12 mrad detector aperture is shown as the dark green circle and the 24 mrad detector aperture as the light green circle. From 
[15] Supplementary Information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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4×4×4 supercell based on the primitive cell. The PAW potentials [28] 
and a grid of 5×5×5 k points were used in the VASP calculations. 

The theory is very similar to that outlined by Amali and Rez [5] for 
HAADF imaging, later expanded on by Allen et al [29]. The phonon 
scattering amplitude, ψ , of electrons represented a plane waves can be 
derived by considering the structure factor for wave vector s and 
assuming that any displacements due to the phonons are small. 

ψ(s) =
∑

b
f b
elexp(is.(Rb +ub)) (2)  

where fb
el are electron scattering factors for atom b, Rb are the positions 

of atoms in the unit cell and ub are phonon displacements. The phonon 
displacement term can be expanded as a 1st order perturbation. 

ψ(s) =
∑

b
fel (is.ub)exp(is.Rb) (3)  

where we have dropped the index on the electron scattering factor as all 
the atoms in the cell are the same. Note that the scattering wave vector, 
s, has been partitioned between a component in the 1st Brillouin Zone, Q 
and a Bragg vector g, since the phonon wave vector is uniquely defined 
in the 1st Brillouin Zone. 

This phonon scattering amplitude for plane wave electron states is 
expressed as an operator H(Q+g) 

H(Q+ g) = (Q+ g).e
(

ℏ
2Mω(Q)

)1
2
(

1 + N
(

ℏω
kBT

))1
2

fel(Q+ g)(1+ exp(iQ.R))

(4)  

where fel(Q+g) is the electron scattering factor, R is the position of the 
2nd atom in the primitive cell, M is the mass of the atom, ω(Q) is the 

frequency, N
(

ℏω
kBT

)

is the Bose-Einstein occupation number and e is the 

polarization. Since in practice it is only possible to detect phonons with 
energies greater than kBT in the electron microscope due to the back

ground from the tail of the zero loss peak, N
(

ℏω
kBT

)

is small, and it is only 

necessary to consider creation of phonons. For simplicity we will set it to 
zero, which is equivalent to assuming zero temperature. Creation of a 
phonon that results in scattering from one Brillouin Zone to another is 
called an Umklapp process. When the scattering is confined to a single 

Fig. 2. Sampling the 12 mrad semi angle detector aperture (a) and the 28 mrad objective apertures (b).  

Fig. 3. Diagram showing 3 possible phonon wave vectors that connect recip
rocal lattice vectors in the objective and detector apertures that are represen
tative of Umklapp processes. The blue arrow clearly goes from the (111) 
Brillouin Zone to the (000) Brillouin Zone. To reduce the wave vector of the 
phonon shown as the green arrow to one quadrant of the first Brillouin Zone it 
is necessary to subtract a (111) reciprocal lattice vector. To place the phonon 
shown as the red arrow in the appropriate quadrant of the first Brillouin Zone a 
(111) reciprocal lattice vector should be added. (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of 
this article.). 

Fig. 4. 2D phonon dispersion surfaces for Si in the [110] projection (from [15] 
Supplementary Information). 
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Brillouin Zone it is called a Normal Process. As can be seen from the 
functional form of Eq. (4), plotted in Rez (2014) [24], Umklapp pro
cesses to the 2nd Brillouin Zone (in the case of 110 Silicon the Brillouin 
Zones around 111) dominate. 

The electron source in a field emission microscope is sufficiently 
small and can be considered as a point emitting a spherical wave. The 
electron probe on the surface of the specimen can also be represented as 
a spherical wave defined by the range of angles allowed by the electron 
optics, that can be as great as 30 - 40 mrads semi angle with aberration 
correction. Since the corresponding wavevector in the plane of the 
specimen is greater than a reciprocal lattice vector it is possible to get 
lattice resolution from this coherent spherical wave as first shown by 
Spence and Cowley [13]. Specifying the incident probe wave vectors in 
the first Brillouin Zone by q, in a very thin specimen (a weak phase 
object) the scattered wave intensity to another position in the first 
Brillouin zone, q’, for a probe at position rp would be 

I
(
rp
)
=

∑

L,L′
,g,g′ ,h,h′

∫ ∫ ∫

H(q′

− h − q)H∗(q′

− h′

− q)

× A(q + h)A(q + h′

)exp
[
− i(h − h′

)rp
]
dq′dq dz

(5)  

where × A(q+h) is 1 if that particular wave vector is allowed through 
the probe forming aperture, or zero otherwise. It could be modified by a 
phase shift from a wavefront aberration function, but we’ll assume that 
we can neglect this phase shift for an aberration corrected microscope 
for the range of angles we are considering. The phonon wavevector, Q, 
in the first Brillouin Zone is 

Fig. 5. Phonon density of states calculated from the 2D dispersion surfaces 
shown as Fig 4. Peak A between 35meV and 45 meV, Peak B between 45 meV 
and 55 meV and Peak C between 55 meV and 65 meV are shown. 

Fig. 6. Phonon dispersions along (a) (001) (b) (110) and (c) (111) showing the 3 acoustic and 3 optic modes.  

Fig. 7. Simulated images for Si [110] for 60 keV electrons, objective aperture 
28 mrad semi angle detector aperture 12 mrad. A,B, C correspond to selecting 
phonons with energies 35-45 meV, 45-55 meV, 55- 65 meV respectively as 
defined by the windows shown in Fig. 5. The solid red line shows the direction 
of the profile in Figs 8,10 and 12, the dashed red line is the direction of the 
profile in Figs 15 and 16. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) . 
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Fig. 8. Line profiles across dumb bells in the [001] direction for the images shown in Fig. 7.  

Fig. 9. Variation of elastically scattered intensity in the 000 and 111 beams with thickness due to dynamical diffraction for (a) the [110] zone axis and (b) tilted so 
that the (111) beam is at a 2 beam Bragg condition. The calculations used 9 beams and an accelerating voltage of 60 kV. 

Fig. 10. Line profiles across dumb bells in the [001] direction for a thickness of 500 Å, with a 28 mrad semi angle objective aperture, and 24 mrad semi-angle 
detector aperture. 
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Q = q′

− q (6) 

Electrons are scattered strongly in crystalline specimens and it is 
necessary to take account of dynamical diffraction, the multiple elastic 
scattering among diffracted beams. We should consider the dynamical 
diffraction among Bragg reflections for each wavevector in the 1st Bril
louin Zone. For now we will represent the dynamical diffraction as a 
propagation operator 

Pgh(q, z) for the incident electron states, where g and h label Bragg 
reflections, q is a point in the 1st Brillouin Zone. In terms of the matrix of 
Bloch wave coefficients Cg,j (q) and the eigenvalues kj(q) the propaga
tion operator can be written as 

Pgh(q, z) =
∑

j
Cg,j(q)exp

(
ikj(q)z

)
C− 1

j,h (q) (7)  

where g,h label beams and j labels the electron dispersion surface. 
The corresponding operator for scattered electrons is Rgh(q

′

, z). 

Rgh(q
′

, z) =
∑

j
Cg,j(q

′

)exp
(
ikj(q

′

)z
)
C− 1

j,h (q
′

) (8) 

Alternatively, the propagation operator can be calculated by the 
multislice method [30]. 

The phonon intensity when the probe is at position rp is an integral 
over contributions from slices of thickness dz at depth z in a specimen of 
thickness t 

I
(
rp
)
=

∑

M,M′
,L,L′

,g,g′ ,h,h′

∫ ∫ ∫

RML(q
′

, t − z)R∗

M′ L′ (q′

, t − z)

× H(q′

+ L − g − q)H∗(q′

+ L′

− g′

− q)

× Pgh(q, z)P∗

g′ h′ (q, z) A(q + h)A(q + h
′

)exp
[
− i(h − h

′

)rp
]
dq′

dq dz

(9)  

where q’ represents the wavevector in the Brillouin Zone (BZ) charac
terizing the final state accepted by the spectrometer, q the wave vector 
in the BZ representing the initial state, Q= q’-q is the phonon wave
vector L,L’, g,g’,h,h’ are reciprocal lattice vectors. A schematic diagram 
showing the relationship between q, q’ and Q for an Umklapp scattering 
to the (002) Brillouin Zone is given as Fig 1a. 

3. Calculation procedure 

The incident probe spans multiple Brillouin Zones as shown in 
Fig. 1b, the 12 mrad detector aperture is mainly in the 1st Brillouin Zone, 
while the 24 mrad detector also spans multiple Brillouin Zones. The 
most significant reciprocal lattice vectors are the 000 and set of 111 
vectors, next in significance are 220 and 002, while the incident probe 
also overlaps the Brillouin Zone around 113 and 222 reciprocal lattice 
vectors. 

Although Eq. (9) is a compact expression for the intensity it is not 
very convenient for computation as in a Bloch wave formalism it scales 
as N8 where N is the number of beams. It is computationally more effi
cient to calculate the amplitudes generated by each phonon at each 
depth in the crystal, then store them in an array indexed by phonon 
responsible for the scattering, it’s depth z and the reciprocal lattice 
vector specific to the incident beam, h. 

ψ(h, q
′

− q, t, z) =
∑

M,L,g
RML(q

′

, t − z)H(q′

+L − q − g)Pgh(q, z)A(q+ h) (10) 

As originally shown by Young and Rez [31], and Gjonnes [32], 
summing over allowed phonon wave vectors perpendicular to the 
specimen results in a sum over contributions from different depths. 

S(h, h′

) =
∑

Q,z
ψ(h,Q, t, z)ψ∗(h

′

,Q, t, z)Δz (11) 

The intensity for a probe position can then be calculated from 

I
(
rp
)
=
∑

h,h′
S(h, h′

)exp
(
i(h − h′

).rp
)

(12) 

Even with this more efficient procedure there is a scaling of N3 with 
number of beams, not to mention a matrix diagonalization that also 
scales as N3. For this reason for calculations involving dynamical 
diffraction propagation only 9 beams, 000, the 111 set, the two 220;’s 
and the two 002’s were used. 

The first step is to evaluate the eigenvector matrices and eigenvalue 
vectors for all positions in the Brillouin Zone. The frequencies associated 

Fig. 11. Simulated images for a thickness of 500 Å, with a 28 mrad semi angle 
objective aperture, and 24 mrad semi-angle detector aperture. 

Fig. 12. Normal and Umklapp contributions to the profiles across the center of the dumbbell in the [001] direction for (a) Peak A (b) Peak B and (c) Peak C for a 
thickness of 500 Å and a 12 mrad semi angle detector angle. 
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with each point were read in from the file generated by Phonopy [26]. 
These were only defined in one quadrant as the frequencies in the other 
quadrants are equivalent by symmetry. A grid with a spacing of 0.15 
[001] was used, with 172 points in the 1st Brillouin Zone. This repre
sented a reasonable compromise over adequate sampling and main
taining a clear separation between the different Brillouin Zones. Since 
the detector aperture is smaller than the objective aperture, the outer 
loop is over detector aperture reciprocal lattice vectors and the inner 
loop over the objective aperture positions. The grid of reciprocal lattice 
vectors spanning the 12 mrad aperture is shown as Fig. 2a and the grid 
for the objective aperture as Fig. 2b. Note the gaps in the objective 
aperture from the absence of the 311 and 222 reciprocal lattice vectors 

Phonon wave vectors were calculated as the difference between a 
reciprocal lattice vectors in the objective aperture and the detector 
aperture. These were reduced to the first Brillouin Zone as shown in 

Fig. 3, since the frequency is only defined uniquely for reciprocal lattice 
vectors in one of the quadrants of the Brillouin Zone. At this stage modes 
with energies contributing to peaks identified from the phonon density 
of states could be selected. The matrix element given by Eq. (4) could 
then be calculated and from that the amplitudes Ψ. The advantage of this 
procedure is that a clear separation between Normal (L-g) =0 and 
Umklapp (L − g) ∕= 0 could be made. Finally the matrix S, Eq. (11), was 
calculated with a loop over depths and phonon wave vectors. To match 
the experiments of Venkatraman et al [15] the electron accelerating 
voltage was set to 60 kV and a number of thicknesses up to 50 nm were 
calculated. A separate code was used to evaluate the intensity as a 
function of probe position, as a line profile with 100 points either par
allel to [110] or [001] through the center of the dumb bells. Alterna
tively an image with 100 points along [001] and 141 points along [110] 
could be generated and viewed with Fiji [33]. A summary of the checks 
of the code is given in the Supplementary Information. 

An alternative strategy is to model the incident probe in a supercell. 
By definition creating a supercell means partitioning the Brillouin Zone 
into a grid. This probe is then propagated by the multislice algorithm to 
a given depth z. The phonon scattering operator is applied and the 
multislice algorithm used to propagate the phonon scattered wave to the 
exit surface. The procedure is almost identical to that shown as Eq. (10). 

ψ
(
rp, q, t, z

)
=

∫

RMS(t − z)H(q)PMS(z) ∗ A
(
rp
)

(11a)  

where PMS and RMS denote multislice propagation for the incident and 
phonon scattered electrons and H(q) is the phonon scattering for a wave 
vector q in the 1st Brillouin Zone and A(rp) is the probe function. The 
integral is over the detector aperture. The multislice propagation is 
efficiently performed by Fourier transform between a phase grating in 
real space and a propagator in reciprocal space [34]. The results are 
stored for each phonon wave vector in the Brillouin Zone and each depth 
and then summed according to Eq. (11). The advantage is that many 
more beams can be included, the disadvantage is the much higher cost in 
computer time. Effectively the propagation of elastic multiple scattering 
is recalculated for each phonon wave vector, and then everything has to 
be repeated for each of m probe positions. In this respect the procedure is 
very similar to the PRISM interpolation scheme of Ophus et al [35]. If 
there are n depths or slices then the calculation time will scale as 

T∝n × Nln(N) × m (12a)  

where N is the sampling of the supercell which could be as high as 
10242. It would be best to implement this algorithm on a parallel 
computer. A further disadvantage is that it would be difficult to separate 
Normal from Umklapp terms. 

4. Results 

The 2D phonon dispersion surfaces are shown as Fig 4. A phonon 
density of states was calculated, shown as Fig. 5, from the 2D phonon 
dispersion surface of Fig. 4. Three peaks could be identified that were 
used to form images or line traces. Their origin could be determined 
from the dispersions along (001),(110) and (111) shown as Fig. 6. 

The lowest energy peak, A, from 35-45 meV, only has a contribution 
from the longitudinal acoustic mode, branch 3. Peak B, from 45 meV to 
55 meV, mainly comes from branch 4, one of the transverse optic modes, 
with about 1/3 the intensity from branch 3, the longitudinal acoustic 
mode. The highest energy peak, peak C, from 55 meV to 65 meV has 
approximately equal contributions from the three optic modes. Fig. 7 
shows a tableau of calculated images in the three energy windows for 
thicknesses ranging from 100 Å to 500 Å. Line profiles through the peaks 
along [001] are shown as Fig. 8. Peak C from the optic modes has the 
highest intensity, which is to be expected as it has a higher density of 
states from modes with relatively flat dispersions across the Brillouin 
Zone. Peak B has very low intensity and was not observed in the 

Fig. 13. Normal and Umklapp contributions to simulated images for (a) Peak A 
(b) Peak B and (c) Peak C for a thickness of 500 Å and a 12 mrad semi angle 
detector angle. 

Fig. 14. Variation of qfel(q), as a function of scattering angle. Note how the 
maximum corresponds to the 111 reciprocal lattice vector. 
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experiment of Venkatraman et al [15]. The two peaks making up the 
dumb bell are resolved, though their relative intensity is sensitive to 
thickness. They are less distinct in the image formed from the higher 
energy optic phonon between 55 and 65 meV. This is no doubt because 
the intensity contributions from different phonons spanning most of the 
Brillouin zone are summed, whereas the lower energy acoustic mode 
image is dominated by phonons from near the Brillouin Zone boundary, 
as can be seen from Fig. 6. The sensitivity to thickness is not surprising 
given the strong dynamical diffraction. The images are dominated by the 
000 and 111 beams, whose intensity variation with thickness for elastic 
scattering only is shown as Fig. 9 for both a zone axis condition and for 
the condition relevant for the 111 Brillouin Zone boundary, a 2 beam 
condition for 111. Repeating the calculation for more beams (13 beams 
including {113} set, and 17 beam including the {222} set) made no 
changes for the zone axis condition, but did alter relative intensities for 
the 111 Brillouin Zone boundary. 

Increasing the detector (spectrometer) aperture to 24 mrad increased 
the phonon scattered intensity as shown for the calculated line profiles 

along [001] for a thickness of 500 Å shown in Fig. 10. It also changed the 
relative intensity of the peaks in the dumb bell and only the peak at 
0.25,0.25,0.5 is visible for the images simulated with the 24 mrad de
tector angle shown in Fig. 11. If elastic scattering alone were responsible 
for the contrast we would expect the contrast to be reduced when the 
collection aperture semi angle is increased to 24 mrad, almost the same 
as the objective aperture. Under these conditions practically the whole 
incident wavefunction would be collected and contrast could only arise 
from electrons scattered to much weaker higher order reflections. 

The breakdown between Normal and Umklapp contributions was 
investigated by separately calculating their contributions in Eqs. (10)– 
(12) to images and profiles. Umklapp includes not only case where L −

g ∕= 0 but also those cases where a reciprocal lattice vector had to be 
added or subtracted so that the reduced phonon wave vector was in one 
of the quadrants of the first Brillouin Zone. Fig. 12 shows the contri
butions to each of the three peaks A, B and C. In all cases the Umklapp 
terms dominate. The Normal terms also do not show the splitting be
tween the two peaks that make up the dumb bell as can be seen in the 
calculated image shown as Fig. 13. 

The dominance of the Umklapp terms can be understood from a 
consideration of the form of the matrix elements, Eq. (4), and the vari
ation of the intensity in each of the Bragg reflections. As can be seen 
from the dispersion relations shown as Figs. 4 and 6 the highest intensity 
for the lower energy peaks A and B comes from flat regions near the 
Brillouin Zone boundary. From Fig. 14 showing the form of the matrix 
element that goes as qfel(q), the intensity is at a maximum in the second 
Brillouin Zone. The dynamical scattering will only lead to an averaging 
over thickness. The form of the matrix element also explains the domi
nance of the signal in the 2nd Brillouin Zone for delocalized optic modes 
in hexagonal Boron Nitride observed by Senga et al [36] and 
Plotkin-Swing et al [37]. 

Venkatraman et al [15] observed shifts in peak positions in the [110] 
direction when a 12 mrad collection aperture was used. They hypothe
sized that this was due to a misalignment of the objective aperture. We 
repeated the calculation with a tilt of 2.6 mrad in the [110] direction. To 
ensure that no asymmetry was introduced into the objective aperture we 
also considered the {113} beams and added (22 2) and (222) beams. If 
the center of the peak at 0.25,0.25,0.5 is denoted as c, any asymmetry 
should be apparent from a plot of I(c+x) − I(c − x) where x is the dis
tance from c in the [110] direction. The plot is shown in Fig. 15a for a 
thickness of 500 Å. It would appear that the peak B shifts in the opposite 
direction to peaks A and C, best seen in the normalized intensity dis
played as Fig. 15b. Since the magnitudes are of order 10− 5 of the inci
dent intensity the effect is far too small to account for the observations. 

However line profiles in the [110] direction across the peak dis
played as Fig. 16 showed apparent shifts with thickness. These shifts are 
still less than Venkatraman et al [15] observed. It is conceivable that the 
effect would be more significant if the calculations were repeated with 

Fig. 15. (a) Plot of asymmetry in the profile of the dumb bell in the [110] direction for a thickness of 500 Å and a 12 mrad semi-angle detector aperture, (b) 
Asymmetry shown if (a) normalized to the maximum value. 

Fig. 16. Line profiles in the [110] direction across the center of the dumb bell 
at 0.25,0.25,0.5 for different thickness, for a 28 mrad semi-angle objective 
aperture and a 12 mrad semi-angle detector aperture. 
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many more beams. 

5. Conclusions 

In scattering of high-energy electrons by phonons Umklapp scat
tering from the second Brillouin Zone back to the first Brillouin Zone 
dominates. Lattice resolution is possible when a coherent incident probe 
spans the reciprocal lattice vectors corresponding to lattice spacings in 
the image. To observe a lattice resolved phonon image with an on axis 
detector the calculations suggest that the specimen thickness must be 
enough to build up intensity in the diffracted beams. The Umklapp 
scattering then transfers intensity to the on-axis detector. Given that the 
Umklapp scattering is necessary for lattice resolution, and that the 
contrast increases with spectrometer collection angle, it is fair to say that 
the images observed by Venkatraman et al [15] are lattice resolved 
images in a phonon mode. The dynamical diffraction only serves to set 
up the conditions that make this possible. 
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