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ABSTRACT

The combination of aberration correction and ultra high energy resolution with monochromators has made it
possible to record images showing lattice resolution in phonon modes, both with a displaced collection aperture
and more recently with an on -axis collection aperture. In practice the objective aperture has to include Bragg
reflections that correspond to the observed lattice image spacings, and the specimen has to be sufficiently thick
for adequate phonon scattered intensity. There has been controversy as to whether the images with the on axis
detector are really a consequence of lattice resolution in a phonon mode or just a transfer of information from an
image that was formed by elastically scattered electrons. We present results of calculations based on a theory that
includes the possibility of dynamical electron diffraction for both incident and scattered electrons and the full
phonon dispersion relation. We show that Umklapp scattering from the second Brillouin Zone back to the first
Brillouin Zone is necessary for lattice resolution with the on axis detector and that it is therefore reasonable to
attribute the lattice resolution to the phonon scattering.

1. Introduction

Phonons are the quantized oscillations of atoms in a crystalline solid.
Electron beams can loose energy by exciting these modes, but can also
gain energy from destroying phonons that are characteristic of thermal
equilibrium at finite temperatures. Early work on phonon scattering in
electron microscopy was concerned with its contribution to “anomalous
absorption” and its effects on diffraction contrast [1,2]. There was also
interest in how it gave rise to the diffuse background in diffraction
patterns, and how the combination of phonon scattering and dynamical
diffraction scattering led to the formation of Kikuchi lines and bands [3,
4]. The role of multi-phonon scattering, also known as thermal diffuse
scattering, as the mechanism by which electrons were scattered to high
angle annular dark field detectors led to renewed interest in theoretical
formulation of phonon scattering in electron microscopy [5].

Recently electron microscopes have been equipped with a combi-
nation of energy loss spectrometers and monochromators that has made
it possible to directly resolve phonon modes [6]. Originally only the
higher energy optical modes, and the more complex phonon polariton
modes characteristic of thin electron microscope specimens, were
observed [7,8]. As the resolution of the spectrometer and mono-
chromator improved, and the background from the tail of the zero loss
peak was reduced, it became possible to detect acoustic modes, espe-
cially from flat regions of the phonon dispersion near Brillouin Zone
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boundaries where the energy was highest [9].

The combination of energy resolution sufficient to resolve a phonon
mode and aberration correction that allows atomic column resolution,
suggested that it should be possible to from an atomically resolved
image in a phonon mode. Rez had predicted it should be possible to form
lattice fringe image in an acoustic mode by selecting a scattering wave
vector corresponding to a large Umklapp scattering perpendicular to a
systematic line, giving rise to the fringe image [10].

Optic modes correspond to oscillating dipoles, hence the absorption
of electromagnetic radiation. A consequence of the long-range nature of
the electrostatic and magnetic interactions is that they can be excited
with a distant electron beam, even outside the specimen. This can be
used to advantage in damage free energy loss spectroscopy of beam
sensitive organic specimens [11], but does seem to preclude atomically
resolved images of optic phonon modes. The long range of the interac-
tion means that the scattering is strongly forward peaked, the charac-
teristic angle for a 200 meV loss is only 2 microrads for 60 keV electrons.
It should therefore be possible to form a high-resolution image, provided
the spectrometer or collection aperture does not overlap with the probe
forming or objective aperture. This was demonstrated by Dwyer et al
[12] who showed that nanometer resolution of the specimen edge was
possible.

To achieve lattice resolution in STEM the probe-forming aperture
should span a range of angles greater than the relevant Bragg angle [13].
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This is also the case for HAADF imaging. The collection aperture for the
phonon scattered electrons is then displaced further from the optic axis,
and the signal collection efficiency reduced. Nonetheless Hage et al [14]
were able to demonstrate atomic resolution even through the collection
apertures were displaced by 77 mrad.

Recently Venkatraman et al [15] demonstrated atomic resolution in
both optic and acoustic modes in elemental Silicon with an on axis de-
tector. Silicon is a special case, even though it has two atoms in each
primitive cell, resulting in optic as well as acoustic modes, there is no
charge transfer that gives rise to the oscillating dipole that potentially
degrades spatial resolution. However it was argued that Venkatraman
[15] did not really demonstrate lattice resolution in a phonon mode, the
lattice resolution arose from interference among dynamically diffracted
elastically scattered electrons. All the phonon did was transfer this in-
formation to the spectrometer. The same could be said for HAADF im-
aging, the resolution arises from the interference in the coherent
electron probe, and the thermal diffuse scattering transfers the infor-
mation to the detector while not degrading the spatial resolution. The
recently demonstrated detection of localized modes associated with a
single substituent atom of a different mass would suggest that atomic
resolution in phonon modes is possible [16].

To disentangle all these effects a comprehensive theoretical model is
needed that includes dynamical elastic scattering both before and after
phonon scattering. To see which phonons contribute it is necessary that
the model incorporate the full phonon dispersion relation. Many for-
mulations of the theory for phonon scattering by electrons have been
published [17-23], though not all have all the key ingredients. Our
model, based on our earlier work [4,5], is described in the theory sec-
tion. From calculations based on our model we show that the dominant
contributions come from near the Brillouin Zone Boundaries. Large
proportions of these regions are almost at a two-beam condition for 111
with a maximum intensity in the 111 beams. The interference that re-
sults in atomic resolution arises from the relatively large phonon
Umklapp terms that direct intensity back into the on axis detector. It’s
therefore fair to say that the results of Venkatraman et al [15] really do
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represent imaging in a phonon mode and not an image from high res-
olution elastic scattering that happens to be directed to the spectrometer
entrance aperture.

2. Theory

Most of the theory has been given before, in this section it is
rewritten in a form suitable for calculating images in electrons scattered
by phonons. Phonons are oscillations of the displacements of atoms in a
crystal from their equilibrium positions. Since crystals are periodic
phonons are Bloch functions and are uniquely defined by their polari-
zation and their wave vector in the 1% Brillouin Zone. Each phonon has
an energy which is related to the frequency, though it is possible for
there to be degeneracies in frequency among modes in high symmetry
directions. The frequencies are the eigenvalues and the displacements of
the atoms in the unit cell are the eigenvectors of the dynamical matrix D.
[25]

k ok Ry k %Ry
D(b b/)M, ¢<b b’)M (D)
a a 4 a a b
where b labels atoms in the cell of mass My, « labels polarization and ¢ is
the potential.

The number of modes is 3N where N is the number of atoms in the
unit cell. Elemental semiconductors have 2 atoms in the primitive unit
cell, so there are a total of 6 modes, 3 acoustic modes that have zero
frequency at the I' point, the Brillouin Zone center, and 3 optic modes
that have finite frequency at the I" point. In the experiments of Venka-
traman et al [15] the crystal was oriented in the 110 orientation. For the
range of scattering angles appropriate for 60 keV electrons it is only
necessary to consider a single layer of reciprocal space. The main Bragg
reflections are the 111, 220, and those related by symmetry. The phonon
dispersion surfaces were calculated using Phonopy [26] from total en-
ergies calculated with VASP [27] for displacements of the two atoms in a

(a)

(b)

Fig. 1. (a) Diagram showing the geometry for phonon scattering. q denotes a point in a Brillouin Zone in the Objective aperture, q’ a point in the Brillouin Zone of
the spectrometer entrance aperture, in this case the first Brillouin Zone. To show the phonon wave vector Q, as the difference between q’ and q, q is translated to the
first Brillouin Zone and shown as a dashed line. Since the phonon dispersion relation is only defined in the 1% Brillouin Zone, Q has also been translated so that it

starts at the Gamma point and is now shown as a dashed line. The reciprocal lattice vector for the initial wave vector g = 002 is shown as a red line (b) Schematic
diagram showing the incident probe and the detector angles in relation to the reciprocal lattice and the Brillouin Zones. The 28 mrad semi-angle incident probe is
shown as the dark orange circle, the 12 mrad detector aperture is shown as the dark green circle and the 24 mrad detector aperture as the light green circle. From
[15] Supplementary Information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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Fig. 2. Sampling the 12 mrad semi angle detector aperture (a) and the 28 mrad objective apertures (b).

4x4x4 supercell based on the primitive cell. The PAW potentials [28]
and a grid of 5x5x5 k points were used in the VASP calculations.

The theory is very similar to that outlined by Amali and Rez [5] for
HAADF imaging, later expanded on by Allen et al [29]. The phonon
scattering amplitude, y , of electrons represented a plane waves can be
derived by considering the structure factor for wave vector s and
assuming that any displacements due to the phonons are small.

w(s) =D fhexp(is.(Ry +up)) @
b
where é’l are electron scattering factors for atom b, Ry, are the positions

of atoms in the unit cell and uy, are phonon displacements. The phonon
displacement term can be expanded as a 1% order perturbation.

Fig. 3. Diagram showing 3 possible phonon wave vectors that connect recip-
rocal lattice vectors in the objective and detector apertures that are represen-
tative of Umklapp processes. The blue arrow clearly goes from the (111)
Brillouin Zone to the (000) Brillouin Zone. To reduce the wave vector of the
phonon shown as the green arrow to one quadrant of the first Brillouin Zone it
is necessary to subtract a (111) reciprocal lattice vector. To place the phonon
shown as the red arrow in the appropriate quadrant of the first Brillouin Zone a
(111) reciprocal lattice vector should be added. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this article.).

w(s) = Zﬂ, (is.up)exp(is.Ry) 3)

where we have dropped the index on the electron scattering factor as all
the atoms in the cell are the same. Note that the scattering wave vector,
s, has been partitioned between a component in the 1% Brillouin Zone, Q
and a Bragg vector g, since the phonon wave vector is uniquely defined
in the 1 Brillouin Zone.

This phonon scattering amplitude for plane wave electron states is
expressed as an operator H(Q+g)

ne e = @rpre(yg) (19(12) ) e s o +emien)
4

where f1(Q+g) is the electron scattering factor, R is the position of the
2™ atom in the primitive cell, M is the mass of the atom, w(Q) is the

frequency, N (%) is the Bose-Einstein occupation number and e is the

polarization. Since in practice it is only possible to detect phonons with
energies greater than kgT in the electron microscope due to the back-

ground from the tail of the zero loss peak, N (1:%) is small, and it is only

necessary to consider creation of phonons. For simplicity we will set it to
zero, which is equivalent to assuming zero temperature. Creation of a
phonon that results in scattering from one Brillouin Zone to another is
called an Umklapp process. When the scattering is confined to a single

Energy (meV)

Fig. 4. 2D phonon dispersion surfaces for Si in the [110] projection (from [15]
Supplementary Information).
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Fig. 5. Phonon density of states calculated from the 2D dispersion surfaces
shown as Fig 4. Peak A between 35meV and 45 meV, Peak B between 45 meV
and 55 meV and Peak C between 55 meV and 65 meV are shown.

Brillouin Zone it is called a Normal Process. As can be seen from the
functional form of Eq. (4), plotted in Rez (2014) [24], Umklapp pro-
cesses to the 2" Brillouin Zone (in the case of 110 Silicon the Brillouin
Zones around 111) dominate.

The electron source in a field emission microscope is sufficiently
small and can be considered as a point emitting a spherical wave. The
electron probe on the surface of the specimen can also be represented as
a spherical wave defined by the range of angles allowed by the electron
optics, that can be as great as 30 - 40 mrads semi angle with aberration
correction. Since the corresponding wavevector in the plane of the
specimen is greater than a reciprocal lattice vector it is possible to get
lattice resolution from this coherent spherical wave as first shown by
Spence and Cowley [13]. Specifying the incident probe wave vectors in
the first Brillouin Zone by q, in a very thin specimen (a weak phase
object) the scattered wave intensity to another position in the first
Brillouin zone, q’, for a probe at position r, would be

I(np)= Y ///H(q?hfq)H*(q'fh'fq)

LL gg hil

x A(q+h)A(q+h)exp[ — i(h — h)r,]dq dq dz

()

where x A(q-+h) is 1 if that particular wave vector is allowed through
the probe forming aperture, or zero otherwise. It could be modified by a
phase shift from a wavefront aberration function, but we’ll assume that
we can neglect this phase shift for an aberration corrected microscope
for the range of angles we are considering. The phonon wavevector, Q,
in the first Brillouin Zone is

Ultramicroscopy 220 (2021) 113162

Fig. 7. Simulated images for Si [110] for 60 keV electrons, objective aperture
28 mrad semi angle detector aperture 12 mrad. A,B, C correspond to selecting
phonons with energies 35-45 meV, 45-55 meV, 55- 65 meV respectively as
defined by the windows shown in Fig. 5. The solid red line shows the direction
of the profile in Figs 8,10 and 12, the dashed red line is the direction of the
profile in Figs 15 and 16. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.) .
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Fig. 6. Phonon dispersions along (a) (001) (b) (110) and (c) (111) showing the 3 acoustic and 3 optic modes.
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Fig. 8. Line profiles across dumb bells in the [001] direction for the images shown in Fig. 7.
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Fig. 9. Variation of elastically scattered intensity in the 000 and 111 beams with thickness due to dynamical diffraction for (a) the [110] zone axis and (b) tilted so
that the (111) beam is at a 2 beam Bragg condition. The calculations used 9 beams and an accelerating voltage of 60 kV.
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Fig. 10. Line profiles across dumb bells in the [001] direction for a thickness of 500 A, with a 28 mrad semi angle objective aperture, and 24 mrad semi-angle
detector aperture.
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Fig. 11. Simulated images for a thickness of 500 A, with a 28 mrad semi angle
objective aperture, and 24 mrad semi-angle detector aperture.

(6)

Electrons are scattered strongly in crystalline specimens and it is
necessary to take account of dynamical diffraction, the multiple elastic
scattering among diffracted beams. We should consider the dynamical
diffraction among Bragg reflections for each wavevector in the 1% Bril-
louin Zone. For now we will represent the dynamical diffraction as a
propagation operator

Pg(q,2) for the incident electron states, where g and h label Bragg
reflections, q is a point in the 1% Brillouin Zone. In terms of the matrix of
Bloch wave coefficients Cg; (q) and the eigenvalues k;(q) the propaga-
tion operator can be written as

0=q —¢q

Py(q,2) ch/ exp lk (@)z ) ( ) 7
where g h label beams and j labels the electron dispersion surface.
The corresponding operator for scattered electrons is Rgh(q',z).

R q 2) ZCgJ exp lk ) ) jih (‘1,) ®

Alternatively, the propagation operator can be calculated by the
multislice method [30].

The phonon intensity when the probe is at position r, is an integral
over contributions from slices of thickness dz at depth z in a specimen of
thickness t

Intensity Peak-A Intensity

0.0006. " L L "

Peak-B
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1(r,) = ///RMLq 1= 2Ry, (g 1~ 2)

MM LL gg ok
H(g +L—g—qH (¢ +L —g —q)
X Pgh(q7Z)P;’h’ (q,z) A(q +h)A(q + h')exp[ — i(h — h’)rp]dq’dq dz

©)

where g’ represents the wavevector in the Brillouin Zone (BZ) charac-
terizing the final state accepted by the spectrometer, q the wave vector
in the BZ representing the initial state, Q= q’-q is the phonon wave-
vector L,L’, g g’,h,h’ are reciprocal lattice vectors. A schematic diagram
showing the relationship between g, ¢’ and Q for an Umklapp scattering
to the (002) Brillouin Zone is given as Fig 1a.

3. Calculation procedure

The incident probe spans multiple Brillouin Zones as shown in
Fig. 1b, the 12 mrad detector aperture is mainly in the 1** Brillouin Zone,
while the 24 mrad detector also spans multiple Brillouin Zones. The
most significant reciprocal lattice vectors are the 000 and set of 111
vectors, next in significance are 220 and 002, while the incident probe
also overlaps the Brillouin Zone around 113 and 222 reciprocal lattice
vectors.

Although Eq. (9) is a compact expression for the intensity it is not
very convenient for computation as in a Bloch wave formalism it scales
as N® where N is the number of beams. It is computationally more effi-
cient to calculate the amplitudes generated by each phonon at each
depth in the crystal, then store them in an array indexed by phonon
responsible for the scattering, it’s depth z and the reciprocal lattice
vector specific to the incident beam, h.

=Y Rulq,1=2H(g +L—q—8)Pulq.2)A(g+h) (10)

MLg

l//(h7 q/ — 4,1, Z)

As originally shown by Young and Rez [31], and Gjonnes [32],
summing over allowed phonon wave vectors perpendicular to the
specimen results in a sum over contributions from different depths.

S(h, ) = w(h, 0,1,2y" (I, 0,1,2)Az an
Qz

The intensity for a probe position can then be calculated from

=Y S(h,k)exp(i(h—h').r,))

i

12)

Even with this more efficient procedure there is a scaling of N® with
number of beams, not to mention a matrix diagonalization that also
scales as N°. For this reason for calculations involving dynamical
diffraction propagation only 9 beams, 000, the 111 set, the two 220;’s
and the two 002’s were used.

The first step is to evaluate the eigenvector matrices and eigenvalue
vectors for all positions in the Brillouin Zone. The frequencies associated
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Fig. 12. Normal and Umklapp contributions to the profiles across the center of the dumbbell in the [001] direction for (a) Peak A (b) Peak B and (c) Peak C for a

thickness of 500 A and a 12 mrad semi angle detector angle.



P. Rez and A. Singh

Fig. 13. Normal and Umklapp contributions to simulated images for (a) Peak A

(b) Peak B and (c) Peak C for a thickness of 500 A and a 12 mrad semi angle
detector angle.

Normal

[110]

Umklapp

[001] €

with each point were read in from the file generated by Phonopy [26].
These were only defined in one quadrant as the frequencies in the other
quadrants are equivalent by symmetry. A grid with a spacing of 0.15
[001] was used, with 172 points in the 1% Brillouin Zone. This repre-
sented a reasonable compromise over adequate sampling and main-
taining a clear separation between the different Brillouin Zones. Since
the detector aperture is smaller than the objective aperture, the outer
loop is over detector aperture reciprocal lattice vectors and the inner
loop over the objective aperture positions. The grid of reciprocal lattice
vectors spanning the 12 mrad aperture is shown as Fig. 2a and the grid
for the objective aperture as Fig. 2b. Note the gaps in the objective
aperture from the absence of the 311 and 222 reciprocal lattice vectors

Phonon wave vectors were calculated as the difference between a
reciprocal lattice vectors in the objective aperture and the detector
aperture. These were reduced to the first Brillouin Zone as shown in

Q. (@
7000 ' ' '
60004 \.
5000- |
40004 (111) (220) -
3000- .
2000- .
10004 .
0 T T U
0 10 20 30 40

Angle (mrads)

Fig. 14. Variation of gf,(q), as a function of scattering angle. Note how the
maximum corresponds to the 111 reciprocal lattice vector.
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Fig. 3, since the frequency is only defined uniquely for reciprocal lattice
vectors in one of the quadrants of the Brillouin Zone. At this stage modes
with energies contributing to peaks identified from the phonon density
of states could be selected. The matrix element given by Eq. (4) could
then be calculated and from that the amplitudes ¥. The advantage of this
procedure is that a clear separation between Normal (L-g) =0 and
Umklapp (L — g) # 0 could be made. Finally the matrix S, Eq. (11), was
calculated with a loop over depths and phonon wave vectors. To match
the experiments of Venkatraman et al [15] the electron accelerating
voltage was set to 60 kV and a number of thicknesses up to 50 nm were
calculated. A separate code was used to evaluate the intensity as a
function of probe position, as a line profile with 100 points either par-
allel to [110] or [001] through the center of the dumb bells. Alterna-
tively an image with 100 points along [001] and 141 points along [110]
could be generated and viewed with Fiji [33]. A summary of the checks
of the code is given in the Supplementary Information.

An alternative strategy is to model the incident probe in a supercell.
By definition creating a supercell means partitioning the Brillouin Zone
into a grid. This probe is then propagated by the multislice algorithm to
a given depth z. The phonon scattering operator is applied and the
multislice algorithm used to propagate the phonon scattered wave to the
exit surface. The procedure is almost identical to that shown as Eq. (10).

Y (rq1,2) = / Rus (i — 2)H(g)Pus(2)  A(ry) (11a)

where Pys and Rys denote multislice propagation for the incident and
phonon scattered electrons and H(q) is the phonon scattering for a wave
vector q in the 1%¢ Brillouin Zone and A(rp) is the probe function. The
integral is over the detector aperture. The multislice propagation is
efficiently performed by Fourier transform between a phase grating in
real space and a propagator in reciprocal space [34]. The results are
stored for each phonon wave vector in the Brillouin Zone and each depth
and then summed according to Eq. (11). The advantage is that many
more beams can be included, the disadvantage is the much higher cost in
computer time. Effectively the propagation of elastic multiple scattering
is recalculated for each phonon wave vector, and then everything has to
be repeated for each of m probe positions. In this respect the procedure is
very similar to the PRISM interpolation scheme of Ophus et al [35]. If
there are n depths or slices then the calculation time will scale as

Toxn X NIn(N) x m (12a)
where N is the sampling of the supercell which could be as high as
10242 It would be best to implement this algorithm on a parallel
computer. A further disadvantage is that it would be difficult to separate
Normal from Umklapp terms.

4. Results

The 2D phonon dispersion surfaces are shown as Fig 4. A phonon
density of states was calculated, shown as Fig. 5, from the 2D phonon
dispersion surface of Fig. 4. Three peaks could be identified that were
used to form images or line traces. Their origin could be determined
from the dispersions along (001),(110) and (111) shown as Fig. 6.

The lowest energy peak, A, from 35-45 meV, only has a contribution
from the longitudinal acoustic mode, branch 3. Peak B, from 45 meV to
55 meV, mainly comes from branch 4, one of the transverse optic modes,
with about 1/3 the intensity from branch 3, the longitudinal acoustic
mode. The highest energy peak, peak C, from 55 meV to 65 meV has
approximately equal contributions from the three optic modes. Fig. 7
shows a tableau of calculated images in the three energy windows for
thicknesses ranging from 100 Ato 500 A. Line profiles through the peaks
along [001] are shown as Fig. 8. Peak C from the optic modes has the
highest intensity, which is to be expected as it has a higher density of
states from modes with relatively flat dispersions across the Brillouin
Zone. Peak B has very low intensity and was not observed in the
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Fig. 15. (a) Plot of asymmetry in the profile of the dumb bell in the [110] direction for a thickness of 500 A and a 12 mrad semi-angle detector aperture, (b)

Asymmetry shown if (a) normalized to the maximum value.

experiment of Venkatraman et al [15]. The two peaks making up the
dumb bell are resolved, though their relative intensity is sensitive to
thickness. They are less distinct in the image formed from the higher
energy optic phonon between 55 and 65 meV. This is no doubt because
the intensity contributions from different phonons spanning most of the
Brillouin zone are summed, whereas the lower energy acoustic mode
image is dominated by phonons from near the Brillouin Zone boundary,
as can be seen from Fig. 6. The sensitivity to thickness is not surprising
given the strong dynamical diffraction. The images are dominated by the
000 and 111 beams, whose intensity variation with thickness for elastic
scattering only is shown as Fig. 9 for both a zone axis condition and for
the condition relevant for the 111 Brillouin Zone boundary, a 2 beam
condition for 111. Repeating the calculation for more beams (13 beams
including {113} set, and 17 beam including the {222} set) made no
changes for the zone axis condition, but did alter relative intensities for
the 111 Brillouin Zone boundary.

Increasing the detector (spectrometer) aperture to 24 mrad increased
the phonon scattered intensity as shown for the calculated line profiles

Intensity

0005 1 1 1 1 L

0.004+

0.003+

0.0024

0.0014

]
025 03
[110]

Fig. 16. Line profiles in the [110] direction across the center of the dumb bell
at 0.25,0.25,0.5 for different thickness, for a 28 mrad semi-angle objective
aperture and a 12 mrad semi-angle detector aperture.

along [001] for a thickness of 500 A shownin Fig. 10. It also changed the
relative intensity of the peaks in the dumb bell and only the peak at
0.25,0.25,0.5 is visible for the images simulated with the 24 mrad de-
tector angle shown in Fig. 11. If elastic scattering alone were responsible
for the contrast we would expect the contrast to be reduced when the
collection aperture semi angle is increased to 24 mrad, almost the same
as the objective aperture. Under these conditions practically the whole
incident wavefunction would be collected and contrast could only arise
from electrons scattered to much weaker higher order reflections.

The breakdown between Normal and Umklapp contributions was
investigated by separately calculating their contributions in Eqs. (10)-
(12) to images and profiles. Umklapp includes not only case where L —
g # 0 but also those cases where a reciprocal lattice vector had to be
added or subtracted so that the reduced phonon wave vector was in one
of the quadrants of the first Brillouin Zone. Fig. 12 shows the contri-
butions to each of the three peaks A, B and C. In all cases the Umklapp
terms dominate. The Normal terms also do not show the splitting be-
tween the two peaks that make up the dumb bell as can be seen in the
calculated image shown as Fig. 13.

The dominance of the Umklapp terms can be understood from a
consideration of the form of the matrix elements, Eq. (4), and the vari-
ation of the intensity in each of the Bragg reflections. As can be seen
from the dispersion relations shown as Figs. 4 and 6 the highest intensity
for the lower energy peaks A and B comes from flat regions near the
Brillouin Zone boundary. From Fig. 14 showing the form of the matrix
element that goes as gf,;(q), the intensity is at a maximum in the second
Brillouin Zone. The dynamical scattering will only lead to an averaging
over thickness. The form of the matrix element also explains the domi-
nance of the signal in the 2" Brillouin Zone for delocalized optic modes
in hexagonal Boron Nitride observed by Senga et al [36] and
Plotkin-Swing et al [37].

Venkatraman et al [15] observed shifts in peak positions in the [110]
direction when a 12 mrad collection aperture was used. They hypothe-
sized that this was due to a misalignment of the objective aperture. We
repeated the calculation with a tilt of 2.6 mrad in the [110] direction. To
ensure that no asymmetry was introduced into the objective aperture we
also considered the {113} beams and added (22 2) and (222) beams. If
the center of the peak at 0.25,0.25,0.5 is denoted as ¢, any asymmetry
should be apparent from a plot of I(c+x) — I(c —x) where x is the dis-
tance from c in the [110] direction. The plot is shown in Fig. 15a for a
thickness of 500 A. It would appear that the peak B shifts in the opposite
direction to peaks A and C, best seen in the normalized intensity dis-
played as Fig. 15b. Since the magnitudes are of order 107> of the inci-
dent intensity the effect is far too small to account for the observations.

However line profiles in the [110] direction across the peak dis-
played as Fig. 16 showed apparent shifts with thickness. These shifts are
still less than Venkatraman et al [15] observed. It is conceivable that the
effect would be more significant if the calculations were repeated with
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many more beams.
5. Conclusions

In scattering of high-energy electrons by phonons Umklapp scat-
tering from the second Brillouin Zone back to the first Brillouin Zone
dominates. Lattice resolution is possible when a coherent incident probe
spans the reciprocal lattice vectors corresponding to lattice spacings in
the image. To observe a lattice resolved phonon image with an on axis
detector the calculations suggest that the specimen thickness must be
enough to build up intensity in the diffracted beams. The Umklapp
scattering then transfers intensity to the on-axis detector. Given that the
Umklapp scattering is necessary for lattice resolution, and that the
contrast increases with spectrometer collection angle, it is fair to say that
the images observed by Venkatraman et al [15] are lattice resolved
images in a phonon mode. The dynamical diffraction only serves to set
up the conditions that make this possible.
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