PHYSICAL REVIEW B 92, 115449 (2015)

Phonon excitation by electron beams in nanographenes
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Electron beams have the ability of exciting vibrational modes (phonons) in molecules and nanoclusters,
which can be currently probed with atomic spatial resolution through electron energy-loss spectroscopy (EELS).
This scenario is similar to the excitation of plasmons with light, except that electrons allow much tighter spatial
focusing. Additionally, phonons possess larger quality factors and lifetimes. In an effort to exploit these appealing
properties, we theoretically investigate the interaction of focused electron beams with the vibrational modes of
carbon nanographenes. The EELS probability is found to mimic the density of vibrational states, both of which
evolve smoothly with cluster size towards the limit of extended graphene. Our results support the use of phonons
as long-lived, tightly confined substitutes of plasmons, combined with electron-beam-mediated mode-selective

excitation.
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I. INTRODUCTION

The ability of manipulating light and electrons at ever
faster speeds over increasingly smaller distances is central
for many advances in information and sensing technologies.
In this respect, plasmons—the collective electron oscillations
of conduction electrons in metals—possess several appealing
properties (robustness, large optical interaction, and tight
spatial focusing down to the nanometer scale) that make
them attractive for such technologies [1-3]. A large deal of
work is currently being devoted to exploiting the quantum
aspects of plasmons for information processing [4,5], as
well as the field confinement and enhancement associated
with these excitations for sensing [6—8] and catalysis [9,10],
among other feats. Unfortunately, inelastic losses produce
a dramatic reduction in the plasmon lifetime down to a
few optical cycles, thus limiting their range of application.
Atomic vibrations in molecular-scale structures share some of
the plasmon properties, combined with larger lifetimes and
smaller spatial features. Finding the means of controllably
exciting and manipulating phonons at subnanometer distances
is therefore important to exploit their potential for technology.

The answer to this problem could rely on recent advances in
electron microscopy. It is now possible to use tightly focused
(subnanometer) electron beams for probing sample excitations
with <10 meV energy resolution [11]. This combination of
spatial and spectral resolutions enables the excitation and
monitoring of phonons with atomic precision, which can be
exploited from a fundamental viewpoint for understanding
atomic vibrations in small structures, but also with a view
to applications, using electrons for on-demand creation and
manipulation of those modes. A recent theoretical analysis
shows that fast electrons can actually interact with localized
vibrations of diatomic molecules [12].

Here, we theoretically investigate the potential of electron
beams for exciting and manipulating phonons. The interaction
between fast electrons and phonons is described through a
quantum-mechanical formalism that we use to study their
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signatures in electron energy-loss spectroscopy (EELS). We
predict relatively large EELS probabilities, which appear to
be closely related to the local density of vibrational states
(LDVS). Our calculations suggest that the spatial distribution
associated with different modes can be used to selectively
excite specific phonons. These are essential elements for
the application of atomic-scale vibrations in future signal-
processing devices.

II. CALCULATION OF THE EELS PROBABILITY

The general theory of inelastic scattering of fast electrons
and EELS is well established and described in previous works
[13-16]. Here, we derive a Hamiltonian formalism capable
of describing the inelastic interaction of fast electrons with
the vibrations of an atomic cluster, focusing for simplicity on
nanographene islands that range in size from small polycyclic
aromatic hydrocarbons to larger structures containing several
thousand atoms. The equivalence of this formalism and
the standard formulation of EELS [16] is discussed in the
Appendix. More precisely, we describe phonons within a
second-quantization formalism, while the electron is treated
as a classical external potential, neglecting retardation effects
for simplicity. We analyze the electron-phonon interaction
through the Hamiltonian

H =" [hwubl by + g )bF + b)),

where n runs over the vibrational modes, which we refer to as
phonons in what follows, while b, (b)) annihilates (creates)
a quantum of mode n. Neglecting retardation, the interaction
between the electron and the phonon mode n is described by
the coupling energy
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(i.e., the electrostatic energy due to the one-phonon charge
in the presence of the electron), where r.(¢) is the electron
trajectory and p, (r) is the perturbed charge density of the island
associated with mode n. The time dependence in g,(#) comes
from the electron, which we assume to move with constant
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velocity v along a direction normal to the graphene plane.
This type of Hamiltonian has been previously used to describe
EELS associated with graphene plasmons [17].

The phonon charge is obtained from the carbon atom
displacements (u}, where [ labels carbon atoms) from the
equilibrium positions (R;) associated with one quantum of
vibration, assuming a rigid motion of the atomic electron
charge density. More precisely,

o = [pP“(R—R —u}z) - p“R—R..2)], (2
l

where pC(r) is the charge density of one of the carbon atoms
and we use the notation r = (R, z). For simplicity, we assume
the carbon cluster to be planar, with all atoms lying in the
z = 0 plane, and we neglect the interaction with hydrogens
that typically passivate the edges of the structure. The atomic
charge density pC(r) includes both electrons and nuclear
charges, and we further approximate it from the density of
the free-space atom [18] (i.e., neglecting variations due to the
rearrangement of valence electrons in the material). In Eq. (2),
the atomic displacements correspond to the normal modes of
the system, which satisfy the orthogonality relation ), u -
uf‘/ = (h/2M w,)d,, . Notice that this expression incorporates
a normalization of the displacement vectors corresponding
to singly occupied phonon modes, with M representing the
carbon atom mass. In practice, we obtain the normal mode
amplitudes and frequencies (u} and w,) from a simple model
that only accounts for the C-C stretching energy [19].

For the relatively low excitation probabilities encountered
in electron microscope spectroscopies [16], it is safe to
describe phonon excitations by the beam electrons within
first-order perturbation theory. We assume the sample to be
initially prepared in the ground state. Each phonon mode n can
then be described independently, so the probability of exciting
it during the finite time of interaction with the electron is
obtained by integrating the Schrodinger equation. We find the
final amplitude of mode n to be [17]

—i * iw,t
b= / g, 3)

corresponding to a probability |£,|> of undergoing an energy
loss hw,. This allows us to write the EELS probability

distribution as

v 15
2 = (@ — w P+ (V2

FEELS (CL)) —

“

where a phenomenological Lorentzian broadening hy is
introduced to represent the full width at half maximum of the
zero-loss peak (ZLP, 10 meV throughout this work), which is
large in practice compared with the intrinsic phonon width.
Notice that the definition of I'®S(w) in Eq. (4) yields units
of inverse frequency, so that the probability is normalized per
unit of frequency-loss range.

The time integral in Eq. (3) can be readily carried out for
an electron moving along z (normal to the carbon plane) with
velocity v [i.e., re(t) = (Re,v?)] to yield

2ie

En _h

v
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Notice that the customary modified Bessel functions K,, of
orders m =0 and m = 1 appear throughout this analysis.
Inserting Eq. (2) into this expression, we find

_ 2ie
vh ;

&n [F.(Re =R — o) — F,(R. —Rp],  (5)

where
Fy(R) = / &*r' 1 pC () Ko(w, IR — R|/v).

We can now Taylor-expand Eq. (5) in powers of the displace-
ments uy, which we assume to be small compared with the
equilibrium interatomic distances. Retaining only linear terms,
one finds

2ie .
sn ~— u - Gn(Re - R[), (6)
vh p
where
Wy 2’ xCm’ ’ R-R
G,R) = — | dR p"(R)K (o, |R = R|/v) =——— (7)
v IR —R’|
and we have introduced the z-integrated atomic charge density
oo
PR = [ dz e R ) ®)
—00

Now, for the typical acceleration voltages used in transmission
electron microscopes (i.e., 80-300kV, corresponding to v/c ~
0.50-0.78) and for phonon energy losses hw, < 0.2 eV (i.e.,
the upper limit in carbon allotropes), we have v/w, > 500 nm,
which is a large distance compared with the sizes of the atomic
clusters under consideration. In particular, the argument in the
exponential of Eq. (8) is small over the region in which p©
takes nonnegligible values, and therefore, we can approximate

R~ [ di R ©)
—00
Likewise, we can apply the small argument limit of the Bessel
function K;(0) =~ 1/6, which permits approximating Eq. (7)
as
d’R’ .
GR)~ [ —= F“R-R)R"

It is now convenient to express the atomic charge as p(r) =
e[Z5(r) — n(r)] in terms of the atomic electron density n(r)
and the nuclear charge eZ. Writing the integral in polar
coordinates, we finally find

G,(R) = e[z _ 2/n dy cosq)/oo dR’ ﬁ(d)] R, (10)
R 0 0

where d = /R2+ R?> —2RR'cos¢ and we use A(R)=
J dzn(r) by analogy to Eq. (9).

In what follows, we show results obtained from Egs. (4), (6),
and (10). For simplicity, we neglect the spatial extension of ls
electrons in carbon, so we effectively have Z = 4 and approxi-
mate n(r) = 2|, (r)> + [¥2,(r)|*(R?/2 + z%)/r?; that s, we
take two electrons in the normalized v, orbital, one electron
shared in the in-plane (x/r)yr, and (y/r)yr, orbitals, and
one valence electron in the out-of-plane (z/r)vr,, orbital. In
practice, we use tabulated atomic data for these orbitals [18].
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FIG. 1. (Color online) Spatially resolved excitation of phonons
in triphenylene. We show an EELS spectrum (solid curve) calculated
for 100 keV electrons focused at the position indicated by a vertical
arrow in the density plot. The latter represents a 0.19 eV energy
filtered map. Atomic displacements associated with one of the 4-fold
degenerate 0.19 eV vibrational modes are shown by open arrows.
The dashed curve represents the local density of vibrational states
(LDVS) at the beam position (see Sec. III).

Incidentally, the same results are obtained by treating the
carbon cluster as a classical array of coupled particles with
a charge density pC(r), linearizing their displacements, and
calculating the EELS probability from the field induced back
at the electron (Eq. (8) of Ref. [16]).

It is important to note that for sufficiently energetic beams
the electron velocity v enters this formalism only through
a factor 1/v in the transition amplitude &, (i.e., the EELS
probability scales as 1/v?), so although the results presented
below are calculated for 100 keV electrons (v & 0.55 ¢), it is
straightforward to apply them to other electron energies (e.g.,
the plotted intensities have to be multiplied by a factor of ~77
when considering 1 keV electrons).

An illustrative example of phonon-related EELS probabil-
ities is presented in Fig. 1 for electrons interacting with a
triphenylene molecule. The spectrum, which corresponds to
the electron trajectory depicted in the inset, displays several
intense features associated with different vibrational modes. In
particular, the highest-energy peak involves the excitation of
4-fold degenerate combinations of localized stretching modes,
with atomic displacements as shown by arrows in the inset for
one of them. The inset also shows a contour plot with the loss
probability at this energy loss as a function of electron beam
position, suggesting a confinement towards the central ring of
the molecule.

When examining atomically resolved phonon excitations,
it is important to consider the finite size of the electron beam.
Assuming a large aperture in the electron analyzer, so that all
the inelastic signal is collected, the EELS probability is simply
obtained from the average of the above results (assuming a
linelike beam) over different positions, weighted by the beam
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FIG. 2. (Color online) Effect of finite electron beam lateral size.
We show the EELS probability under the same conditions as in Fig. 1
for different values of the half width at half maximum o. The beam
has Gaussian profiles.

intensity profile [20]. Some results for Gaussian beams of
different half width at half maximum o are shown in Fig. 2,
considering the same sample and central position of the beam
as in Fig. 1 (i.e., at the center of a C-C bond). It is interesting
to note that the probability is initially increasing with beam
size, as a larger portion of the electrons is passing closer to
the atoms, and eventually decreases for higher ¢ when an
even larger portion is too far to excite them. For simplicity,
we show results for o = 0 in what follows, which are actually
similar to those obtained for a realistically attainable beam size
20 ~ 0.5 A (see Fig. 2).

III. PROBING THE LOCAL DENSITY OF VIBRATIONAL
STATES THROUGH EELS

It has been argued that EELS in photonic structures yields
information on the so-called local density of optical states [21].
Likewise, the losses due to the excitation of vibrational modes
can provide insight into the spatial distribution of those modes.
A first indication that this is the case is given by comparing
the dashed (LDVS) and solid (EELS) curves in Fig. 1. A more
detailed analysis of this idea is presented in Fig. 3, where we
consider structures of increasing size (top to bottom) and com-
pare the EELS probability for a given beam position and the
LDVS at that position. We define the LDVS by analogy to the
density of electronic states [22] as the spatially and spectrally
resolved distribution of vibrational modes. More precisely,
orPVS(w) oc Y, [ul'|*8(w — w,), where [ labels atomic posi-
tions and n runs over modes. To facilitate a comparison with
EELS, we convolute the LDVS with a space Lorentzian, so we
actually plot (8,/2m) ), ,oILDVS/[lR —R> + (8,/2)*] with
8, = 0.2 nm. Additionally, we introduce the same frequency
broadening as in the ZLP [see Eq. (4)]. From Fig. 3, we
observe a clear resemblance between EELS and LDVS, which
is maintained for all clusters considered up to the extended
graphene limit (lower panel), although the agreement between
both quantities is far from complete. We also examine the full
spatial dependence of these magnitudes for selected energies
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FIG. 3. (Color online) Correlation between EELS and LDVS.
EELS spectra (solid curves) and energy-filtered maps (upper insets
in each case, corresponding to the labeled spectral features) are given
in absolute units (loss probability per eV of energy-loss range) for
nanographenes of increasing size (top to bottom), compared with
the LDVS (broken curves and lower contour-plot insets, both in
arbitrary units). The beam position is indicated by a red cross in
the energy-filtered maps.

(see insets) and find that they undergo a comparable degree of
localization and display similar spatial patterns.

The distinct spatial distributions of different modes suggest
the possibility of selectively exciting them by aiming the
electron beam at different locations. Figure 4 shows that this
can be achieved with modes of different energy. For example,
for the outer beam position under consideration, there is a
preferential excitation of the 0.17 eV mode, whereas the
innermost trajectory excites the 0.19 eV mode with dominant
strength.
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FIG. 4. (Color online) Selective phonon excitation. We show the
loss probability for electrons passing at different positions relative to
a 90-atom carbon nanotriangle, showing the selective excitation of
different modes at each position. The electron positions are indicated
by crosses in the upper inset with the same colors as the corresponding
spectral curves.

IV. CONCLUSION

Our results indicate that electron beams undergo large
interaction with the vibrational modes of nanographenes,
which can then be probed through EELS in state-of-the-art
TEMs. The loss probability is in fact closely related to the
local density of vibrational states, thus suggesting the use
of their mode-dependent spatial distributions to accomplish
selective excitation of a specific phonon by focusing the beam
at a region of maximum density. This situation is similar to the
optical manipulation of plasmons in metallic nanostructures,
so phonons are also suitable candidates for signal propagation
and manipulation, with the additional advantage of their
larger quality factors. We note that rather large excitation
and absorption probabilities can be achieved through the
use of relatively low energy electrons in the sub-keV range.
Nanofocusing of such electrons could be accomplished by
using nanoscale field-emission sources (e.g., metal tips) in
close proximity to the samples. Our results support the
potential of phonons as long-lived substitutes of plasmons in
molecular-size structures.
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APPENDIX: EQUIVALENCE OF HAMILTONIAN
AND DIELECTRIC APPROACHES TO EELS

In order to establish a relation between the present
Hamiltonian formalism and previous dielectric approaches,
it is convenient to write Eq. (1) as g,(t) = —e,[r.(1)],
where ¢, (r) = f d’r' p,(r')/|r — 1’| is the electric potential
due to the charge p, associated with the phonon mode
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n. Considering now a general external charge p*'(r,r)
instead of the electron, the coupling coefficients become
gn(t) = f d*rp(r,1) ¢, (r). Following previous work for this
type of Hamiltonian [17], this allows us to write the expression
(Eq. (37) of Ref. [17])

Z a)il d)n (r)¢l‘l (r/)

Wind(r,l'/,a)) — % _nrrA RN
w? — w2 +i0?

5 (AD)

n

for the induced screened interaction, which is defined such
that [ d*r Wn(r,r',w)p™(r',w) is the electric potential at
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position r due to o' in frequency space w. Equation (A1) can
be directly inserted into Eq. (10) of Ref. [16] to yield the loss
probability

MPS ) = 3 16,80 — w,),

where &, coincides with the definition of Eq. (3). Finally, Eq.
(4) is derived from this expression by convoluting it with a
finite ZLP frequency width y. This result confirms that the
present Hamiltonian formalism is equivalent to the dielectric
approach that is traditionally used in EELS.
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