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Prospects of spatial resolution in vibrational electron energy loss spectroscopy:
Implications of dipolar scattering
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We use scattering theory to study the spatial resolution achievable in vibrational energy loss spectroscopy
using a focused beam of high-energy (~100 keV) electrons. We first outline a theory for calculating vibrational-
spectroscopic images of crystalline or noncrystalline materials at nanometer spatial resolution or better (up
to atomic resolution). The electron scattering and the atomic vibrations are treated quantum mechanically.
Dipolar scattering from long-wavelength optical vibrations is included. We present calculated atomically resolved
vibrational-spectroscopic images of a polar crystalline material (hexagonal boron nitride). For such materials,
dipole scattering from long optical vibrations can give rise to a strong background in the images, which has
implications for the attainable spatial resolution. We show that an annular collection geometry can significantly
reduce the dipole background, thereby reducing the electron dose required to observe atomic-scale contrast.
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I. INTRODUCTION

It has recently become possible to use the high-energy
electrons in a scanning transmission electron microscope
(STEM) to perform vibrational spectroscopy of nanomaterials
[1,2]. This technique can be used to map the vibrational
properties of freestanding nanomaterials in a transmission
geometry. To date, the technique has been applied to study the
vibrational properties of ionic liquids [2], to detect the presence
of molecular species [3,4], to study the vibrational excitations
of beam-sensitive biological materials [5] (see also [6]), and
to map excitations in dielectric materials [7,8]. Moreover,
with the atomic-sized electron beams that can be generated in
modern aberration-corrected STEMs, this advance opens the
door for spatially resolved STEM vibrational spectroscopy at
very high, perhaps even atomic, spatial resolution. In a recent
work [9], we demonstrated experimentally a spatial resolution
of the order of 1 nm. Such capabilities constitute a significant
advance in the analysis of nanomaterials.

Inaprevious work [10], a theoretical analysis of vibrational-
spectroscopic images of selected molecules showed that high,
and even atomic, spatial resolution is allowed by the scattering
physics. That analysis [10] included a realistic model of the
dipole scattering from optical vibrational modes. In fact,
the importance of dipole scattering in electron-vibrational
spectroscopy was recognized decades ago in works such as
those of Lucas et al. [11], who examined vibrational excitations
in dielectric thin films, and Ibach and Mills [12] and Thiry
et al. [13], who examined vibrational excitations at surfaces.
It is mainly this scattering that has been utilized in the STEM
experiments reported thus far [1-5,7,8]. If present, and it often
is, dipole scattering typically produces a strong contribution;
moreover, it is inherently long ranged, extending far beyond
the atomic scale [14]. Hence a proper analysis of the dipole
scattering is absolutely mandatory in the context of spatial
resolution. This was also realized in the work of Rez [15], who
examined the spatial resolution of vibrational scattering from
molecules and also reached the conclusion that high spatial
resolution should be possible.

“christian.dwyer @asu.edu

2469-9950/2017/96(22)/224102(9)

224102-1

The question of what spatial resolution might be achievable
in vibrational mapping of extended specimens, particularly
crystalline ones, is also of considerable interest [16—19]. For
example, the resolution attained for a crystal foil may well
dictate that achievable at interfaces and localized defects,
which are also ultimately of great interest. In the case of
acoustic-type modes, where long-ranged electric fields are
absent, it is apparent from our understanding of high-angle
annular dark-field imaging that atomic resolution should be
achievable, as confirmed by recent works [17,18]. On the
other hand, in the case of optical modes in polar crystals,
long-ranged fields can build up with distance, causing dipole
scattering which inadvertently affects the spatial resolution.
Notwithstanding this, some recent works [17,18] omitted the
dipole scattering, which could lead to erroneous conclusions
when the optical modes are involved.

In this work, we outline a theory of advanced spatially
resolved vibrational spectroscopy in the STEM, and we use it
to analyze the feasibility of vibrational mapping of extended
specimens at lattice resolution. The electron scattering and the
atomic vibrations are treated quantum mechanically. Dipole
scattering is included. The vibrational states are calculated
using a Born—von Kdrman model, as is necessary for a realistic
account of the vibrational spectra. Later, we present calculated
vibrational maps of (polar) hexagonal boron nitride, giving
special attention to the spatial resolution and the signal strength
afforded by the scattering physics. We show that vibrational
maps of a polar material can be dominated by dipole scattering.
We also show that dipole scattering can be reduced by using
an off-axial collection geometry such as an annular collection
aperture, thereby reducing the electron beam dose required to
observe lattice contrast.

II. BACKGROUND

In STEM vibrational spectroscopy, a beam of accelerated
electrons (~100 keV) passes through a beam-defining aperture
before being focused to a small crossover (typically, ~0.1—1
nm) at the sample plane. The beam is scanned across
the electron-transparent sample, which is typically up to
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several tens of nanometers thick. A collection aperture in
the diffraction plane admits electrons that have been scattered
through a certain angular range, allowing them to pass into the
energy loss spectrometer. Vibrational spectra are acquired in
synchronization with the scanning beam. A vibrational map of
the sample is produced by plotting a particular spectral feature
as a function of beam position to form an image.

We use Mgller potentials to describe the inelastic scattering
of high-energy electrons by a target (by which we mean an
agglomerate of bonded atoms). Using the single-inelastic-
scattering approximation, the wave function of an inelastically
scattered electron in the diffraction plane can be written in the
form

Yav(K; Xo)

+00
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Here 7 is the coordinate along the optic axis Z, bold symbols
denote two-dimensional vectors transverse to Z, ¥ is the wave
function of the incident beam focused at a position Xy on the
target’s entrance surface, the functions G are the propagators
which account for the multiple elastic scattering before and
after the single inelastic event, V,, is the Mgller potential for
exciting a certain quantum state of the target (here a vibrational
mode gv), and o = 1//iv is the interaction constant, where v
is the incident electron’s velocity. We have used a Fourier
space representation for the incident wave function and mixed
Fourier-coordinate representations for the propagators. This
expression describes the wave function v, as evolving from
the plane of the beam-defining aperture before the sample
(coordinatized by k) to the diffraction plane after the sample
(coordinatized by k).

The vibrational signal for beam position X, is obtained by
integrating the appropriate inelastic intensity that falls inside
the spectrometer collection aperture:

o)=Y / K [, (k; X0)|, )
qv ap.

where the prime on the summation means to include only those
vibrational modes having, say, energies within a chosen range.
The intensity /(Xp) is a vibrational-spectroscopic image (or
“vibrational map”) of the target.

III. MODEL OF ATOMIC VIBRATIONS

We use a Born—von Karman model based on the harmonic
and adiabatic approximations [20]. This model is tailored
for atomic vibrations in crystals, i.e., phonons, but it is also
applicable to nonperiodic solids and molecules if a supercell
with buffering layers of vacuum is used. The model also has
the benefit that it is amenable to calculation using plane-wave
density-functional codes.

For a crystal, the modes are labeled gv, where ¢ is a wave
vector in the first Brillouin zone of the primitive unit cell, and
v labels the branches which in number equal three times the
number of atoms in the primitive unit cell. For a nonperiodic
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solid or molecule, the primitive unit cell and the supercell are
the same, so that the Brillouin zone reduces to g = 0, and the
modes are labeled solely by v.

In the general case, the atoms are labeled by /«x, where
[ labels the primitive unit cell and « labels the atom in the
primitive cell. The displacement operator of nucleus /«x can be
written [20]

u(le) = Z[C;‘U(l/c)a;‘l, + Cpu(i)ag,], 3)
qv

where a;, and a,, are creation and annihilation operators for
mode qv, respectively, and

12 A
qu(lK) = ( ) eqv(K)elq‘x’Kv (€]

2Nmwy,
in which N is the number of primitive unit cells in the supercell,
m, is an atomic mass, w,, and e, (k) are the angular frequency
and (partial) eigenvector for mode gv, respectively, and x;, is
the equilibrium position of nucleus /k. [We use the convention
that the phase factor ¢/ containing the «xth nucleus’ position
X, within the primitive unit cell is not contained in the
eigenvectors e, (k) but appears explicitly in Eq. (4) as part
of eid%ix ]

To calculate electron-vibrational scattering, we must recon-
cile the use of a Born—von Karman supercell with the fact that
the target is finite, and therefore not translationally invariant,
along the direction parallel to the beam. We distinguish
between the following two scenarios:

A thin target is small enough in the direction parallel to
the beam that we can compute its modes using a Born—von
Karman supercell containing buffering layers of vacuum. This
applies to extremely thin crystal foils, small nanoparticles,
adsorbed molecules, etc. For thin targets in general, the modes
are labeled qv, where the parallel component g; has been
dropped and then for targets without translational invariance
q is also dropped. All modes are included; for example, for a
crystal foil the surface modes are included.

A thick crystal foil is too large in the parallel direction
to be entirely contained within a supercell. Here we must be
content with using a smaller Born—von Karman supercell to
calculate the bulk vibrational modes gv in the conventional
way. Then interpolation with respect to g can be performed
and is equivalent to enlarging the bulk supercell. If the crystal
thickness is an integral number of primitive unit cells, then the
enlarged supercell can contain the entire foil (without vacuum),
and the allowed g, are commensurate with the periodic
boundary condition across the thickness of the foil. Surface
modes are neglected. Only the bulk modes are included.

IV. M@LLER POTENTIALS
FOR VIBRATIONAL SCATTERING

Appendix A shows that the Mgller potential for exciting
mode gv can be written in the form

Vor(x) = Z ugv(lic) - Vi (V(x)), (%)
173

where (V(x)) is the thermally averaged interaction energy,
Vi s a derivative with respect to the equilibrium position of
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where ng, is the occupation number of mode gv. The
quantity u,,(I«) can be interpreted as the thermally averaged
displacement of nucleus /« vibrating in the mode gv, with the
caveat that this displacement is a complex quantity associated
with a target transition |ng,) — |ng4, + 1). From Eq. (5),
we see that V,,(x) is nothing but the first-order change
in the thermally averaged potential caused by the nuclear
displacements {1y, (/«)}.

We point out that we have not assumed a simple sum of
electron-atom or electron-ion interactions. Hence the Mgller
potential in Eq. (5) is valid even in the case of strong covalent
bonding of the atoms, for example. Notwithstanding this, the
adiabatic approximation allows the Mgller potentials to take
the form of a sum over the atoms in the target, which facilitates
their calculation.

We use multislice theory [21] to compute the dynamical
elastic scattering embodied in the propagators G of Eq. (1).
Multislice theory requires the projected Mgller potentials,
which are given by

n+1

Vou(x) = [ dz Vgu(x,2)e" /", )
where z,, and z,,1; define the bounding planes of the nth slice.
The phase factor ¢/“w?/V accounts for the energy loss; that
is, the parallel component of the beam electron’s scattering
vector is related to the energy loss via kj = —w,,/v. In the
case of a thin target, it is often convenient to set the limits
of integration in Eq. (7) to —oco and +o0, referred to as the
projection approximation,

+0o0o )
Voo (X) = / dz Vy(x,2)e @™/

o0

d’k .
— [ Vet —wp e @)
where the second equality follows from the Fourier projection
theorem. The projection approximation neglects the curvature
of the Ewald sphere. In practice, we use a combination of these
two projection schemes: The sum over atoms in Eq. (5) means
that atoms can be unambiguously assigned to a given slice,
and then the contribution of these atoms is integrated over the
full range of z values.

V. DIPOLE SCATTERING

Dipole scattering corresponds to the limit of small scatter-
ing vectors k — 0. It is not possible to include these scattering
vectors directly in a numerical calculation of the electron
scattering. Hence the dipole contribution must be included
“by hand.” Dipole scattering can be considered to result from
the vibrating target’s macroscopic electric field, that is, the
field obtained by averaging over a length scale that is much
larger than the atoms but much smaller than the target overall.
Macroscopic fields can extend well beyond the volume of the

PHYSICAL REVIEW B 96, 224102 (2017)

target and cause scattering in those regions. In the case of a
crystal foil this includes the regions above and below the foil.

In vibrational mapping, dipole scattering gives rise to a
background intensity. In the context of the present work, such
a background can potentially mask a weaker high-spatial-
resolution signal.

We first present the results obtained from the classical
theory of electron scattering from a dielectric foil [11]. A
succinct derivation will form part of a forthcoming publication
[22]. A continuum dielectric description is valid for long
optical modes. The theory predicts scattering from the bulk
longitudinal modes and the surface modes of the dielectric
foil. It is found that, for the thicknesses we are interested in,
scattering from the surface modes dominates. Of the surface
modes, the symmetry of the ungerade (uneven) modes leads
to weak scattering, while that of the gerade (even) modes
leads to the dominant scattering contribution. The intensity of
scattering from a gerade mode labeled by wave vector q can
be written in the form

Al 1 & B 4lqle [ Z5 N’
d?(q/2m) T QRrh? 2wgq sinh gt \ € — €q

4 ? 9
“Nlar+ w22 ) ®

where Z7 is the transverse effective charge and €q =
— coth |q|t/2. In the limit |q|t < 1, which we presume is valid
for ultrathin foils, Eq. (9) simplifies, and we can perform the
integration with respect to q for a circular aperture with a
cutoff wave vector g.:

[ _LEZE R [ dq (@n)lgP
ger — Q h2v2 ZMCUT (27-[)2 (q2+w%/v2)2
t ZZ*Z h 2
~ Ll 4nln< e ) (10)
Q K v? 2uor wy [v?

where wr is the bulk transverse mode frequency and the ap-
proximation assumes g, >> wr/v. The predictions of Egs. (9)
and (10) for dipole scattering from [0001] hexagonal boron
nitride are shown in Fig. 1.

Having summarized the results from the classical theory,
we now consider dipole scattering from a crystal foil using the
Mgiller potential formalism. The modes of the crystal foil are
labeled by qv. Appendix B shows that the Mgller potential
for dipole scattering, for scattering vector k = —q — (wgq, /v)Z2
with q — 0, can be written in the form

47quv -[q+ (qu/v)ﬂ

V(=G = oV = N = g e

., (1D

where

Pav =Y uq(k)- Z: (q— 0). (12)

Dqv 1s the dipole moment of the home primitive cell induced
by the vibrational mode qv (q — 0). This dipole moment is
composed of the mode displacements ug, () and the effective
charge tensors Z?. For nonpolar materials Z7 = 0, and there is
no dipole scattering. For polar materials pq, # 0 for optical-
type modes, and dipole scattering is allowed. From Eq. (11)
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FIG. 1. Calculated dipole scattering probability of 60 keV elec-
trons from the gerade modes of a dielectric foil [Eq. (9)]. The
dielectric properties match [0001] hexagonal boron nitride, and the
maximum thickness (20 nm) corresponds to 30 [0001]-oriented unit

cells. A scattering cutoff of 0.7 mrad is assumed. The prediction
assuming |q|t < 1 [Eq. (10)] is also shown.

we see that the perpendicular and parallel components of pg,
have different selection rules: If the target is isotropic in the
perpendicular directions, then only the longitudinal component
q - pq» contributes. For the parallel component pq, there is
no such restriction, although its contribution is small owing to
the smallness of wgq, /v.

Let us assume a polar crystal foil that is isotropic in the
perpendicular directions and consider the in-plane LO-type
modes. Using Eq. (11) the probability that an incident electron
in a plane wave state undergoes dipole scattering is given by

L=y-(5 2fqrdzq'|V< o2
v = v, \ v (27)? @l—(q, — Wqv/V

_ &N [* d’q (4r)’pel’d’
o) QP (@ + g, /02)

13)

where ¢, is a cutoff wave vector. The dipole squared can be
written

i(ng) + 1) ’

2Nwy,

e* (k )
Z qv( ) . Z:e,lq.xk (14)

2
|pqv| = 1/2
my

so in Eq. (13) the factor of N cancels. Equation (13) predicts
the dipole scattering for a general polarization pg,, including
surface modes.

Because the Mgller potential for dipole scattering is slowly
varying in coordinate space, the result for a plane wave is also
applicable to a focused electron beam, provided that the beam
wave function is significantly narrower than the delocalization
distance (which we assume to be the case). Moreover, the
small scattering angles imply that the dipole scattering closely
follows any larger-angle scattering, such as elastic scattering.

We can show that in the limit of ultrathin targets, Eq. (13)
agrees with the classical result (10). To this end, we further
assume a crystal structure with a primitive unit cell containing
2s atoms, s of which are cations of the same species, having
effective charge +Z* and mass m,, and the other s being
anions of the same species, having charge —Z* and mass m_.
Common examples include LiF, BN, SiC, and GaAs. When
q — 0, the optical mode displacement eigenvectors satisfy
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mir/ze(—i—) = —ml_/ze(—), and it can be shown that
fi((ng,) + 1) Z*?
Pl = = ——— (15)
Nwg, 1

where the effective mass is defined by ' =>" m_'. We
assume (ng,) ~ 0 for optical modes. If we neglect any
variation of |pgy, |* and wgq, with respect to q, which is valid for
ultrathin targets, then the integral in Eq. (13) can be performed,
and we obtain, finally,

t 22*2 h 2
I~ 2T 47[1n< 9c ) (16)

T QR 2uw, w?/v?

which is the same as the classical result (10).

An analogous calculation can be performed for dipole
scattering from out-of-plane transverse or longitudinal optical-
type modes. The result, again valid for ultrathin targets, is

Iu ~ Le2zzz h((”v) + 1)47[,

Q h%?
where Z7 is the longitudinal effective charge. Note that here
the intensity rapidly converges with scattering angle, so unlike
the result for in-plane modes, there is no dependence on ¢,
for g. > w,/v. For typical parameters, the contribution from
out-of-plane modes tends to be at least an order of magnitude
smaller than that from in-plane modes.

Equations (16) and (17) are useful for estimating the dipole
scattering from ultrathin crystals. For thicker crystals we
require either the full classical result (9) or the quantum result
13).

In the context of vibrational mapping, the question of the
appropriate cutoff g, requires consideration since, on the one
hand, g, is assumed to be small (e.g., for a continuum dielectric
description to hold), while, on the other hand, the geometry
used for mapping experiments generally admits much larger
q’s. A method for choosing g, is described in the next section.

17
o, an

VI. NUMERICAL RESULTS

Below we consider calculated spatially resolved vibrational
maps of [0001] hexagonal boron nitride. We assume an
aberration-free 60 keV beam with a 30-mrad convergence
semiangle (which gives a probe size of 0.9 A FWHM).
The elastic and inelastic (vibrational) electron scattering was
calculated using a multislice approach combined with the
Mgiller potential formalism, as embodied in Egs. (1), (2), (7),
and (8). A supercell comprising 16 x 16 ~2-BN unit cells was
used for the electron scattering calculations.

We used density functional theory and the finite-
displacement method to calculate the vibrational modes of 4-
BN. The finite-displacement method allows us to incorporate
the changes in electronic bonding charge associated with
vibrational modes (which, in the limit of long wavelengths,
is described by the effective charges). We treated single-layer
BN as a thin target (see Sec. III), and we used a 4 x 4 x 1
supercell in which the atomic layers are separated by 2.5 nm
of vacuum. We treated the thicker BN samples as thick crystal
foils (see Sec. III), and we calculated their bulk modes using
a 4 x 4 x 1 supercell. The calculated phonon dispersion of
single-layer BN is shown in Fig. 2. Also shown in Fig. 2
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FIG. 2. Calculated position-averaged vibrational energy loss
spectra and phonon dispersions of single-layer #2-BN. The spectrum
also shows the dipole contributions from in-plane LO modes at
170 meV (whose intensity is 25 times larger than indicated) and
out-of-plane optical modes at 102 meV. The spectrum assumes a
resolution of 10 meV.

is the position-averaged vibrational spectrum, for which the
collection angle matches the convergence angle. The lightness
of B and N atoms and the strong in-plane electronic bonding
cause hexagonal boron nitride to exhibit high-energy optical
phonon modes (Fig. 2) that lie well within the spectral range of
new-generation STEMs. The vibrational-spectroscopic images
presented assume an energy window of 150-200 meV (1200—
1600 ecm™!), which includes contributions mainly from the
highest-energy optical phonons.

We used density functional perturbation theory to calculate
the Born effective charges for 2-BN. We obtained Zj, =
—Z{, =2.70e, in good agreement with others [23]. The
effective charges in #-BN give rise to strong dipole scattering.
Following our previous discussion, the dipole scattering
forms a background in the vibrational map which mimics
the elastic signal. The dipole contribution is given by the
probability of elastic scattering multiplied by the probability
that a plane wave undergoes dipole scattering. We used the
dipole scattering probability for the gerade modes plotted in
Fig. 1, where the 0.7-mrad scattering cutoff assumed there
corresponds to vibrational modes with wavelengths larger than
the 16 x 16 supercell used for the results in Fig. 3. Hence
in Fig. 3 the dipole contribution consists of scattering from
modes with wavelengths too large to be contained within the
supercell.

Figure 3 shows the calculated vibrational-spectroscopic
images of [0001] A-BN. Images are shown for thicknesses
of 1 atomic layer, 5 unit cells (3.3 nm), and 30 unit cells (20
nm) and for collection semiangles 8 = 10, 30, and 50 mrad
(i.e., smaller than, equal to, and larger than the convergence
semiangle). For § = 10 mrad, we see that for the thinner
samples the intensity maxima do not necessarily correspond to
the atomic positions. Such behavior, which is often observed
when the collection angle is smaller than the convergence
angle, makes it difficult to interpret the vibrational images
directly in terms of the atomic structure. Moreover, the small
collection angle omits a significant proportion of the scattering,
giving rise to lower intensities, as shown by the line traces in
Fig. 3. Increasing the collection semiangle to 30 mrad and then
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further to 50 mrad greatly improves the interpretability of the
vibrational maps; that is, intensity maxima correspond to the
atomic sites, as well as increasing the overall intensity.

The line traces in Fig. 3 also show the dipole scattering
contributions. For single-layer BN, we see that the dipole
background comprises the major contribution, and it results
in images with very low contrast. In this case the dipole
background is flat since there is negligible elastic scattering.
For the thickest sample, the dipole scattering comprises only
about 1/3 of the vibrational signal, although it can still lead to
a substantially reduced image contrast, e.g., for § = 50 mrad.

VII. DISCUSSION

An important consequence of a strong dipole background is
that more incident electrons are needed to observe the atomic-
scale contrast in an experiment. To estimate the minimum
number of incident electrons required, we assume an ideal
scenario where the only noise source is the shot noise. We
let the level of shot noise correspond to the mean number
of scattered electrons in the vibrational map. This noise
level is «/N.(I), where N, is the mean number of incident
electrons per pixel (the pixel size being appropriately matched
to the atomic-scale contrast) and (/) is the mean intensity.
It follows that observation of atomic-scale contrast requires
a dose N, 2> (I)/(Al)z, where A[ is the magnitude of the
atomic-scale intensity variations. This required dose increases
with decreasing contrast, as expected.

It has been suggested in several works [9,10,17,19] that
an annular collection geometry with an inner angle slightly
larger than the convergence angle could be used to reject
the majority of the low-angle dipole scattering and thereby
improve the atomic-scale contrast. In terms of the electron dose
N,, such a geometry essentially corresponds to reducing (/)
while maintaining or increasing A/, thereby lowering N,. An
annular geometry may have other important benefits too, such
as partially alleviating the experimental challenge of energy
resolution versus collection angle and significantly reducing
the strong elastic peak in the energy-loss spectrum (potentially
a significant source of noise in vibrational spectroscopy).

Figure 4 shows calculated vibrational-spectroscopic images
and line traces for an annular collection range of 35-50
mrad. These results should be compared with the g = 50
mrad cases in Fig. 3 (which have the same outer angle).
In Fig. 4 it is seen that an annular geometry results in
directly interpretable images in the sense described above.
Importantly, the image contrast is also dramatically improved,
leading to lower electron beam doses for atomic resolution.
For single-layer BN, the annular geometry reduces N, from
1 x 10° to 2 x 10*. For a thickness of 30 unit cells, N,
is reduced from 1 x 10* to 4 x 10°. Note that our simple
model for calculating N, assumes a “direct” observation of
atomic contrast in the vibrational-spectroscopic images. In
crystalline samples, averaging techniques can provide a means
of reducing N, by an order of magnitude or more. On the other
hand, experiments contain noise other than the shot noise in
our simple model, which will again increase the required dose.

Before concluding, we should distinguish between the
present results for crystals and our previous results on isolated
molecules. In previous work [10], we showed that, even
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FIG. 3. Calculated vibrational-spectroscopic images and line traces of #-BN. For the images, the sample thickness and collection semiangle
are indicated; atomic models of BN are overlaid (for one layer, B is red and N is blue); gray scales are linear, with the minimum and maximum
intensities represented as black and white. For the line traces, the beam paths are indicated by green lines on the images; / is the scattering
probability (solid lines), and the dipole scattering contribution is shown separately (dashed lines). A beam energy of 60 keV, convergence
semiangle of 30 mrad, and energy window of 150-200 meV apply throughout.

for a molecule that is strongly polar, the dipole scattering
does not necessarily mask the atomic contrast. This is in
contrast to results in Fig. 3. The different conclusions can
be understood quite simply: In crystals, the dipole fields of
a very large number of unit cells can add up to produce
a strong macroscopic field at a given position, but for an
isolated molecule the dipole field originates only from that
single molecule, so it remains comparatively weak.

VIII. CONCLUSION

In summary, we have presented a quantum-mechanical
theory of advanced spatially resolved vibrational electron
energy loss spectroscopy in the STEM. Numerical calculations
of vibrational maps for BN, a polar material, have shown that

the dipole scattering, which is manifest as a background in the
vibrational maps, can lead to substantially reduced atomic-
scale contrast. We have shown that an annular collection
geometry is effective in reducing the dipole background in
the case of BN, and this conclusion should extend to other
polar materials. This and the aforementioned benefits of
an annular geometry appear to provide a viable route for
pursuing high-resolution STEM vibrational electron energy
loss spectroscopy in the future.

APPENDIX A: MOLLER POTENTIALS
FOR VIBRATIONAL EXCITATIONS

The Mgller potentials will be derived by considering the
thermal average of the scattered electron intensity. First,
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FIG. 4. Calculated vibrational-spectroscopic images and line traces of #-BN for an annular collection aperture spanning 35-50 mrad. All

other parameters match Fig. 3.

we consider the instantaneous Coulomb interaction energy
between the beam electron and the target. Adopting the
adiabatic (Born-Oppenheimer) approximation, the interaction
energy is a function of the beam electron’s coordinate, denoted
by x, and the instantaneous positions of the nuclei. The nuclear
coordinates are x; + u(lk), where x; is the equilibrium
position and u(Ix) is the displacement from equilibrium. The
dependence on x;, will not be written explicitly, so that V (x,u)
will denote the interaction with the nuclei displaced, while
V (x) will denote the interaction without displacements. Hence
we write the instantaneous Coulomb interaction as a Taylor
expansion with respect to the nuclear displacements,

V) = eXn 0V (), (A

where the gradient V. is with respect to the equilibrium
position x;, of nucleus /x. We introduce the shorthand notation

u-v= Zu(l/c) Ve = Z[D;va;v + Dyag], (A2)
Ik

qv

where Dy, is the displacement operator for mode g v, defined
by
Dy =Y Cyollic) - Vi, (A3)
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where C,, (Ix) is given by Eq. (4). The instantaneous interac-
tion becomes

V(x,u) =e“VVx). (A4)

To derive the Mgller potentials we adopt a kinematical
approximation and consider the thermal average of the
intensity of electrons scattered by a wave vector k. Note that
this does not mean that the final theory will be kinematical.
Rather, the kinematic approximation is used here as a tool
to derive the Mgller potentials. This method of deriving the
Mgller potentials for vibrational scattering is based on the work
of Anstis [24], who used an Einstein model in a semiclassical
description of thermal-diffuse scattering. Here the method
is applied using a quantum-mechanical Born—von Karman
model.

The thermally averaged kinematical intensity is

(L)) o (|V (kw)l), (A5)

where V (k,u) is the Fourier transform of V (x,u) with respect
to the electron coordinate x and the angular brackets denote the
thermal average over the nuclear displacements u;,. We will
see that this thermal average can written as a sum of intensities,

(I(k,u)) o< |Vo(k)* + ViU + [Va(®)* + -+, (A6)

where |Vp|? is (proportional to) the elastic intensity and
[Vi(k) 2, | Va(k)?, ... are (proportional to) the inelastic inten-
sities associated vibrational excitations. Vi(k),V»(k), ... will
turn out to be the Mgller potentials.

Write the thermally averaged interaction in the form

VAV ) = (Ve Y e Vik))

= Ve Ve )y, (A7)

where the arrows indicate whether the derivative acts to the left
or right and the second equality follows because V (k) does not
depend on u. We are left to evaluate

u*~(V_ u_V) u-(V_ u-v u-((€+$) l([M'((V_'F%))]z)
(" e ) =(e"Te" ) = (e ) =e?

<

G, Tl ¥ :
0T P) -V VD 3 e V) (A8)

l—

1
:ei(

where the first equality follows from the displacement opera-
tors being Hermitian, the second follows because the sums
of displacement operators in the exponents commute, and
the third and fourth equalities follow from a straightforward
generalization of Eq. (7.2.22) of Ref. [20]. The exponents have
the forms

1 — — 1
5l VI = qZ | un|2<<nqv> + 5) (A9)
and
e = < =,
(- V- V1) =Y [DgD},(ng) +1)
qv
<~ —>

+ D}, D gying). (A10)
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where (n,,) is the average mode occupation.

The exponential factors on the left and right of the last
line of Eq. (AR8) are identified as Debye-Waller factors, whose
effect is to produce the thermally averaged interaction on the
left and right:

V)V ko)) = (V)™ V1D v e ). (A1)

The remaining exponential factor on the right entails all
possible vibrational excitations. It can be written in the form

ol ViV Hqu‘, (g +1)ququv(nq‘)

(A12)

The exponential containing (n,,) +1 corresponds to the
creation of vibrational quanta, and that containing (n,,)
corresponds to their destruction. Taylor expanding these
exponentials, we obtain individual terms of the form

< =,
l_[ VV[D‘I"D@
qv T4V°

»((ngv) + D]Pe

I <, = p
X '(DqUqu<nqu)) v,
qu .
where p,, > 0 and g4, > 0 are integers, which should be
interpreted as the number of gv quanta created and destroyed,
respectively.
With this last expression, we have accomplished our present
goal of writing the thermally averaged scattered intensity in

(A13)

the form
(k1) o< Y > [Vipyiigg R, (Al4)
{pgv} agv}
where {qu} = {p(qu)| »Pigvyas -+ - } and {Qqu} =

{4gv)+9@qv)»> - -}, so that the sum is over all of the
possible ways that the vibrational quanta (gv);,(qv), ... can
be created and/or destroyed. Explicitly, Vi, yi4,,) 18 given by

1—[ (ng) + P (ng,) 0

g (K) =
pq e} pqu!qu!

x Dy D (V (k,u)). (A15)

As a sanity check, elastic scattering corresponds to setting
all p’s and ¢’s equal to zero, which gives the thermally av-
eraged Coulomb interaction (V (k,u)), as expected. There are,
in fact, an infinite number of other scattering terms in which
the numbers of vibrational quanta are ultimately unchanged
and so which constitute part of the elastic scattering. These are
terms for which the p’s exactly match the ¢’s, so that quanta
are created and destroyed in exactly equal numbers. This is
the virtual inelastic scattering, which is needed to conserve
the total number of electrons that are scattered elastically
and inelastically. However, the potentials for virtual inelastic
scattering are at least second order in the (small) atomic
displacements, and therefore the effects are small, and they
will be neglected.

In contrast, proper inelastic scattering corresponds to at
least one of the p’s being different from the ¢’s. In this
work, we assume a first-order creation event, i.e., {py,} =
{0---010---0} and {g,,} = {0---0}. We denote a Mpgller

PHYSICAL REVIEW B 96, 224102 (2017)

potential for such scattering by V,, (k), where gv is the mode
of the single quantum created. Explicitly,

Voo (k) = ((ngy) + 12D (V (k,u)),

where the complex conjugate displacement operator Dy,
signifies the creation of one quantum of mode gv. Using the
definitions above, V,, (k) can also be written in the form

(A16)

Voo k) =Y ugu(lic) - Vi (V (ko). (A17)
Ik
where
ugu(lk) = ((ngy) + D'2C}, (1K)
(B £ DN L
_< 2Nmwy, ) g(K)e o (AlB)

An inverse Fourier transform gives the Mgller potential in
coordinate space (5). Elsewhere in this article we write (V (k))
instead of (V (k,u)).

APPENDIX B: M@LLER POTENTIALS
FOR DIPOLAR SCATTERING

Here we assume a crystal foil with surfaces. In Fourier
space, the thermally averaged Coulomb interaction is

4
(V) = —ek—Z(p(k)), (B1)

where (p(k)) is the Fourier transform of the target’s thermally
averaged charge density. We write the charge density in the
form

(p()) =Y (pi(k)). (B2)

l

where we have assigned charge density to each of the primitive
cells (which can be done unambiguously using a Wannier basis
for the electrons [25]). Moreover, the crystal periodicity in the
perpendicular directions implies

Vine(p1(k)) = e~ ¥V (pok)), (B3)

where py is the charge density of the home primitive cell / = 0.
Using this expression, we can obtain the following form of the
Mgller potential involving po:

4
EﬁN Z 6k+q—g
g

x Z e+ik-quqv(K) - Vi (po(k)> (B4)

73

Vark) = —

Dipole scattering corresponds to the limit k — 0, &k =
—wgy/v. Only the g = 0 term contributes. We further analyze
the right-hand side of Eq. (B4) in the limit £ — 0. In the
definition of the Fourier transform (p(k)), Taylor expanding
the exponential e~***, the term of zeroth order in k vanishes
on account of charge neutrality, so to first order in k, we obtain

> et L (po(h))
l

= Y et [ d e ik, ®9)
!
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When k& — 0, the right-hand side involves the change in the
home primitive cell’s dipole caused by a rigid displacement
of the sublattice k. Hence we can identify the effective charge
tensor

Zr = Ze+ik""V,K / dx (po(x))x, k— 0. (B6)
1

The effective charges given by this expression are easily shown
to satisfy the acoustic sum rule ), Z* = 0. Finally, let us
define

Pov =Y ug(k)-Zi, q—0, (B7)

PHYSICAL REVIEW B 96, 224102 (2017)

which is the dipole moment of the home primitive cell induced
by the vibrational mode gv (g — 0).

Replacing gv — qv in these definitions and using them in
Eq. (B4), we find that the Mgller potential for dipole scattering
from a crystal foil with surfaces can be written in the form

47quv -lq+ (qu/v)z]
Q@ + g, /v?

Vao(—q, — 0qy/v) = —ieN . (B8)

For a target without periodicity along the perpendicular direc-
tions, we should replace qu — v and drop the correspondence
between the mode v and the vector q.

[1] O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W.
Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. Lagos,
R. F. Egerton, and P. A. Crozier, Nature (London) 514, 209
(2014).

[2] T. Miyata, M. Fukuyama, A. Hibara, E. Okunishi, M. Mukai,
and T. Mizoguchi, Microscopy 63, 377 (2014).

[3] P. A. Crozier, K. March, and Q. Liu, Ultramicroscopy 169, 30
(2016).

[4] P. A. Crozier, Ultramicroscopy 180, 104 (2017).

[5] P. Rez, T. Aoki, K. March, D. Gur, O. L. Krivanek, N. Dellby,
T. C. Lovejoy, S. G. Wolf, and H. Cohen, Nat. Commun. 7,
10945 (2016).

[6] G. Radtke, D. Taverna, M. Lazzeri, and E. Balan, Phys. Rev.
Lett. 119, 027402 (2017).

[7]1 M. J. Lagos, A. Triigler, U. Hohenester, and P. E. Batson, Nature
(London) 543, 529 (2017).

[8] A.A.Govyadinov, A. Konecna, A. Chuvilin, S. Velez, I. Dolado,
A.Y. Nikitin, S. Lopatin, F. Casanova, L. E. Hueso, J. Aizpurua,
and R. Hillenbrand, Nat. Commun. 8, 95 (2017).

[9] C. Dwyer, T. Aoki, P. Rez, S. L. Y. Chang, T. C. Lovejoy, and
O. L. Krivanek, Phys. Rev. Lett. 117, 256101 (2016).

[10] C. Dwyer, Phys. Rev. B 89, 054103 (2014).
[11] A. A. Lucas, E. Kartheuser, and R. G. Badro, Phys. Rev. B 2,
2488 (1970).

[12] H. Ibach and D. L. Mills, Electron Energy Loss Spec-
troscopy and Surface (Academic, London,
1982).

[13] P. A. Thiry, M. Liehr, J. J. Pireaux, and R. Caudano, Phys. Scr.
35, 368 (1987).

[14] R. F. Egerton, Microsc. Microanal. 20, 658 (2014).

[15] P. Rez, Microsc. Microanal. 20, 671 (2014).

[16] A. Howie, Ultramicroscopy 151, 116 (2015).

[17] N. R. Lugg, B. D. Forbes, S. D. Findlay, and L. J. Allen, Phys.
Rev. B 91, 144108 (2015).

[18] B. D. Forbes and L. J. Allen, Phys. Rev. B 94, 014110
(2016).

[19] A. Howie, Ultramicroscopy 180, 52 (2017).

[20] A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the Harmonic Approximation, 2nd ed.
(Academic, London, 1971).

[21] E. J. Kirkland, Advanced Computing in Electron Microscopy,
2nd ed. (Springer, New York, 2010).

[22] D. D. Kordahl and C. Dwyer (unpublished).

[23] K. H. Michel and B. Verberck, Phys. Rev. B 83, 115328
(2011).

[24] G. R. Anstis, Acta Crystallogr., Sect. A 52, 450 (1996).

[25] N. Marzari, A. A. Mostofi, J. R. Yates, 1. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

Vibrations

224102-9


https://doi.org/10.1038/nature13870
https://doi.org/10.1038/nature13870
https://doi.org/10.1038/nature13870
https://doi.org/10.1038/nature13870
https://doi.org/10.1093/jmicro/dfu023
https://doi.org/10.1093/jmicro/dfu023
https://doi.org/10.1093/jmicro/dfu023
https://doi.org/10.1093/jmicro/dfu023
https://doi.org/10.1016/j.ultramic.2016.06.008
https://doi.org/10.1016/j.ultramic.2016.06.008
https://doi.org/10.1016/j.ultramic.2016.06.008
https://doi.org/10.1016/j.ultramic.2016.06.008
https://doi.org/10.1016/j.ultramic.2017.03.011
https://doi.org/10.1016/j.ultramic.2017.03.011
https://doi.org/10.1016/j.ultramic.2017.03.011
https://doi.org/10.1016/j.ultramic.2017.03.011
https://doi.org/10.1038/ncomms10945
https://doi.org/10.1038/ncomms10945
https://doi.org/10.1038/ncomms10945
https://doi.org/10.1038/ncomms10945
https://doi.org/10.1103/PhysRevLett.119.027402
https://doi.org/10.1103/PhysRevLett.119.027402
https://doi.org/10.1103/PhysRevLett.119.027402
https://doi.org/10.1103/PhysRevLett.119.027402
https://doi.org/10.1038/nature21699
https://doi.org/10.1038/nature21699
https://doi.org/10.1038/nature21699
https://doi.org/10.1038/nature21699
https://doi.org/10.1038/s41467-017-00056-y
https://doi.org/10.1038/s41467-017-00056-y
https://doi.org/10.1038/s41467-017-00056-y
https://doi.org/10.1038/s41467-017-00056-y
https://doi.org/10.1103/PhysRevLett.117.256101
https://doi.org/10.1103/PhysRevLett.117.256101
https://doi.org/10.1103/PhysRevLett.117.256101
https://doi.org/10.1103/PhysRevLett.117.256101
https://doi.org/10.1103/PhysRevB.89.054103
https://doi.org/10.1103/PhysRevB.89.054103
https://doi.org/10.1103/PhysRevB.89.054103
https://doi.org/10.1103/PhysRevB.89.054103
https://doi.org/10.1103/PhysRevB.2.2488
https://doi.org/10.1103/PhysRevB.2.2488
https://doi.org/10.1103/PhysRevB.2.2488
https://doi.org/10.1103/PhysRevB.2.2488
https://doi.org/10.1088/0031-8949/35/3/024
https://doi.org/10.1088/0031-8949/35/3/024
https://doi.org/10.1088/0031-8949/35/3/024
https://doi.org/10.1088/0031-8949/35/3/024
https://doi.org/10.1017/S1431927613014013
https://doi.org/10.1017/S1431927613014013
https://doi.org/10.1017/S1431927613014013
https://doi.org/10.1017/S1431927613014013
https://doi.org/10.1017/S1431927614000129
https://doi.org/10.1017/S1431927614000129
https://doi.org/10.1017/S1431927614000129
https://doi.org/10.1017/S1431927614000129
https://doi.org/10.1016/j.ultramic.2014.09.006
https://doi.org/10.1016/j.ultramic.2014.09.006
https://doi.org/10.1016/j.ultramic.2014.09.006
https://doi.org/10.1016/j.ultramic.2014.09.006
https://doi.org/10.1103/PhysRevB.91.144108
https://doi.org/10.1103/PhysRevB.91.144108
https://doi.org/10.1103/PhysRevB.91.144108
https://doi.org/10.1103/PhysRevB.91.144108
https://doi.org/10.1103/PhysRevB.94.014110
https://doi.org/10.1103/PhysRevB.94.014110
https://doi.org/10.1103/PhysRevB.94.014110
https://doi.org/10.1103/PhysRevB.94.014110
https://doi.org/10.1016/j.ultramic.2016.11.006
https://doi.org/10.1016/j.ultramic.2016.11.006
https://doi.org/10.1016/j.ultramic.2016.11.006
https://doi.org/10.1016/j.ultramic.2016.11.006
https://doi.org/10.1103/PhysRevB.83.115328
https://doi.org/10.1103/PhysRevB.83.115328
https://doi.org/10.1103/PhysRevB.83.115328
https://doi.org/10.1103/PhysRevB.83.115328
https://doi.org/10.1107/S0108767396001432
https://doi.org/10.1107/S0108767396001432
https://doi.org/10.1107/S0108767396001432
https://doi.org/10.1107/S0108767396001432
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419



