PHYSICAL REVIEW B 91, 144108 (2015)

£

Atomic resolution imaging using electron energy-loss phonon spectroscopy

N. R. Lugg,' B. D. Forbes,? S. D. Findlay,? and L. J. Allen*"
Vnstitute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
2School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
38chool of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
(Received 11 February 2015; published 20 April 2015)

Recent developments have improved the attainable energy resolution in electron energy-loss spectroscopy in
aberration-corrected scanning transmission electron microscopy to the order of 10 meV. In principle, this allows
spectroscopy and imaging of crystals using the phonon sector of the energy-loss spectrum at atomic resolution,
a supposition supported by recent simulations for molecules. Here we show that the “quantum excitation of
phonons” model encapsulates the physics necessary to simulate the atomic resolution imaging of crystals based
on phonon excitation and we explore the predictions of such simulations.
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I. INTRODUCTION

In scanning transmission electron microscopy (STEM),
the widely used technique of high-angle annular dark-field
(HAADF) imaging, also known as Z-contrast imaging, is
based on detecting the number of electrons scattered into an
annular detector as a function of the raster scan position of the
incident probe. Since the inner angle of the HAADF detector
is typically three to five times that of the probe-forming
aperture, the flux of elastically scattered electrons reaching
the detector is small compared with that of electrons which
have been inelastically scattered to large angles after excitation
(or deexcitation) of one or more phonons (also known as
thermal diffuse scattering). Whereas the electron energy in the
incident STEM probe is usually of the order of 100 keV, the
energy losses (gains) from phonon excitation (deexcitation)
are typically of the order of tens of meV. The trend from
ionization and plasmon scattering events suggests that low
energy losses correspond to delocalized interactions, but even
given the very low energy losses involved, phonon-scattering
interactions are localized enough to routinely allow atomic
resolution HAADF STEM images. An interesting question
is whether the electrons thermally scattered through smaller
angles also undergo interactions with sufficient localization for
atomic resolution imaging. Recent theoretical simulations for
molecules predict that in practice atomic resolution imaging
of crystals should be possible [1,2] without the high-angle
selection offered by HAADF imaging. Recent experimental
work on strontium titanate explored this [3]. Such images may
extend characterization techniques by allowing the mapping
of light elements such as hydrogen and lithium [4], for which
phonon excitations may be more localized and also have a
stronger signal than core-loss ionization signals.

Electrons thermally scattered through the range of angles up
to roughly twice that of the probe forming aperture in STEM
are in a region of the diffraction plane where elastic scattering
usually dominates and, in the absence of energy selection,
there is usually no way to separate out the contribution from
thermally scattered electrons—although this is possible using
electron holography [5]. However, given a monochromated
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electron beam and an energy-loss spectrometer with sufficient
energy resolution one can directly monitor the change in the
phonon subsector of the energy-loss spectrum as a function of
probe position for electrons scattered through smaller angles.
The quest for better energy resolution in electron energy-loss
spectroscopy in STEM has recently seen a resolution as fine
as 10 meV achieved [6]. Using a system with a significantly
coarser energy resolution, Egoavil et al. [3] explored atomic
resolution imaging for electrons thermally scattered into a
series of on-axis disk detectors with increasing outer angle.
The smallest outer angle was 38 mrad, less than twice the
probe-forming aperture of 21 mrad, and the largest was
225 mrad. Isolating the phonon sector of the energy-loss
spectrum involves a delicate removal of the zero-loss peak
which, as they pointed out, has been done in an indirect manner,
complicating the interpretation of the images obtained, which
nevertheless exhibit atomic-scale features.

Here we explore what would be obtained if direct subtrac-
tion of the zero-loss peak from the spectra could be performed.
The calculations are based on the quantum excitation of
phonons (QEP) model due to Forbes et al. [7]. We note that
in some previous work this model was referred to as the
Born-Oppenheimer model, due to an approximation used in
its derivation. This model is based on rigorous many-body
quantum mechanics and, as we shall establish here by several
arguments, accounts for all phonon excitations occurring in
the target as well as the associated energy losses. Furthermore,
this model has the advantage that the intensity due to thermal
scattering can be separated from the intensity due to elastic
scattering. The QEP model sits within the framework of
nonrelativistic quantum scattering theory, in which inelastic
scattering, such as that which occurs via phonon excitation, is
accounted for as quantum excitations of the scattering target,
thus allowing for the calculation of atomic resolution images
based on phonon excitation.

The paper is structured as follows. In Sec. II we present
some key steps in the derivation of the QEP model with an
emphasis on those showing that all final states of the target
after phonon excitation are taken into account. In Sec. III
we illustrate this by examining the simple case of scattering
from a single atom, treated as a quantum harmonic oscillator
using two approaches: first, the thermally scattered intensity
is calculated by summing the intensity contributions due to
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transitions from an initial state of the system to all possible final
states, using the transition potential formulation [8—10]; and
second, we calculate the thermally scattered intensity within
the QEP model and obtain the same result. In Sec. IV we
demonstrate that thermal statistics of the initial target state
can be accounted for. In Sec. V the energy losses associated
with phonon excitation are more explicitly identified within
the framework of the QEP model. In Sec. VI we present
simulations of images based on the low-loss (phonon) part
of the energy-loss spectrum.

II. THE QUANTUM EXCITATION OF PHONONS MODEL

In this section we rework the QEP model [7], with the
intention of emphasizing that all final states of the system
after excitation (or deexcitation) of a phonon are accounted
for in the model.

A fundamental approach to modeling inelastic excitations
based on many-body quantum mechanics is encapsulated in
the coupled-channels formalism of Yoshioka [11]. In this
approach, each inelastic wave function describing the fast
electron after it has excited a phonon in the target is considered
on an individual basis. In the QEP model, we are able to model
the collective effect of all phonon interactions using only a
single function. We explain this in more detail below.

The Hamiltonian of the total system comprised of fast
electron and target can be decomposed as

H(r’Tane) = T(I‘) + HC(TINTC) + H,(ra TnaTe)a (1)

where r is the coordinate of the incident electron, 7, is
shorthand for the set of all the coordinates =/ of the nuclei
in the target, and 7. is the set of all the coordinates Té of
the electrons in the target. The term 7 (r) represents the kinetic
energy of the fast electron, H.(7,, ) is the Hamiltonian for the
target (often a crystal, hence the subscript ¢), and H'(r,7,,T.)
is the Hamiltonian describing the interaction between the fast
electron and the target.

The many-body wave function for the system of incoming
electron and target can be expanded in terms of the complete
set of eigenstates &,, of the target Hamiltonian as [11]

V(T Te) = ) Yn(Dn(Tn, 7). )

The inelastic wave functions v, (r) (m # 0) describe the fast
electron after a transition in which the target is left in the final
state &,,(T,,T.). The elastic wave function ¥y (r) describes the
fast electron prior to scattering and also after leaving the target
in the initial state &(t,,7.). We note that & (7,,7.) denotes
an arbitrary initial state, not necessarily the ground state of the
target.

We are interested primarily in phonon excitation and
thus assume that the nuclear and electronic subsystems are
decoupled and that the electronic subsystem is not excited.
This is consistent with how target wave functions are treated
in previous models of phonon excitation [12,13]. Therefore
we make the factorization

En(Tn,Te) = ap(To)b(Te,Th), 3

where b(t.,T,) is the wave function describing the electrons
in the target. It is assumed that each electron can be associated

PHYSICAL REVIEW B 91, 144108 (2015)

with a particular atom in the target and that the electronic
coordinates t. are defined relative to the pertinent nuclear
coordinates [12]. We note that the normalization of the
electronic wave function b(t., T, ) is independent of the nuclear
coordinates 7,. The wave functions a,,(t,) describe the state
of the nuclear subsystem and can be constructed either as
the product of harmonic oscillator wave functions for each
atom (if independent atomic vibrations are assumed [12])
or as the product of harmonic oscillator wave functions for
each vibrational mode (if correlated atomic motion is modeled
[13D).

Substituting Eq. (3) into Eq. (2) yields the following
expression for the many-body wave function:

W(r,Tn,Te) = b(Te,Tn) Y YD) (Ty). “)

We note, due to the boundary conditions imposed, that when
the incident electron is far from the target we have

W(r, 70, Te) = ao(Tn)b(Te, Tn)Yo(r). &)

Consistent with these boundary conditions, we factor out the
initial state of the nuclear subsystem ay(t,) in Eq. (4) to obtain

am(Ty)
aop(ty) .

W(r,Tn,Te) = ao(Ta)b(Te,Tn) Y Yin(r) 6)

Let us now define

G, T0) =Y Y (D)

an(Ty)
aop(ty) '

(N

so that we can write the wave function of the system as

W(r,7,,Te) = ao(Tn)b(Te, To)(r, T)y). (8)

If we can calculate the quantity ¢(r,t,) then we can construct
the wave function for the system W(r,t,,7.). This provides
an alternative approach for calculating W(r,t,,7.) to that of
explicitly obtaining all the functions v,,(r) and a,(t,) in
Eq. (4), which is what one must do in the coupled-channels
formalism.

The form for the wave function of the system given in
Eq. (8) can be substituted into the many-body Schrodinger
equation and the appropriate boundary conditions applied. The
details are given in Appendix A. The following governing
equations for the functions ¢(r,t,) and ao(t,) are then
obtained:

n? ~
|:— V2 4+ H'(r,ty)
2m r s ¢n

n? 2
Lo %

= E0¢(rarn)5 (9)

+ LVT‘/ao(rn) Vi } ]¢(r,rn)
ap(Ty) ! !

hz Iy’ n
=2 5ar Vo) + HiTwao(m) = & ao(zy).  (10)
i J

In Eq. (9) H '(r,T,) is the interaction Hamiltonian integrated
over the electronic degrees of freedom 7., Ej is the energy
of the incoming electron, 7 is the reduced Planck’s constant,
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and m. is the electron mass. We denote by M; the mass of
the jth nucleus. In Eq. (10) H/(t,) is the target Hamiltonian

integrated up over the electronic degrees of freedom and 6((,“) is
the energy associated with the initial state of the target nuclear
subsystem. We note that while it may appear that any function
of 7, could have been factored out of the sum in Eq. (6), ap(z,)
is in fact a choice that satisfies Eq. (10) exactly.

In Eq. (9) the terms on the middle line depend on gradients
of ¢(r,t,) with respect to T, and the inverse of the nuclear
masses. As changes in ¢(r,t,) with respect to either r or
T, occur over approximately the same length scale, it is
reasonable to assume that acting on ¢(r, T,,) with either the r or
T, gradient operator will result in functions of approximately
the same order of magnitude. However, as the nuclear masses
M are many orders of magnitude greater than the electron
mass m., these terms will not make a significant contribution
to the energy associated with the function ¢(r, t,). Therefore,
in what follows we will drop these terms. This approximation
is in the spirit of the Born-Oppenheimer approximation used
in molecular physics [14].

In previous work [7] the assumption was made that ¢(r,7,)
satisfies

V.ior,1,) =0, an

an assumption that is not strictly necessary. Rather, it is only
necessary that the quantity in the curly brackets in Eq. (9) be
not large, so that when multiplied by the prefactor 1/M; the
terms remain small.

Dropping those terms on the middle line in Eq. (9) yields
the following approximate governing equation for ¢(r,7,):

2

m Vip(r.To) + H'(r,1,)¢(r, 1) = Eogp(r.7y).  (12)

Equation (12), with the real-valued potential H '(r,T,), has the
form of a Schrodinger equation for elastic scattering from a
target with parametrically fixed t, and can be solved using
the multislice approach. We note however that despite having
the form of an elastic scattering equation, the complete space
of solutions ¢(r, ) does in fact encode all details of inelastic
scattering via phonon excitation. The parametric dependence
on the nuclear coordinates 7, provides an extra degree of
freedom, from which the inelastically scattered states can be
explicitly retrieved. This is shown in detail below. We note
furthermore that the potential H'(r,t,) in Eq. (12) is not what
would normally be used for calculations of elastic scattering.
Rather, one would use the potential

HOO(r)=/|‘§O(Tnvre)|2H/(r’TnaTe)drndre’ (13)

the interaction potential averaged with respect to the initial
state of the target. As such, solutions obtained using this
potential represent purely elastic scattering. In contrast, the
extra degrees of freedom (i.e., the nuclear coordinates z,) in
the potential H'(r,t,), which is expressed explicitly as

H(r,) = / b(z)*H'(r, 70, 7c) d e, (14)

expand the solution space to account for inelastic scattering.
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We emphasize that, as can be seen from Eq. (7), the
functions ¢(r,t,) contain information on the excited states
of the nuclear subsystem and all transitions to phonon-excited
states of the target are implicitly contained in the wave function
of the form in Eq. (8). Invoking orthogonality of the eigenstates
a,,(t,) we can write

Vm(r) = /a,*,‘,(fn)ao(rnw(l‘,fn)drn, s)

which shows that functions v, (r) describing the fast electron
after (phonon) excitation of the target to the state a,,(t,) can
be retrieved from the right-hand side of Eq. (7).

The intensity distribution of the fast electron is modeled
by the quantum-mechanical average over the coordinates of
particles in the target:

Ity = / W70 o) dTndre

_ / lao(T)PI(E. T) P dT. (16)

For the purposes of efficient calculation, this integral can be
treated as a Monte Carlo calculation, with |ag(ty,)|? assuming
the role of a probability distribution from which nuclear
configurations t, are drawn at random. From Eq. (15) the
wave function for those electrons which have been elastically
scattered is

Yo(r) = f lao(zn)*(r,70) dT, a7

and the corresponding intensity is

2

Iy(r) = ’ / lao(To)*p(r, T0) dTy| (18)

A comparison of Eqgs. (16) and (18) shows that there is
more electron density in the total scattered intensity than
there is in the elastic channel, because the former sums the
intensities of the functions ¢(r,7,) while the latter sums the
same functions coherently, leading to phase interference which
reduces the resulting intensity. Any disparity between the
total and elastic electron densities therefore comes from the
inelastic (phonon excitation) channels. Consequently we are
able to decompose the scattered intensity into contributions
from elastically scattered and thermally scattered electrons
(those that have excited a phonon, perhaps multiple times).
The intensity corresponding to electrons which have been
thermally scattered is given by

Iqn(r) = I(r) — La(r)

_ / lao(zn) Plb(e, o)l d

2

—’ / lao(To)*p(r, T0) dTy| (19)

We reiterate that despite Eq. (19) above having no explicit
reference to the final states of the target (after phonon
excitation), those final states are in fact represented in the
thermally scattered intensity calculated in this manner. This
has been made clear by the theoretical formulation above [see
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in particular Eq. (7)]. In the next section, we demonstrate this
explicitly for a simplified model.

III. THERMAL SCATTERING FROM A SINGLE
OSCILLATING ATOM

In this section we demonstrate explicitly that the theoretical
framework developed in the previous section accounts for
phonon excitation. We restrict our attention to the case of a fast
electron scattering from a single atom sitting in an isotropic
harmonic potential, an approach which permits an explicit,
analytical calculation of various quantities. In a similar manner
to how vibrations are treated in the Einstein model of solids, we
can consider the harmonic potential to be an effective external
potential due to the rest of the charged particles in the system, a
reasonable approximation for an atom sitting in a crystal. We
begin with a calculation of the functions describing the fast
electron after excitation of the target to each final state, which
is done explicitly within the transition potential formulation.
These are used to construct the thermally scattered intensity.
We then construct this quantity within the framework of the
QEP model and arrive at the same result.

A. Transition potential formulation

Within the transition potential formulation, the functions
¥ (r) [see Eq. (2)] can be calculated as [8—10]

llfm(rl) = _iGHmO(rL)IﬁO(rL’Zm)a (20)

where r; is the transverse component of the fast electron
coordinate r, 0 = m.A/2mwh? is the interaction strength, A is
the de Broglie wavelength of the fast electron, ¥(r ,z,,) is the
wave function corresponding to elastic scattering of the fast
electron, and z,, is the point along the optical axis at which
the inelastic event m occurs. The projected transition potential
H,o(ry) is given by

Hio(r,) = / Hyo(mye 2 it g2 (1)

where H,,o(r) is the transition potential defined by

HmO(r):/é;(rnvTe)H/(rvrn’re)gO(Tane)drndtev (22)

and ko and k, are the wave numbers associated with the
electron before and after inelastic scattering. The functions
&y(ty,Te) and &, (T,,Te) are the initial and final states of the
harmonic oscillator.

We show in Appendix B that the transition potentials can
be given in reciprocal space as

Hyuo(q) = —Efe((I)/aZ(Tn)ao(Tn)efzmq‘T“ dt,, (23)

where e is the absolute value of the electron charge and f.(q)
is the electron scattering factor defined as

ful@) = / V(e 9" dr, (24)

with V(r) the Coulomb potential of the atom.
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Equation (20) can be rewritten in reciprocal space as

Yi(qL) =—io Hyo(q) ® Yolqy)
=ioe [fe((h) / a’ (Ty)ag(Ty)e 2T dtni|

® Yo(qL), (25)

where q, is the transverse wave vector and ® denotes
the convolution operator. The z,, dependence has now been
dropped since the scattering potential is that of a single atom
at a single z position.

The thermally scattered intensity in the diffraction plane is
given by

In(q) =) Wm0 (26)
m##0

Restricting our attention for now to the case of plane wave
illumination, for which ¥(q.) = §(q.), we have

In(qu) =0’ f2(a1) ) / & (T)ag(Ty)e U™ d,

m##0
x / an(T))ad(T))e? T d ! (27)
The functions a,,(t,) are harmonic oscillator wave functions

and obey the completeness identity ) ak(tn)a,(t)) =
8(ty, — 7). We can thus simplify the above to
21|

(28)

In(q1) =0’ f2(qu) [1 - ’ / lao(zy)2e 10T g,

We note that explicitly summing over the final states leads to
an expression depending only on the initial state.
The case of general illumination is treated in Appendix C.

B. QEP model

We now proceed to calculate the thermally scattered inten-
sity within the QEP model, according to Eq. (19). Consistent
with the approximations made within the transition potential
formulation, the solution to Eq. (12) for ¢(r, ) is found within
the weak phase object approximation. The scattered portion is
given by

¢(r 7o) = —io Hlo (61 T0)do(ry). (29)

Here ﬁéroj(rl,rn) is the z projection of ﬁ’(r,rn), where the
latter is the interaction potential H'(r,t,,T.) with electronic
degrees of freedom integrated out. The projected potential
Hémj(rL,rn) can be identified as —eVj(r. — t,) where
Viroj(r1) is the z projection of the Coulomb potential of
the atom. The function ¢y(r) is the boundary condition on
Eq. (12) and can be identified with ¥y(r ), the illumination at
the entrance surface. We note the similarity in form between

Eq. (29) and Eq. (20). We thus have
¢(rl,Tn) = iaevproj(rl - Tn)WO(rL)a (€)

and in reciprocal space this can be expressed as

$(qL,T0) = ioe[ fo(qr)e "] @ Yo(qu), €29}
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where the phase factor e~27/4+%» shifts the atomic potential to
the position 7, and where f.(q,) is a slice at g, = O of the
electron scattering factor defined in Eq. (24).

For plane wave illumination, we have

B(q,T0) = ioefo(qy)e 9T, (32)

and the thermally scattered intensity is thus given by [see
Eq. (19)]

In(qu)= /|QO(Tn)|2|¢(qLaTn)|2 dt,

2

— ‘ / lao(za)*P(q1,T0) dTy

— 0% 12(q0) / lao(z) s

2

sefulaL) / lao(T) Pe 20 g,

1

(33)

=oze2f3<ql>[1 - ‘ f lao(za)Pe 10" d,

This result is identical to that obtained within the transition
potential formulation [see Eq. (28)].
The case of general illumination is treated in Appendix C.

IV. STATISTICS OF INITIAL STATES

It is important to note that the agreement obtained for the
thermally scattered intensity in the previous section between
the transition potential formulation (in which final states are
explicitly summed) and the QEP model (in which they are not)
is not restricted to the ground state of the oscillating atom—the
initial state ag(t,) can refer to an arbitrary initial state.

In practice, each electron contributing to an electron
micrograph has scattered from a different initial state of the
specimen, and those states are drawn from a thermal statistical
ensemble. We will show in this section that, for the harmonic
oscillator model, the thermal average can be easily accounted
for, and is consistent with treating atomic displacements as
Gaussian random deviates using mean-squared displacements
measured experimentally.

Let us consider for the moment the total intensity scattered
according to the QEP model:

I(r) = / lao(tn)*|p(r,T0)|* dTy. (34)

Assuming the atomic motion in the target is that of indepen-
dent, isotropic harmonic oscillators, the initial state of the
target aop(t,) can be written as a product of 1D harmonic
oscillator states. Furthermore, if one makes the ground state
approximation, then all of those states are the harmonic
oscillator ground state, in which case we can write ap(t,) as

ao(ra) = [ [] ] Ao(z;), (35)

J
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where j indexes a specific nucleus, i = x,y,z is a Cartesian
coordinate, and

M 174 3
Ao(t) = (ﬂ—;;) e Mem/2h, (36)

The probability density function |ao(t,)|? is given by [as a
corollary of Eq. (35)]

lao(w)* = [ [[ ] 1A0(zi0P*- 37)
joi
We must however consider that the initial state of the target

may not be the ground state. We thus allow Ay(7) to be an
arbitrary harmonic oscillator wave function

1 Mo\ "4
Ao(t) — gu(7) = \/W <%>

x e Mer iy, (,/% ) (38)

and furthermore, we allow for a statistical average of initial
states, whereby the probability distribution |A¢(t)|? is given
by

|Ao(D)* — é[nje-ﬂlﬁgn(r)ﬁ (39)

where E, = ho(n + %) is the energy of the nth thermal
state, B = 1/kgT, kg is the Boltzmann constant, T is the
temperature, and Z is the partition function, given by

_Ep e—ﬁa)ﬂ/Z
zz;e = T (40)

We show in Appendix D that Eq. (39) can now be rewritten as

AP — ﬁe*ﬂ“i a1
where
o’ = f coth(Fwp/2). (42)
2Mw

The probability distribution |ag(t,)|? for the displacements
of the nuclei is given by the product of factors of the form
in Eq. (41) for each nucleus and each direction, with M and
w specific to each nucleus. The quantity o> can be shown
to be the mean-squared displacement (r?) corresponding to
the distribution |Ag(7)|>. Experimentally measured Debye-
Waller factors (which relate directly to the mean-squared
displacement of an atom) can be utilized to determine the
effective |ap(T,)|> to be used in Eq. (34). We make the
replacement |ao(t,)|> — P(t,) to emphasize the fact that,
in calculations, we use an effective probability distribution
P(t,) for the atomic displacements that includes the effects of
thermal averaging, rather than referring explicitly to the target
state ao(Ty).

V. ENERGY LOSSES WITHIN THE QEP MODEL

Equation (12) is the governing equation for the auxiliary
fast electron function ¢(r, t,). It has been shown formally (in
general) and explicitly (specifically for the single harmonic
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oscillator) that ¢(r,t,) accounts for all the final states of the
target. However, Eq. (12) contains on its right-hand side only
the energy E\, which is the energy of the incident electron. It
is not immediately obvious where the energy losses are that
should necessarily arise during excitation of the target system.

To illuminate the issue, we substitute Eq. (7) into Eq. (12),

2
[—h—VE + ﬁ’(m)] 3 2T

2me ao(Ty)
am(Tn)
=E Vm(r) , (43)
’ ; ao(Ty)
and bring the operator inside the sum on the left-hand side,
al’l’l(‘rn)
> [En+ H'(r,10)] Y () o
= By Y oy ) (@4)
— m ao(‘[n) ’

where E,, is the kinetic energy of the fast electron after having
excited the target to state m. Rearranging this yields

Z(E() am( n)

am(Ty)

ao(Ty)’
(45)

demonstrating that the energy losses Ey — E,, appear ex-
plicitly within the framework of the QEP model. These
energy losses on the left-hand side of Eq. (45) are balanced
on the right-hand side by the interaction potential energy
between the target and fast electron in the mth excited state.
Another perspective is that Eq. (12) is an implicit statement of
conservation of energy, which can be restated in the form of
Eq. (45) above in terms of the energy losses associated with
each inelastic channel.

Ep)Ym(r )

= Z H (0, 70) Y (1) =

VI. SIMULATIONS

In Sec. III we dealt with the case of a single oscillating
atom, for which an analytical solution could be found for the
thermally scattered intensity in both the transition potential
formulation and the QEP model. In this section we deal with
the more relevant case of the scattering from a crystal. This
is, in general, a nonlinear scattering problem for which an
analytical solution cannot be found. However, a numerical
solution can be obtained in a straightforward manner.

The thermally scattered intensity is obtained by using
Eq. (19). We replace the initial target state probability
distribution |ao(t,)|*> with a thermally averaged distribution
P(t,) (as discussed in Sec. IV). We furthermore include
explicitly the dependence on the probe position R [which
enters the calculation via the boundary conditions on the
solution to Eq. (12)] and express the intensity as a function of
the transverse wave vector q  (as we are seeking to calculate
intensities in the diffraction plane):

In(qL,R) = / P(zo)l$(qu,R, 70" d7,

2

—‘ f P(rd(@L R dTa| . (46)
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Working within the Einstein model, the probability distribution
P(t,) decomposes into independent distributions for each
atom, for which experimental values can be found in the
literature for a particular specimen and temperature.

The function ¢(r,7,) for any given nuclear configuration
T, can be found by solving Eq. (12) using the multislice
approach. The boundary conditions are provided by the
known illumination. Furthermore, evaluation of the integrals
in Eq. (46) can be performed using a Monte Carlo procedure,
whereby values of 7, at which to solve for ¢(r,7,) are drawn
at random from the distribution P(t,) until convergence of the
intensity is achieved.

In this section we will consider an imaging mode in which
a convergent probe is scanned across the surface of a specimen
while recording the flux of electrons entering an aperture
in the diffraction plane. Furthermore we assume that only
thermally scattered electrons (i.e., those which have excited
a phonon) contribute to the signal. In this way, we calculate
a two-dimensional image of the specimen based on thermal
scattering.

For the present study we consider a specimen of (100) stron-
tium titanate (STO) with a thickness ranging between 100 A
and 600 A. An accelerating voltage of 120 kV is assumed. The
convergence semiangle of the probe is 21 mrad and the probe-
forming lens is assumed to be unaberrated. We use 30 nuclear
configurations drawn at random from the appropriate distribu-
tion as part of the Monte Carlo procedure outlined above.

Figure 1 shows the probability density for the thermal
component of the electron intensity in the diffraction plane
as a function of scattering angle, with the probe placed above
strontium, titanium/oxygen, and oxygen columns. The area
under the graph between any two given scattering angles
indicates the relative intensity that would be scattered into
an annular detector spanning that range. These results were
calculated for a specimen thickness of 200 A. We note
that in all three cases, thermal scattering is most likely to
occur at scattering angles of around 50 mrad (roughly twice
the semiangle of the probe-forming aperture), although it is

2
“9“’8 Sr
©
S 221 N, |—-——— Ti/O
ES o o
TE 154 [~
2 A
88 104 \
52 \
= ©
SE s N
S 1 ~-.
o / S~ T e
0 T T T
0 100 200 300

Scattering angle (mrad)

FIG. 1. (Color online) Probability density for the thermally scat-
tered intensity in the diffraction plane as a function of scattering
angle for an unaberrated convergent electron beam of accelerating
voltage 120 kV and convergence semiangle 21 mrad incident upon
a 200 A thick specimen of (100) STO. The probe has been placed
above strontium, titanium/oxygen, and oxygen columns.
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distributed over a large range of scattering angles. High-angle
annular dark field (HAADF) STEM images are formed by
integrating the intensity scattered to large angles where thermal
scattering dominates over elastic scattering. By examining the
area under the graphs in Fig. 1, it is clear that the HAADF
imaging mode does not count the significant contribution of
those electrons that have been thermally scattered to lower
angles. This is an unavoidable consequence of the fact that,
in the absence of energy filtering, the low-angle scattering
cannot be separated into elastic and thermal components.
The inner angle of the HAADF detector is thus deliberately
chosen to exclude elastically scattered electrons which would
otherwise introduce deleterious coherence effects into the
image formation. However, in the context of new capabilities in
energy filtering (as discussed in the Introduction), it becomes
interesting to investigate the potential of image formation using
electrons thermally scattered to lower angles.

Figure 2 shows STEM images indicating the fraction of
the incident electron flux which has been thermally scattered
into the indicated range of angles as a function of probe
position and for different specimen thicknesses, using the
parameters specified above. These images correspond to what

0-21 mrad 0 -42 mrad 0-84mrad 0-168 mrad

max:0.05

100 A

200 A

400 A

600 A

FIG. 2. (Color online) Maps of the fractional intensity of the
thermal component of the intensity incident upon an aperture placed
in the diffraction plane. We have assumed an unaberrated convergent
electron beam of accelerating voltage 120 kV and convergence
semiangle 21 mrad, incident upon a specimen of (100) STO. The maps
are for four detectors spanning the angular ranges indicated and for
four different specimen thicknesses. The calculations were performed
using the QEP model, which accounts for phonon excitations in
the target. Each image is displayed on an intensity scale ranging
from zero to its individual maximum, which is noted below each
panel. The specimen structure is overlaid in the bottom right panel.
Large (brown) circles indicate columns of strontium atoms, medium
(brown) circles indicate the presence of titanium atoms in a column,
and small (blue) circles indicate the presence of oxygen atoms.
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FIG. 3. (Color online) Maps as in Fig. 2 but now with apertures
spanning an annular range of scattering angles.

would be obtained by using an energy filter to select only
those electrons having lost energy due to phonon excitations.
Plasmonic and electronic excitations are not accounted for.
These images are each plotted on their own intensity scale,
with the maximum fractional intensity indicated below the
image. Figure 3 shows similar images but now the apertures
span an annular region of the diffraction plane. This shows in
more detail how image formation occurs for different ranges
of scattering angle. Localized images are obtained, even for
scattering through the smallest range of angles.

While the images in Fig. 2 may appear to be qualitatively
similar to those in Fig. 2 of the paper by Egoavil et al. [3],
they are not directly comparable. In that work, the raw data
have been processed in two ways. Only the second may isolate
information on the signal due to excitation of phonons and
this is predicated on the zero-loss peak being of a similar
shape for all probe positions. That being the case, the signal
obtained at a given probe position is a weighted comparison
between the phonon sector of the energy-loss spectrum and
the average of the same spectra across all probe positions.
The weighting varies from one probe position to the next,
making even qualitative comparison with simulations such as
those done here problematic. This issue would be remedied by
direct subtraction of the zero-loss peak at each probe position.

Figure 4 shows intensity profiles calculated for line scans
across the strontium and titanium/oxygen columns, for a
specimen thickness of 200 A and for the same range of detector
apertures as in Fig. 3. All intensity profiles have been rescaled
so that their maximum value is 1. It was noted earlier that
the images in Fig. 3 exhibit localization around the atomic
columns. Looking at this localization more closely in Fig. 4,
we note the interesting fact that the localization of the STEM
image is very similar across the four detectors. In this case
the localization of thermal scattering at low angles is not
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0-21 mrad
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FIG. 4. (Color online) Intensity profiles taken across strontium
and titanium/oxygen columns for the data in Fig. 3 corresponding
to a specimen thickness of 200 A. Each profile has the maximum
value normalized to unity. Large (brown) circles indicate columns
of strontium atoms, medium (brown) circles indicate the presence
of titanium atoms in a column, and small (blue) circles indicate the
presence of oxygen atoms.

very different from that at large angles. The large momentum
transfer associated with scattering into the 82-168 mrad
detector (HAADF) does not seem to be a prerequisite for
localized imaging using inelastic scattered electrons that have
excited a phonon.

VII. CONCLUSION

We have reworked the quantum excitation of phonons
(QEP) model [7] in a way which establishes that the con-
tribution from inelastic phonon excitation and deexcitation is
included and can be isolated so as to model electron energy-
loss spectroscopy in the phonon sector. The energy losses that
must necessarily occur during phonon excitation are identified
within the theoretical framework presented and furthermore
this model has the ability to separate the scattered intensity
into elastically and thermally scattered components. We have
demonstrated that the effects of phonon excitations of the
scattering target are indeed included in the predicted intensity
by formally calculating the thermally scattered intensity in
both the QEP model and in the transition potential formulation

J

2

~ I ~
[T() + H'(r,70)lao(Ta)p(r, 1) — —Vf{; [ao(T)@(r,T0)] + He(Tw)ao(T)(r,T0) = (E — Ke)ao(Tn)p(r, Tn).

2M;

J

Using the product rule for Laplacians we have

[T(r) + H'(r,t0)lao(T)p(r,7,) —

J

h? ~
= Y b TV ao(th) + HlT)ag(Tg(r T) = (B — Koao(Tn)d(r, 7).
J

2M;

2M
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(for the case of a single oscillating atom). Thermal statistics
have been included by summing over initial target states drawn
from a thermal statistical ensemble.

Simulations of the thermally scattered intensity have been
performed for the case of a convergent probe scanned across
a specimen while the flux of thermally scattered electrons
into an aperture is recorded. These simulations confirm that
atomic resolution imaging using energy-loss electrons in the
phonon-loss sector is possible.
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APPENDIX A: DERIVATION OF THE QUANTUM
EXCITATION OF PHONONS MODEL

The time-independent Schrodinger equation for the fast
electron and target constituents is

Hr,7,,1)¥([,1,,7:) = EV(r,7,,7¢). (A1)

Substituting the factorization of Eq. (8) and writing out the
Hamiltonian in full we have

[T(r)+ H/(r’Tn’Te) + To(ty) + Te(e) + Hé(Tane)]

X ay(Ty)b(Te,T0)p(r,Tn) = Eap(10)b(Te, T0)P(r,Ty),
(A2)

where T (r) is the kinetic energy operator for the fast electron,
H'(r,T,,T.) is the interaction potential between the fast
electron and the target particles, T,(t,) is the kinetic energy
operator for the nuclei, T.(z.) is the kinetic energy operator
for the target electrons, and H/(z,,T.) is the interaction
Hamiltonian for the target.

Multiplying Eq. (A2) on the left by b*(7,7,) and integrat-
ing over the electronic coordinates leads to

[T(r) + H'(r,7,) + Ta(ta) + Ke + H.(t)lao(t)p(r, T,)
= an(Tn)¢(r,Tn), (A3)

where K. is the total kinetic energy of the target electrons.
Gathering terms and explicitly writing out the term con-
taining 7,,(t,) we obtain

(A4)

{ao(Tn) V2, +2V ag(tn) -V, J¢(r,70)

(A5)
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Divide through by ag(t,)¢(r,Ty):

[T(r) + H'(r,7)p(r,T,) —

o(r,7y)

|
— 2M; ap(Ta) ¥

Note that the terms before the equals sign on the second line depend only on 7,. In fact the sum of these terms is equal to €,

}:jik2+
p(r.7,) S :

V2, ag(t,) + H(t,) = E — Ke.
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it V. ia0(Ta) -V }¢(r,rn>

Tn aop(Ty)
(A6)

()

the initial energy of the nuclear subsystem. Thus we get two separate equations:

1
¢(rsrn) ZMJ

J

hz ry/ n
=2 547 Voao(Ta) + Hiwwao(z,) = & ao(zy).
i J

- 1 n
[T(r) + H'(r,To)]o(r,Ts) — b(r.ty) Z _{V

Noting that the total energy of the system can be decomposed as E = Eg + ¢, + K., we can rewrite Eq. (A7) as

K2 ) K2 )
Vi H T, — %S
[ 2m. Pt AT Z2Mj{ at

J

APPENDIX B: TRANSITION POTENTIALS FOR A
HARMONIC OSCILLATOR

The transition potential H,,o(r) is given by [8-10]

HmO(r):/E;:(TnaTe)H/(r»Tn»Te)g()(TnaTe)dTndtea (Bl)

where & (t,,7e) and &, (T, T.) are the initial and final states of
the oscillating atom. The interaction Hamiltonian H'(r,7,,T)
is given by

—Ze? z &2

Amegr — 14|

H/(ryrane) = ’ (BZ)

— i
P 4neo|r T.

where Z is the atomic number of the atom, ¢, is the vacuum
permittivity, T, is the position of the nucleus, and 7’ is the
position of the ith atomic electron.

We make the approximation that the electronic motion is as
for a stationary atom centered at the parametric position T, of
that atom. We also make a ground state approximation for the
atomic electrons. We can thus express the target state as

En(Tn, Te) = an(To)b(Te), (B3)

where a,,(t,) is the final state of the harmonic oscillator
and b(t.) is the ground state wave function of the atomic
electrons, with the electronic coordinates 7. defined relative
to the nuclear coordinate 7.

It will prove easier to work in reciprocal space; thus,

Huo@) = [ Hyoe 0" dr. (B4)
With use of the standard identity
1 . 1 -
/ : e—qu-r dr = Ze—qu»r , (BS)
Ir —r'| 7lq|

2z
ao(Ty)

- (n)
mVréao(rn) . V‘rﬁ }¢(r,1n) = F — Ke — €, (A7)
(A8)
(n)
VT%aO(TH) ' Vtic } }(ﬁ(r"[n) = E0¢(r,‘[n). (Ag)
[
we find that
_Zez .
Hm =5 _ 5 * n b* —27iq-T,
o(@ 47T260|q|2 fam(T b (e
x ap(Ta)b(te)dr,dT,
z €2 et )
* * 2miq(ridT,
* Z m/“m(fn)b (Te)e 2
i=1
x ao(Ty)b(te)dT, dt.. (B6)

Performing the integrals over electronic coordinates and
gathering terms we have

)
Hyo(q) = m[z — fu(@)]

X /a;(fn)ao(Tn)e_Z”iq"“dtn, (B7)

where fx(q) is the x-ray scattering factor given by

VA
Ko=) / |b(zo)Pe 2197 g, (BS)
i=1

Making use of the Mott-Bethe formula

Z— fx(q)

4r2¢y  |q|?

fel@) = , (B9)

where f.(q) is the electron scattering factor, we find that

Hyo(@) = —efu(q) / @ (ta)ao(T)e 9% dr,. (B1O)
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APPENDIX C: GENERAL ILLUMINATION

1. Transition potential formulation

To treat the case of general illumination, we return to Eq. (25) and write out the convolution explicitly:
Ym(qL) =ioe |:fe(ql_) / a;(rn)a()(rn)e_zmqrr" d‘tn] ® Yolqr)

:ioe/wo(ql)fe((u —ql)/a;;(rn)ao(rn)e‘z’”(‘““’1”" dt,dq,. (€D
The corresponding intensity is
Ln(QL) = ¥m(qL)l®
=0’ / Vo@D fe@r — qD) fe(ar — g1 / / an(T)ay (Th)ag (T, )ao(Ty)
x @2mi@L—q1)-7; ,—27i(q1—4q))-Tn dt, dr,', dq/l d(ﬂ- (C2)
The thermally scattered intensity is given by

In(q) =Y In(qu)

m#0
= |:Z Im((h):| — In(q.)
=0’ / Y@ Do) felar — ) fe(ar — 4')A(QL.q.q7)dq), dq'], (C3)

where
A ) = [ laoGre a0 g, - [ [tz i ar, [ayeype i drn]. c4)
In Eq. (C3) above we have used the completeness identity D ", a,,(t})ay (t,) = 8(t), — Tn).

2. QEP model

In a similar manner to the previous section, to treat the case of general illumination within the QEP model we return to Eq. (31)
and explicitly write out the convolution:

B(qu,T0) = ioe[ fo(q)e ] @ Yo(qL)

— e / o) fol@s — @, )o@ 0% g, (©3)
The corresponding intensity is
l9(qL,T0)|* = %€ / Y@ DY) felar — q)) folqr — g e ™9™ qq) dq]. (C6)

The thermally scattered intensity is given by [see Eq. (19)]

2

In(r) = / lao(to)*1p(r, 7o) |* dT, — ' / lao(to)¢(r,T0) dT,
= o%¢’ / Yo Dvo(d) felar — 4 felar — q)AW@QL,q,.q])dq, dq], (C7)

where A(q..q,,q’|) is given in Eq. (C4). This result is identical to Eq. (C3) obtained within the transition potential
formulation.
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APPENDIX D: STATISTICS

Taking a thermal average over possible initial states, the
probability distribution for motion in a single direction of a
single harmonic oscillator is [see Eq. (38)]

1 _
2 Mgl

n

P(x) = (D1)

where E, = ho(n + %) is the energy of the nth thermal
state, B = 1/kgT, kg is the Boltzmann constant, 7 is the
temperature, g,(x) is the nth Hermite function, and Z is the
partition function, given by
o—TwB/2
Z=)"

T 1o hap (b2)

Letting u = e~ "“# we have

P(x)=(1—u) Y u"|g.(x). (D3)
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We make use of the Hermite function identity

/ Z g (o) = ( l—uMow 2)
u"|gn(x —————exp
n=0 ! V7T (1 u ) I+u h
(D4)
The probability distribution can then be written as
P(x) = M ( e ( l—uMow 2)
x) = X
V(= u?) PA\T1 +u h
Mo 1—-u l-uMo ,
h w(l + u) 14+u h
1 2 2
= e, (D5)
V2mo?
where we have defined
2 h 1+u
o'= ——
2Mw 1 —u
h h
- coth ("9P) | (D6)
2Mw 2
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