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Abstract: The scattering cross section is the fundamental measure of the strength of a scattering interaction. All

scattering in electron microscopy arises from the Coulomb interaction, and scattering cross sections, whether

elastic or inelastic, will therefore all have common features. Simple forms of both elastic and inelastic cross

sections are reviewed in the context of high resolution and analytical microscopy. Some recent developments,

such as the calculation of Fano resonances in electron energy loss spectra of transition metals and rare earth

elements are also discussed.
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INTRODUCTION

The electron microscope is not only an imaging device but
also a scattering chamber with excellent control of many of
the variables that define a scattering interaction. In all scat-
tering experiments, some measure is needed of the strength
of the scattering interaction. The scattering cross section,
which has dimensions of area, is a quantity that can be
defined for any scattering interaction, irrespective of the
nature of the scatterer, or the particle or radiation being
scattered. To define a scattering cross section, refer to the
geometry of Figure 1. If I; is the incident number of par-
ticles (or current), I is the number of particles (or current)
scattered through an angle 6 with an energy loss AE, N is the
number of scatterers/unit volume, and ¢ is the thickness of
the specimen (or length of the scattering region) then

I, (8, AE) = Nto(0, AE)I, (1)
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where (6,AE) is the scattering cross section. The product
Nt represents the number of scatterers per unit area as seen
by the incident beam. The cross section defined above is a
double-differential scattering cross section, sometimes de-
noted by d*c/dEd(), as it represents the variation of
strength of scattering with scattering angle and energy loss.
A differential scattering cross section denoted by do/d()
describes the variation with scattering angle when the en-
ergy loss is not explicitly recorded. Integrating over a range
(or all) scattering angles gives a total scattering cross section.

In electron microscopy, all scattering is due to the Cou-
lomb interaction between the probing electron, coordinate
r, and an electron or ion in the specimen, coordinate r’. To
calculate the scattering cross section, a scattering rate, W, is
first calculated using Fermi’s Golden Rule. This is derived
from first-order time-dependent perturbation theory
(Schiff, 1968) in which the Coulomb interaction is the per-
turbation
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Figure 1. Scattering geometry.

A simple analysis based on equation (1) shows that the
scattering cross section is the scattering (or transition) rate
divided by the velocity, v, of the incoming particles.

C=a =N (3)

In transmission microscopy, exchange processes be-
tween the probing, or fast (sometimes called the swift),
electron and the specimen electron are negligible. The total
wavefunction can therefore be represented as a product of
the fast electron wavefunction {s(r") and the electron in the
solid ¢b(r). As an example, the cross section for a transition
from initial state 7 to final state f is

21 E
o =7 p(E)
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where p(E) is the density of fast electron final states.
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At this point, we make an important simplification and
assume that the probing or fast electron states can be rep-
resented as plane waves. The term cross section has been
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used in the electron microscopy and diffraction literature
(Allen, 1993) to denote a measure of scattering strength in
quite general conditions where there is mixed multiple elas-
tic (dynamical) scattering and inelastic scattering. I believe
that the term should only be used for a simple, single-
scattering experiment that can be described by equation (1),
where the amount of scattering is linear in specimen thick-
ness.

Substituting y;(r') = exp(ik;r’) for the fast electron
initial state and Yi(r’) = exp(iker’) for the final state, then
integrating over the fast electron coordinate r’ gives the
general expression for the double differential scattering
cross section

do 4y kf‘ f @(r"Jexp(ig-r')g(x")d’r' |
dOdE” 2 k, 7 ®)

where q = k; — kyis the momentum transfer in the scatter-
ing event and vy is the relativistic factor

The constant 4/aé, where a, is the Bohr radius, is fun-
damental to the Coulomb interaction and immediately
gives an approximate scale for electron beam interactions in

the electron microscope.

ELASTIC SCATTERING

When the probing electron loses no energy while passing
through the specimen and leaves the specimen unchanged,
the interaction is called elastic scattering. The final and
initial states of the crystal electrons are the same and so

@f(r') can be replaced by ¢ (r"). The probing electron not
only interacts with the electrons in the specimen but may
also scatter from the nuclei. Equations (1) and (4) should be
modified by adding a term representing the Coulomb in-
teraction between the fast electron and a nucleus at position
R, with atomic number Z. Equation (4) now becomes

o=7 P(E) flbf( 411_8 |R 2 f¢ (R +71)
2
e .
m @R + 1)t (r')dr (6)
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where interactions with all the electrons associated with the
atom, denoted by index 7, are summed. This expression can
be much simplified once it is recognized that the sum over
the square of the wave functions for electrons associated
with an atom is the atomic charge density.

p(R+1) = D Gi(R+T)¢,(R +T) 7

Assuming the fast or probing electron states can still be
represented by plane waves, the differential scattering cross
section can be derived by integrating over the fast electron

coordinate r’ and can be written as

do ) ﬁ [Z - f p(r) eXp(iq.r)d3r:|2

Q- g q'
4N 7 - 2
Jrlzo il f;(m e ®)
0

The scattering from the atomic electrons appears as the
Fourier transform of the charge density which is the X-ray
scattering factor f(q). In kinematical treatments of electron
diffraction, it is convenient to define an electron scattering
factor which is used in exactly the same way as the X-ray
scattering factor. The differential cross section is the square
of the modulus of the electron scattering factor, which in
general can be a complex quantity. The relationship be-
tween the X-ray and electron scattering factors (Hirsch et
al., 1965), given by equation (8), is known as the Mott
formula for the electron scattering factor.

It is instructive to take various limits to understand the
behavior of elastic Coulomb scattering. For small scattering
wave vectors, g, the X-ray scattering factor tends to the

atomic number for neutral atoms

(@ =Z-aq’ )

where a is a constant which can be related to mean square
size of the atom. (For ions, Z should be replaced by the
number of electrons, which means that for a single ion, the
scattering factor becomes infinite. It should be remembered
that for overall charge neutrality there must be equal num-
bers of positive and negative ions, and the infinite terms all
cancel.) Using equation (9), the limit of the differential
cross section becomes

do  4y* 5

70" 2 o . (10)
In recent years, high-angle annular dark-field (HAADF) mi-
croscopy has become popular as a technique since it not
only gives atomic resolution but also shows a high degree of
atomic specificity (Pennycook and Boatner, 1988). Early
arguments appealed to the idea that, at high angles or mo-
mentum transfers, only the Rutherford scattering from the
nucleus was significant and, according to equation (8), the

cross section should scale as the square of the atomic num-
ber.

do  4y* 7* ()
) aj gt

More sophisticated treatments have shown that the high
angle scattering arises from multiphonon or thermal diffuse
scattering (Jesson and Pennycook, 1995; Amali and Rez,
1997). A simple derivation assuming independently vibrat-
ing atoms gives the following expression

do 4y [Z-f(@)F

0 g 4 [1 - exp(-2Mq")] (12)
for the differential cross section, where M is the Debye-
Waller factor. The high angle behavior of the Rutherford
cross section [equation (11)], the Mott formula [equation
(8)], and thermal diffuse scattering [equation (12)] are
shown as Figure 2 for scattering of 100 kV electrons from
silicon. A logarithmic plot is used to accommodate the dy-
namic range of almost 10'2. As expected, the Rutherford
cross section is unrealistic for small angles since it becomes
infinite. The thermal diffuse scattering tends to zero much
faster than the Mott formula, showing that thermal diffuse
scattering is mainly important at high scattering angles. In
the high-angle regime, the Mott formula and the thermal
diffuse cross sections become very close above 80 mrad, but
both are still much less than the Rutherford cross section.
Of course, for materials with a lower Debye-Waller factor,
the divergence between elastic scattering given by the Mott
formula and thermal diffuse scattering might persist to
higher scattering angles.

Experimentally, all the intensity recorded by a detector
over a range of scattering angles accepted by the detector is
measured. This is an integrated cross section and, in Figure
3, the integrated cross sections for scattering between a
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Figure 2. Differential scattering cross section as a function of
scattering angle for 100 kV electrons incident on silicon. Short
dashed line, Rutherford cross section; solid line, Mott formula;

long dashed line, thermal diffuse scattering.
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Figure 3. High-angle annular dark-field (HAADF) integrated
cross section as a function of inner cut-off angle for 100 kV elec-
trons incident on silicon. The outer cut-off angle is assumed to be
100 mrad. Short dashed line, Rutherford cross section; solid line,

Mott formula; long dashed line, thermal diffuse scattering.

given angle (the inner cut-off angle) and 100 mrads (the
outer cut off) are plotted for the same cross sections as
displayed in Figure 2. The same trends are again apparent,
though it is interesting to note that the elastic scattering
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from the Mott formula is almost saturated for an inner cut
off between 5 and 10 mrads. Calculations for scattering of
300 kV electrons show a similar behavior allowing for the
different range of scattering angles, since all the cross sec-
tions are functions of momentum transfer.

The significant result from Figures 2 and 3 is that scat-
tering from atomic electrons is still important, even at high
angles, and that the bare Rutherford cross section should

not be used for quantitative analysis.

INELASTIC SCATTERING

The general form for the differential scattering cross section
has already been given as equation (5). By analogy with
X-ray and optical absorption, this expression is often writ-
ten in terms of a generalized oscillator strength defined by
(see Egerton, 1986):

df(g.E) 2mE
dE = ﬁ2q2

[ eitr) expliareaa | (13a)

Po 4 k B dfig.E)

dOdE 5242 k;2mE  dE

(13b)

The behavior of the generalized oscillator strength has been
extensively studied for inner shell excitations using atomic
theory. A full knowledge of the generalized oscillator
strength makes it possible to calculate the partial cross sec-
tion for any specified collection angle, accelerating voltage
or integration range of energies used in energy loss micro-
analysis (Leapman et al., 1980). In many cases, especially for
collection angles below about 10 mrad for typical micro-
scope operating voltages, it is possible to make the approxi-
mation that q.r’ < 1 and the exponential can be expanded
to first order. Since the initial and final states are orthogo-
nal, the differential cross section reduces to the dipole form

Ao 4

d0dE ™ 2 (14)

[ e wemar].

The integral over the angular parts of the wave function
leads to the dipole selection rule that the final state angular
momentum /' is given by I’ = [ + 1 where [ is the initial state
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angular momentum. In practice, it is often possible to ana-
lyze fine structures under a wide variety of conditions using
this simple rule (Rez et al., 1995).

The double-differential cross section for a particular
inner shell ionization can be integrated over all scattering
angles and all possible energy losses to obtain a total ion-
ization cross section for that particular shell (or subshell)
(Scofield, 1978; Rez, 1984). The X-ray production cross
section can be obtained by multiplying by the fluorescence
yield, which is the probability of the ionization decaying by
X-ray emission. All cross sections of relevance to micro-
analysis can be calculated on the basis of the Coulomb
scattering outlined above.

Partial cross sections based on Hartree-Slater cross sec-
tions have proven to be quite accurate in many cases (better
than 5% for K shells, 10% for L shells and the M, excita-
tions of the rare earths) (Auerhammer et al., 1989). There
are cases where the simple model of excitation from an
inner shell to a single continuum state is no longer ad-
equate. The 3p (M,;) edges in the first row transition ele-
ments and the N,5 (4d) edges in the rare earths are marked
by an anomalously high cross section just after threshold,
sometimes preceded by a dip in the region before the edge.
These edges are dominated by an interference effect called a

Fano resonance.

FANO RESONANCES

A Fano resonance can arise when there is an unfilled bound
state (3d for the transition elements and 4f for the rare
earths) accessible by a dipole transition from the inner shell
that is being excited. Since the mechanics of the process are
the same for both the transitional element M,; edges and
the rare earth N,5 edges, we shall for simplicity only con-
sider the transition element case. The complete theory was
originally published by Fano (1961) and later elaborated by
Davis and Feldkamp (1977), and Starace (1974). The final
state wave function should be written as a linear combina-
tion of the continuum d states and the bound 3d state

®r=ag;q+ fbafcpardds’- (15)

The problem reduces to determining the coefficients a and
b as functions of energy. Formally we now have a two con-
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Figure 4. Variation with energy of the square of configuration
interaction integral V2 (solid line), coefficients a (short dashed
line), and b, (long dashed line) for chromium 3p (a) and neo-

dymium 4d (b) excitations.

figuration system with a term in the Hamiltonian repre-
senting the configuration interaction V.

2

e
Vo [ a0 (5 ye—
Psp (r1)<P3p (rz)d371d37’2 (16)
For excitations from inner shells that are more deeply

bound, such as the 2p level (L,;) in the transitions elements
or the 3d (M,;) level in the rare earths, this term becomes
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Figure 5. Generalized oscillator strength (GOS) (a); cross section
for 100 kV electrons, 10 mrad collection angle (b); and electron
energy loss spectrometry (EELS) atlas experiment (c) for neo-

dymium and terbium 4d (N) excitations. The separation between

quite small and the effect disappears. The coefficients a and
b can be calculated in terms of the parameter m

e—-g5,- F(e)

= 17
n(e) v (17)
as
1 1
=F‘T—‘/‘€—(1 +n2)1/2 (183.)
M

= 18b
€ (1 + T]2)1/2 ( )

where F(g) is given by

V2,

F(e) = Pf ppr (19)

the 4d,,, (N,) and the 4d;,, (N;) levels is sufficiently small to make
it not worthwhile to perform calculations for both levels, though

they are superimposed in the experiment.

where P denotes the principal part of the integral. The term
F(e) is quite small and can be neglected in most cases. The
variation of V2 and the coefficients a and b is given as Figure
4 for chromium 3p and neodymium 4d excitations. The
configuration interaction integral remains fairly constant
over the entire energy range while the coefficient a is
strongly peaked at the bound state energy. An appropriate
physical picture is to assume that above the threshold there
is constructive interference between the bound state and the
continuum state, giving an enhanced final state wavefunc-
tion, while below the threshold there is destructive inter-
ference giving a reduction in amplitude. The width of the
threshold peak is influenced by the width of the curve for
the parameter a, which is linked to the magnitude of the
configuration interaction integral. Far above threshold, the
effect of the bound state is minimal, since the coefficient a
tends to zero and b tends to 1, and the result is identical to
a calculation with only transitions to continuum states.
These effects are all well demonstrated by the calculated
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generalized oscillator strengths and scattering cross sections
(200 kV, 10 mrad collection angle) for neodymium and
terbium 4d excitations shown in Figure 5. For comparison,
experimental spectra from the electron energy loss spec-
trometry (EELS) atlas (Ahn and Krivanek, 1983) are also
shown, although a quantitative comparison cannot be made
since the EELS atlas data is not on an absolute scale and the
experimental conditions are somewhat different. It is still
gratifying to see that the calculation reproduces the nar-
rower threshold resonance in terbium.

CONCLUSIONS

All scattering relevant for electron microscopy and analysis
is based on Coulomb interaction. This gives a general form
and a scale for the cross sections that applies to both elastic
and inelastic scattering. We show that, for elastic scattering
relevant for HAADF microscopy, it is important to use
either the thermal-diffuse or atomic scattering factor cross
section rather than the simple Rutherford form. We have
also reviewed inner shell ionization cross sections and
shown how the Fano resonance can make a large difference
to the threshold cross sections for first row transition ele-
ment 3p (M,;) excitations or rare earth 4d (N,s) excita-
tions.
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