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The scattering of fast electrons by crystals 

C J HUMPHREYS 
Department of Metallurgy and Science of Materials, University of Oxford, Oxford OX1 3PH 
and 
Jesus College, Oxford 

Abstract 

Electron diffraction and microscopy are among the most important techniques 
for studying the structures of solids. This review aims to give a comprehensive 
introduction to the basic principles of the scattering of fast electrons and to highlight 
selected applications of importance. It begins by discussing electron scattering by 
single atoms and describes how single atoms may be imaged. The  geometry of 
diffraction from perfect single crystals is then considered and a simple kinematical 
theory which yields approximate values for diffracted intensities is given. It is shown 
how simple principles have been used to image monatomic steps on the surface of 
crystals. 

More accurate methods of calculating diffracted intensities are given and particular 
attention is paid to describing concepts often found to be difficult, for example the 
dispersion surface. Principles of various recent electron scattering techniques are 
outlined including high-voltage electron microscopy, scanning electron microscopy, 
convergent-beam electron diffraction and the critical voltage effect. Applications 
described range from measuring bonding electron charge densities to the imaging 
of dislocations. Finally some recent theoretical developments on the problem of 
imaging imperfect crystals at atomic resolution are discussed. 

This review was received in February 1979. 
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1. Introduction 

1 . l .  Historical background 

In  1906 J J Thomson was awarded the Nobel Prize for demonstrating that the 
electron was a particle. Thirty-one years later his son, G P Thomson, was awarded 
the Nboel Prize for demonstrating that the electron was a wave. The  experimental 
verification of the wave nature of the electron by Thomson and Reid (1927) in Britain, 
and independently by Davisson and Germer (1927) in America, resulted from the 
first controlled experiments on the scattering of incident electrons by crystals, 
prompted by the theoretical deduction of the wave nature of the electron by Louis 
de Broglie (1924). 

At about the same time Heisenberg (1925) and Schrodinger (1926) had begun 
to build a wave theory of matter and Bethe (1928) applied the Schrodinger equation 
to the problem of the scattering of a beam of fast electrons by the periodic potential 
of a crystal. Thus in the space of a few years the theory and practice of the scattering 
of electrons by crystals was born and achieved significant growth. 

The  next thirty years saw the gradual development of electron diffraction cameras 
and electron microscopes. In  the last twenty years an enormous expansion of the 
theory and the practice of electron microscopy has occurred, largely stemming from 
the discovery that dislocations and other crystalline defects could be imaged in 
the electron microscope (Hirsch et a1 1956, Bollmann 1956). In  the last few years 
a similar expansion in very high resolution electron microscopy has started to occur, 
the study of the structure of matter by imaging the individual atoms that compose it. 
The  resolution necessary to achieve this is obtainable in principle because beams 
of electrons with wavelengths less than 0.1 A are easily produced. However, only 
recently have electron microscopes been produced with aberrations sufficiently 
low that atomic resolution in images is a practical possibility. The  best point-to-point 
resolution currently available in electron microscopes is 2-3 A, close to the inter- 
atomic distances in some solids, Examples of very high resolution images are shown 
in figures 1 (plate), 2 (plate) and 11 (plate). 

1.2. Scope of the review 

This review considers the scattering of a beam of fast electrons, fast being roughly 
defined as the speed of electrons having kinetic energy between about 1 keV to 
10 MeV. For 1 keV electrons, the wavelength, A, is 0.39 and the ratio of the 
electron velocity to the velocity of light, v/c, is 0.06. Electrons slower than this 
are unlikely to be useful for high resolution imaging studies and their scattering 
by crystals is complicated by exchange and virtual inelastic scattering effects (see 
the book by Pendry (1974) for a treatment of low-energy electron scattering). 10 MeV 
electrons have A=0.001 A and v/c=O*999. They are highly relativistic and at 
higher energies than this bremsstrahlung losses become severe, making it unlikely 
that such electrons would be useful for diffraction and microscopy work. (The 
specimen would also be seriously damaged owing to the incident electrons causing 
many atomic displacements.) 

The  purpose of this article is to review the basic theory of the scattering of fast 
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electrons by crystals, starting from first principles. Because the electron microscope 
is the most important instrument utilising electron scattering from crystals, examples 
have been given in the text from the world of electron microscopy. However, this 
review is basically about electron scattering and it is hoped that the text will be of 
use to all interested in the mechanisms of electron diffraction. 

The  starting point is the elastic and inelastic scattering of electrons by single 
atoms, 92, which includes a description of how the known angular distribution 
of such scattering has been used to image isolated single atoms. Section 3 considers 
the geometry of scattering by crystals, simple kinematical scattering theory, double 
diffraction, forbidden reflections and the imaging of monatomic surface steps. The  
important question of the nature of the crystal potential seen by incident fast electrons 
is discussed in 94 followed by a development of dynamical diffraction theory for 
non-absorbing perfect crystals. Particular attention has been paid to explaining 
concepts often found difficult, for example the dispersion surface. 

Inelastic scattering and absorption are considered in 95 together with a description 
of various important recent developments : penetration in high voltage microscopy; 
back-scattering in scanning electron microscopy ; the reciprocity theorem and scanning 
transmission electron microscopy ; convergent-beam diffraction, zone-axis patterns 
and their relevance to accurate symmetry determination ; the critical voltage effect 
and its relevance to determining solid-state bonding effects in crystals. The  final 
section discusses diffraction from imperfect crystals with particular emphasis on 
recent experimental and theoretical developments: the weak-beam technique, the 
avoidance of the column approximation and elastic diffuse imaging. 

1.3. Notation 

Unfortunately there is considerable variation in diffraction theory notation. 
Solid-state physicists usually define the wavevector k and the reciprocal lattice vector 
g as having magnitudes I k I = 2.rr/X and 1g 1 = 2.rr/d, respectively. Crystallographers, 
on the other hand, usually use 

lg I = lid. 
Some texts (e.g. Cowley 1975) use a hybrid system: 

Ikl=27r/X lgl =w* 
Throughout this review we define reciprocal space quantities as being true reciprocals 
as in equation (1.1). This is preferable from a purist viewpoint and also it simplifies 
the Fourier transform definition (see below). 

The  plane wave solutions of the time-independent wave equation 

V2$ + 4n2k2$ = 0 

are $=exp (+2.rrik.u) and $=exp (-2.rrik.u). 
We choose #=exp (+Z.rrik.u) to represent a plane wave proceeding in the direc- 

tion specified by the vector k (and exp (-2.rrik.u) to represent the wave with vector 
-k) .  About 50% of diffraction and wave mechanics texts adopt this convention, 
the other half associating the wave exp ( - 2.rrik.r) with the vector k. Both conventions 
are equally valid but it is important to be consistent in subsequent mathematics 
(many texts are not!). 
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Figure 1. Images of single atoms. The single bright spots are images of single gold atoms, 
the larger bright spots are clusters of atoms. Specimens prepared by depositing 
gold chloride solvent onto a 1 5  A thick carbon film. (Courtesy of M Isaacson, 
M Utlaut and M Ohtsuki.) 

Rep. Prog. Phys. 1979 42 facing page 1828 
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Adopting the above notation, the Fourier transform of a one-dimensional function 
f (x) is defined as 

and the inverse transform is defined as 

3 [ f ( x > ] = F ( u ) = J _ " ,  f ( x )  exp (-2xiux) dx (1 *2> 

f ( x )  = F(u) exp ( + 2niux) du. (1.3) 

If the solid-state physicists convention of defining reciprocal-space quantities 
is adopted, the 2n is omitted from the exponent in equations (1 -2) and (1.3). It 
must then be included as a constant: either both integrals in (1.2) and (1.3) are 
multiplied by (2x)-1/2, or the integral in (1.2) or ( 1 . 3 )  is multiplied by (2x)-1. 
If exp ( - 2xik.r) is chosen as the wave with vector + k then the signs of the exponents 
in (1.2) and (1.3) must be changed. 

The  question of notation has been discussed in detail above since it is a common 
source of confusion. A list of the symbols more frequently used in this article follows. 

velocity of electron 
velocity of light 
electron wavelength (relativistically correct) 
electron wavevector ( I k I = A-1) 
an interplanar lattice spacing 
a reciprocal lattice vector ( jgl = d-1) 
a wavefunction 
electron rest mass 
electron mass (relativistically correct) 
magnitude of the electron charge ( = I e I ) 
electron accelerating potential 
an optical potential 
real, Coulomb, potential 
imaginary part of the optical potential 
real contribution to the optical potential, due to virtual 
inelastic scattering 
gth Fourier coefficient of V(r) 
a 'modified potential' (U(r)  = ZmeV(r)/h2) 
gth Fourier coefficient of U(r) 
half-angle of scattering 
the Bragg angle 
atomic scattering amplitude for electrons 
first Born approximation atomic scattering amplitude for 
electrons 
atomic scattering factor for x-rays 
wavevector of a scattered wave 
a 'scattering vector' ( K ' =  k'- k)  
the wavevector of the incident electron inside the mean inner 
potential of the crystal 
atomic number 
classical electron radius (re = e21.t.2) 
cross section 
electron structure amplitude for reflection g 
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Figure 2. (a) High resolution structure image of a thin crystal of 4Nbz05.9W03. The 
unit cell is outlined. White patches in the image correspond to empty square 
and pentagonal tunnels in the structure (from Iijima and Allpress (1974), by 
courtesy of the International Union of Crystallography). (6) High resolution 
lattice fringe image of precipitates in an aluminium-copper alloy. The spacing 
of (200) planes in the perfect AI-Cu crystal is 2.0A. The fringe spacing varies 
between 2.0 A (in perfect regions) and 1.7 A. (Courtesy of E D Boyes.) 

Rep. Prog. Phys. 1979 42 facing page 1829 
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tl7 
S 

extinction distance for reflection g 
vector in reciprocal space indicating the deviation from the 
exact Laue condition 
a deviation parameter (w = S E g )  

a deviation parameter (cot /3 = w )  
volume of unit cell 
the critical voltage 
crystal thickness 
Debye-Waller factor 
wavefunction of the j th  Bloch wave 
wavevector of thejth Bloch wave 
component of k(n along normal to crystal entrance surface 
component of k(5) in the plane of the entrance surface 
excitation amplitude of the j th  Bloch wave 
the gth coefficient of the j t h  Bloch wave 
the total wavefunction 
amplitude of gth diffracted beam 
intensity of gth diffracted beam 
the ‘secular matrix’ (equation (4.43)) 
the eigenvector matrix 
imaginary part of the wavevector of thej th  Bloch wave 
amplitude absorption coefficient of j th  Bloch wave 
mean amplitude absorption coefficient 
mean intensity absorption coefficient 
mean absorption length 
anomalous absorption length 
displacement of j th  atom in a deformed crystal 
Burgers vector of a dislocation. 

2. Elastic and inelastic scattering by a single atom 

2.1. Elastic scattering 

We define elastic scattering by an atom (or a crystal) as a process which does 
not change the state of the atom (or crystal). An inelastic scattering process, on the 
other hand, is one in which the state of the atom is changed by the interaction, i.e. 
the atom is excited or de-excited. The purpose of $2 is to give a brief rCsumC of 
scattering by an atom in order to introduce some concepts which will be useful 
when considering scattering by crystals. 

The  problem of the collision between an electron and an atom is a many-body 
problem. However, to a good approximation, particularly in the scattering of fast 
electrons, the problem may be treated as the scattering of the incident electron by 
the potential field of the atom (see, for example, Wu and Ohmura 1962, Mott and 
Massey 1965). The  problem of the elastic scattering of a fast electron by an atom 
is therefore that of solving the Schrodinger equation for the atomic potential V(v). 
I t  is convenient to write the Schrodinger equation in the form 

where E is the incident electron accelerating potential and e = I e I = the magnitude 
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of the electron charge. V ( r )  is the atomic potential, defined as being intrinsically 
positive since the incident electron is attracted by the atom (hence eE and e V ( r )  
are the total energy and the potential energy, respectively, of the incident electron). 
It is convenient to gather together the constants in equation (2.1) by setting 

so that the Schrodinger equation becomes 

V2$h+47$[k2+ U(r)]$h=O. (2.3) 

As is usual in a scattering experiment we assume that the point of observation 
of the scattered wave is at a distance from the atom which is large compared with 
the dimensions of the scattering field. If the incident electron is the plane wave 
exp (2nikz) then the asymptotic form of the wavefunction # in equation (2.3) must 
be of the form: 

(2 * 4) 
exp (2nikr) 

r 
$= exp (Z.rrikx)+f(O) 

In  equation (2.4) the first term represents the electron wave incident upon the 
atom and the second term the scattered wave. The angle between the incident 
beam and the scattered beam is 28. If the atom were a point (that is, if the atomic 
dimensions were very much less than the incident electron wavelength) then the 
scattered wave would be a pure spherical wave exp (Znikr)/r. This is the case, for 
example, in the scattering of slow neutrons by the nucleus, in which the ‘interaction 
distance’ of the nuclear force is very much less than the thermal neutron wave- 
length. However, the incident electron beam ‘sees’ a finite atom and hence each 
point of the scattering field radiates a spherical wave, neighbouring waves interfering 
to produce a total scattered wave of the form f ( 8 )  exp (2nik~) /r .  f (8) is clearly the 
amplitude of the scattered wave at unit distance r, and hencef(8) is called the atomic 
scattering amplitude. The scattered intensity I (8)  at unit distance is then 

I ( 4 =  If(412. ( 2 . 5 )  

The atomic scattering amplitude f(8) is, in general, complex. I t  may be cal- 
culated exactly by expanding in spherical harmonics and using partial wave scattering 
theory (Hoerni and Ibers 1953) which yields 

where PI (cos 8) is the lth Legendre coefficient, and ql is a constant determined by 
integration. The series often converges very slowly. 

An alternative approach to expanding in spherical harmonics is to use the Born 
series method. This is particularly appropriate for the case of fast electrons and 
also it turns out that the expression given by the first Born approximation atomic 
scattering amplitude for a single atom has a special significance in the scattering 
of electrons by crystals (see 54.1). 

The integral form of the Schrodinger equation (2.3) which has the asymptotic 
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solution of equation (2.4) is well known to be (e.g. NIott and Massey 1965) 

U(r’)$(r’) dr’. 1 exp (iklr-r‘l) +(r) = exp (2nikz) + T Ir-r’l 

If the scattering is weak, i.e. the amplitude of the scattered wave is much less than 
the amplitude of the incident wave, we may assume as a first approximation that 
$(r’) in the integral can be replaced by the incident wave amplitude exp (2nfkz’). 
This approximation is known as the ‘first Born approximation’, or often simply 
just the ‘Born approximation’. Successive, higher-order Born approximations may 
be obtained by iteration, i.e. +(U‘) in the integral is replaced by progressively better 
wavefunctions. The iterative procedure generates the ‘Born series’ : 

$(r) = exp (27rikz) + $ ~ ( r )  + $2(r) + . . . (2 8) 
where #1(r) is the first Born approximation solution, $2(v)  is the second Born ap- 
proximation solution, and so on. If the scattering is weak so that the Born approxima- 
tion procedure is valid, the Born series converges and sums to the exact result of 
equation (2.6) (see, for example, Schomaker and Glauber 1952, Glauber and 
Schomaker 1953, Gj~lnnes 1964). 

2.2. The first Born approximation atomic scattering amplitude 

Since this quantity is important in the scattering of electrons by crystals (see 
$4.1) we will consider it in some detail. Setting #(r’)=exp (27rikz’) in equation 
(2.7), assuming that the point of observation Y is at a large distance relative to the 
dimensions of the atom, and comparing the result with equation (2.4) yields the atomic 
scattering amplitude on the first Born approximation as (see, for example, Hirsch 
et a1 1977) 

f B ( K ‘ )  = 27rme ~ Sm V ( r )  exp (-27riF.r) dr (2.9) h2 -a 

where V ( r )  is the atomic potential and K’ is the ‘scattering vector’, i.e. K‘ = k’ - k,  
where k and k’ are the wavevectors of the incident wave and the scattered wave, 
respectively (see figure 3). For elastic scattering I kl 2i I k’ I ,  and hence the triangle 
in figure 3 is isosceles. Defining the total angle of scatter as 20 we have from 
figure 3 : 

K’ = 2k sin 0 = (2 sin 0)jA. (2.10) 

Equation (2.9) shows that the Born approximation atomic scattering amplitude 
for electrons is proportional to the Fourier transform of the atomic potential. The 
analogy with optical and x-ray diffraction is clear. In  optics the Fraunhofer diffracted 
amplitude of an object is equal to the Fourier transform of the transmission function 
of the object. In  x-ray diffraction, the atomic scattering factor is equal to the Fourier 
transform of the electron charge density. Thus the Fourier transform concept is 
a unifying concept in diffraction theory. However, it is important to realise the 
limitation of Fourier transform methods in diffraction. The first Born approxima- 
tion, leading to the Fourier transform in equation (2.9), is a single scattering ap- 
proximation for a weakly scattering object. This approximation is essentially identical 
to the approximation made in optics in deriving the Fourier transform relationship 
for Fraunhofer diffraction. However, whereas this weak scattering approximation 
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Figure 3. 

is usually 

Diagram illustrating scattering from an incident beam of wavevector k to a scattered 
beam of wavevector k‘. K ’  is the ‘scattering vector’ and the scattering angle is 
defined as 28. 

valid in optics, it breaks down completely in the scattering of fast electrons 
by crystals, which are strongly scattering objects for which a more complex theory 
is necessary (see $4.2). However, provided the scattering is weak (as in the scattering 
of fast electrons by light atoms) the first Born approximation is very useful. 

The atomic potential V(v) is related to another important physical property, the 
charge density, by Poisson’s equation : 

V2V(r) = - 477e[pn(~) - p e ( ~ > ]  ( 2 . 1 1 )  
where pn(v) is the charge density of the atomic nucleus and pe(r) is that of the atomic 
electrons. T o  a good approximation for a static atom we may take pn(r) to be a point 
charge at the origin r = 0, of strength 2, the atomic number. 

Equation (2.9) may be written as 

V(v)V2 exp (-2niK’.v) dv. (2.12) me 

Integrating the above by parts yields, since V (  CO) = V (  - CO) = 0 : 

f B ( K ‘ ) =  - 27rh2K’z -- 

f B ( K ’ ) =  - me lm exp (-2.rriK’.v)V2V(r) dr 27rh2Kt2 - m  

Substituting equation (2 .11 )  into (2.13): 

(2.13) 

fB( K ’ )  = ~ 2me2 lm [Z6(r)-pe(v)]  exp (-2riK’.r) dr 
( 2 . 1 4 )  h2K ‘2  - m 

[ Z  -f x(K’)l 
- 2me2 

h2K ’ 2  
-~ 
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wherefx is the atomic scattering factor for x-rays. Equation (2.14), the Mott formula 
(Mott 1930), directly relates the electron and x-ray atomic scattering factors. The 
first term in the bracket of equation (2.14) is due to Rutherford scattering by the 
nucleus, and the second term is due to scattering by the atomic electrons. 

For large-angle scattering f x ( K ’ )  tends to zero and from equation (2.14) 

(2.15) 

Equation (2,15), the Rutherford scattering equation, only takes into account scattering 
by the nucleus and not by the atomic electrons, and hence it is only valid for large 
scattering angles for which fx(K’) is negligibly small. 

f ( K ’ )  is in fact sharply peaked in the forward direction for fast electrons as may 
be deduced from the useful ‘bandwidth’ theorem of Fourier transforms which, 
applied to equation (2.12), states that 

AK’Arrr 1 (2.16) 
where AK’ represents the range of K‘ values over whichfB(K‘) is large, and AY 
represents the range of Y values over which V(u) is large. Now the atomic radius is 
of the order of 1 A, and hence AY,- 1 8. Therefore: 

and 
AK’w 1 A-1 

A[(sin O)/h] - 0.5 A-1. 

For 100 keV electrons, A= 0,037 A. Therefore: 

A (sin O)-ABrrO.02 rad? lo. (2.17) 

Hence f B ( K ’ )  is sharply peaked in the forward direction and the curve of fB(K’) 
against B has a semi-half-peak width of about 1 O for 100 keV electrons (see figure 4). 

The magnitude offB(K’) is typically between 1-10 A. This is very much greater 
than the scattering length b for neutrons ( ,- 10-4 8) or the corresponding scattering 
amplitude for x-rays, rep( ,- 10-4 A), where re is the classical electron radius which 
is the scaling factor necessary in order to compare the magnitude of x-ray and 
electron scattering (see, for example, James 1967). Hence electrons are elastically 
scattered by atoms very much more strongly than are x-rays or neutrons. 

2.3. The total elastic scattering CYOSS section 

atom is, from equation (2.5), 
The total elastic scattering cross section for a fast electron incident on a single 

(2.18) 

It is useful to have an approximate analytical expression for U. Two different treat- 
ments of this problem yield a similar result: 

(2.19) 

where (1 - v2/c2) is a relativistic correction factor (see $4.8), v is the incident electron 
velocity and c is the velocity of light. Using the Wentzel(l927) model for the atom, 
Lenz (1954) gives A =  1 in equation (2.19). Using the Thomas-Fermi statistical 
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I 

0 0.02 0,OL 
6 ( r a d )  

Figure 4. The first Born approximation scattering amplitude, fB(K'), as a function of 0 
for 100 keV electrons incident upon single atoms of gold and copper. The plots 
have been made using the relativistic Hartree-Fock scattering amplitudes of Doyle 
and Turner (1968). 

model of the atom, Mott and Massey (1965) give A = 1 *8. More accurate computa- 
tions of the first Born approximation cross section using different atomic models 
have been made by Langmore et a1 (1973) and Humphreys et a1 (1974). The results 
of Humphreys et al, using relativistic Hartree-Fock wavefunctions for the atoms 
(Doyle and Turner 1968), which are probably the most accurate wavefunctions 
currently available, are shown in figure 5 .  Electron shell effects are clearly evident 
in the accurate cross sections and equation (2.19) is seen to be a considerable over- 
simplification. However, equation (2.19) is evidently valid for approximate semi- 
quantitative estimates. In  particular, the 2 2  dependence of the cross section on the 
Rutherford model is replaced by an approximately 2413 dependence of the cross 
section when scattering by both the nucleus and the atomic electrons is taken into 
account. 

Finally it should be noticed that the first Born approximation gives fB as a real 
quantity (e.g. see equation (2.14)). This is an important point in the scattering of 
electrons by crystals (see 94.1). The exact treatment for single atoms, equation 
( 2 , 6 ) ,  yields that f is a complex quantity, as does using higher-order Born approxima- 
tions, of the form I f 1  exp (iq). The phase shift q is appreciable for heavy atoms 
and it must be taken into account in gas diffraction studies (Hoerni and Ibers 1953, 
Ibers and Hoerni 1954). 

2.4. Inelastic scattering 
The major inelastic scattering mechanism for fast incident electrons with energies 

in the range 1 keV to 10 MeV is single-electron excitation of the atomic electrons. 
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Z 

Figure 5. The elastic scattering cross section against atomic iiumber (on a log-log scale) 
for 100 keV electrons incident upon single atoms. A, B arid C plot the total elastic 
cross section using relativistic Hartree-Fock wavefunctions, Wentzel potentials 
and Thomas-Fermi potentials, respectively. D and E plot the cross section for 
scattering between 0 = B(min) and &T. In D, B(min) = 0.024 rad; in E, 0(min) = 0 + 15 
rad, and Q varies as 22 (Rutherford scattering), as expected when the small-angle 
scattering is not taken into account (from Humphreys et  a1 (1974), by courtesy 
of the Australian Academy of Sciences). 

This may take two forms, excitation of atomic electrons to higher bound atomic 
states and excitation to a positive total energy state, i.e. ionisation of the atom. 

For simplicity we again use the first Born approximation as a reasonable first 
approximation for the scattering of a fast electron by an atom. The first Born ap- 
proximation differential cross section for scattering by an atom initially in the ground 
state 0 and finally in the nth excited state (Born 1926) may be written in the form: 

(2.20) 

where, as before, k and k' are the magnitudes of the fast electron wavevector before 
and after scattering respectively, K ' = k ' - k ,  and 2 is the atomic number of the 
scattering atom; Son = 1 for elastic scattering, 60, = 0 for inelastic scattering. fonX(K') 
is a generalised atomic form factor (or atomic scattering factor) for x-rays defined 
bY 

fonX(K')=JOOm U O ( V > U ~ " ( V )  exp ( -2niK' .r)  dv (2.21) 

where uo and Un are the ground-state and nth excited-state wavefunctions (including 
position and spin) of the atom. For elastic scattering, equation (2.20) clearly reduces 
to equation (2.14) using equation (2. IS), since fonX(K')+fooX(K') = f x ( K ' ) .  Detailed 
exact evaluations of equation (2.20) have not yet been made, but a number of ap- 
proximate calculations have been performed. Usually, following Morse (1932), 
the wavelength change on scattering is neglected. Equation (2.20) may then be 
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summed over all excited states, taking into account the exclusion principle, to give 
the differential cross section for all inelastic scattering transitions : 

doinel -4m2e4S(K') 
dQ h4K '4 

where S ( K ' )  is an inelastic scattering function, which may be evaluated using various 
atomic models. In  the Hartree-Fock representation, S ( K ' )  is given by 

(2.22) ~- 

S ( K ' ) = Z -  I fidX(K')12-- 
i 

(2 .23)  

where fdjX(K') is given by equation (2.21).  The summation over i is taken over the 
occupied levels only, and the third term is the exchange term (due to the exclusion 
principle, transitions to occupied states are forbidden). The  terms f i jX(K')  have 
been computed from Hartree-Fock wavefunctions for a number of elements by 
Freeman (1959, 1960). Calculations using the above method but neglecting exchange 
have been made by Whelan (1965) and Radi (1970). However the effect of the 
exchange term is likely to be important (Pogany 1971)) as are also electron correlation 
effects (i.e. deviations from the Hartree-Fock theory), and for very small angle 
scattering equation (2.22) breaks down. Further work is needed in this area. 

The  angular distribution of the inelastically scattered electrons may be estimated 
using equations (2.22) and (2.23),  and it is found that the inelastically scattered 
electrons are very sharply peaked in the forward direction. 100 keV incident electrons 
typically have a semi-half-peak width after inelastic scattering of about 10-4 rad, 
and the total cross section for inelastic scattering varies approximately as 2 1 1 3  (Lenz 
1954). 

2.5. The imaging of single atoms 

Figure 4 shows that the inelastically scattered electrons are much more sharply 
peaked in the forward direction than the elastically scattered electrons. This fact was 
utilised by Crewe et a1 (1970) in order to detect single heavy atoms supported on a thin 
carbon substrate. Figure 6 shows schematically the experimental arrangement. 
Electrons are focused to a very small spot ( N 5 A diameter) and transmitted through 
the thin carbon substrate upon which rest the single heavy atoms. If the incident beam 
convergence angle is appropriately chosen, most of the inelastically scattered electrons 
fall within the incident beam cone, and most of the elastically scattered electrons fall 

STEM C T E M  

Figure 6. Schematic diagram of the annular detector used for imaging single atoms in STEM 
(scanning transmission electron microscopy). An alternative dark-field method 
for CTEM (conventional transmission electron microscopy) is also shown (from 
Humphreys et nl (1974), courtesy of the Australian Academy of Science). 
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outside the beam cone and can be collected on an annular detector as shown. From 
equation (2,19), the total elastically scattered intensity is approximately proportional 
to 2 4 P .  Hence, if the incident beam is scanned across the carbon surface the ratio 
of the elastically scattered intensity when the beam is scattered by the (heavy atom -t- 
carbon substrate) relative to that when the beam is scattered by the carbon substrate 
alone is 

(2.24) 

where n, is the number of carbon atoms in the path of the beam. For example, if 
nc = 100 and the heavy atom is uranium, equation (2.24) yields I ( C  -t- atom)/I(C) = 1-3, 
i.e. there should be 30% contrast from the single uranium atom, which is readily 
detectable in the Crewe scanning transmission electron microscope (STEM). For 
further details the reader is referred to Crewe et a1 (1970). An example of the heavy 
atom images obtained is shown in figure 1. Single heavy atoms have also been 
detected in a conventional transmission electron microscope (Hashimoto et a1 1971, 
Formanek et a1 1971, Henkelman and Ottensmeyer 1971). 

The individual heavy atoms diffuse across the substrate surface at room tem- 
perature by thermal motion. Hence, unfortunately, this technique has not yet 
been used to determine the positions of atoms in a heavy-atom-substituted DNA 
molecule, for example. However, work is in progress to observe the specimen in a 
liquid-helium-cooled stage, which may make such experiments possible. The 
distribution and diffusion at room temperature of individual heavy atoms on thin 
film substrates has recently been studied (Isaacson et a1 1977) using the high resolution 
STEM of Crewe. 

3. The geometry of diffraction by perfect crystals 

3.1. Introduction 

In  $2 we have seen that a single atom scatters an incident electron beam in all 
directions, the scattering being strongly peaked in the forward direction. A perfect 
crystal is a periodic array of atoms. The scattered waves from one atom interfere 
with scattered waves from other atoms in the crystal, this interference redistributing 
the scattered amplitude and yielding directions in which the scattered intensity 
is a maximum, due to constructive interference, or a minimum, due to destructive 
interference. Usually the directions of diffracted maxima are given by geometrical 
considerations only (i.e. that path differences should be a whole number of wave- 
lengths). Hence the basic geometry of the diffraction by crystals of any incident 
wave (electron, x-ray, neutron, etc) is essentially the same. Some specific features 
of the diffraction of electrons will be discussed in $53.6 and 3.7. 

3.2. The Bragg law 

known Bragg equation (Bragg 1913) 
The simplest statement of the condition for a diffracted maximum is the well- 

2 d’ sin O=nA (3 * 1) 
where d’ is the spacing between lattice planes and n is an integer. The  particular 
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angle 6 satisfying equation (3.1) is known as the Bragg angle (often denoted by 
OB). 

I t  is conventional and convenient to put d = d’/n, so that equation (3.1) is 

2 d sin 8=h. (3 -2) 

Thus, although the diffracted beam may arise from an nth-order reflection from 
actual lattice planes of spacing d’, it is convenient to regard this as a first-order 
reflection from planes of spacing d =d’/n, which may be real or fictitious lattice 
planes. 

Bragg arrived at his concept of a ‘reflection’, in the optical sense, of x-rays from 
planes of atoms by applying Huygens’ principle to an array of atoms lying in a plane, 
and showing that the secondary waves from each atom build up a wavefront exactly 
as if part of the incident wave had been specularly reflected from the plane, provided 
that the angle of incidence satisfies equation (3.2). 

3.3. The Laue condition 

von Laue (see Friedrich et a1 1912) considered the problem of the geometry of 
diffraction by crystals slightly in advance of the work of Bragg. Considering the 
scattering of waves by the individual unit cells of the crystal, rather than by lattice 
planes, he derived the well-known ‘Laue condition’ for a diffracted maximum, 
that 

k ’ - k = g  (3.3) 

where k‘ and k are the wavevectors of the scattered and incident waves, respectively, 
and g is a reciprocal lattice vector. For elastic scattering I k’ I = [ k I ,  hence equation 
(3.3) defines an isosceles triangle and, given that lgl = l / d ,  Bragg’s law follows 
immediately. Thus Bragg’s law and the Laue condition are entirely equivalent, 
being real-space and reciprocal-space formulations, respectively, of the geometry 
of diffraction. 

~ The physical significance of the Laue condition can be seen by forming the 
scalar product of equation (3.3) with a, b and c successively (where a, b and c are 
the lattice translation vectors) which yields : 

a . (k ’ -k )=a .g=nl  

b .  (k’ - k )  = n2 

c.(k’ - k )  = n3 

where nl, n2 and n3 are integers. Equations (3.4) are known as the three Laue equa- 
tions for diffraction, which must all be satisfied simultaneously for a maximum to 
occur. 

Each of the three equations (3.4) is the condition for a diffracted maximum 
from a one-dimensional grating of spacing a, b and c, respectively. For any given 
angle of incidence corresponding to k a diffracted maximum always occurs in a 
one-dimensional grating in a direction corresponding to k’ given by one of the 
equations (3.4). However, for a crystal the conditions for a diffracted maximum 
are much more stringent since all three equations (3.4) must be satisfied simul- 
taneously. The  geometry of diffraction by a three-dimensional crystal is equivalent 
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to simultaneous diffraction by three one-dimensional gratings of spacing a, b and c, 
each grating being parallel to a, b and c, respectively. 

The  Laue condition ( k ’ - k ) = g ,  or the equivalent Bragg law, is a necessary but 
not a sufficient condition for a diffracted maximum. The  Laue condition is derived 
by considering scattering by a periodic array of unit cells. For a non-zero diffracted 
amplitude it is clearly also necessary that the amplitude scattered by one unit cell, 
the structure amplitude to be defined in equation (3 - 5 ) )  is non-zero. Thus there 
are two geometrical conditions for a non-zero reflection : 

(i) The  Laue condition: ( k ’ - k ) = g .  
(ii) A non-zero structure amplitude: F,# 0. 

The above two conditions are usually necessary and sufficient for a diffracted maxi- 
mum although the effects of dynamical diffraction (see $4), in particular extinction 
and the critical voltage effect ($5.9), can impose additional conditions. 

3.4. The Ewald sphere (or reflecting sphere) construction 

This is a very useful geometrical interpretation made by Ewald (1913) of the 
Laue condition k ’ - k = g .  The steps in the construction are as follows (and see 
figure 7(a)): 

(a) Plot the reciprocal lattice of the crystal. 
(b) Choose any reciprocal lattice point as origin 0 and draw a line CO parallel to 

(c) Draw a sphere centre C, radius I k 1 ,  
If the sphere intersects a reciprocal lattice point G at distance g from the origin 

0, then a diffracted beam occurs (provided F ,  # 0) and the direction of the diffracted 
beam is CG=k’. The  proof of the construction follows immediately from the 
geometry of the situation. If G lies on the sphere then (k’ - k)  =g, as required, 

k,  the incident beam direction and of magnitude I k I. 

0 

Figure 7. 

lbl 

The Ewald sphere construction for determining the direction of a diffracted wave. 
(a) The Laue (or equivalently the Bragg) condition is exactly satisfied. (b)  The 
crystal is slightly deviated from the exact Laue (or Bragg) condition. The deviation 
is indicated by s. s is defined to be negative when the reciprocal lattice point is 
outside the sphere, as in this figure. kt is the component of k along g. 
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3.5. Kinematical theory of da.raction by finite perfect crystals 
The Ewald sphere construction considers a sphere exactly intersecting a point. 

This corresponds to the Laue condition, or equivalently Bragg’s law, being exactly 
satisfied. Physically this corresponds to complete destructive interference in all 
other directions. Such complete interference can only occur in the limit of an infinite 
number of unit cells, i.e. for an infinite crystal (which is also perfect and in which 
no inelastic scattering is allowed). 

For a finite crystal there will be only partially destructive interference and hence 
there will be a finite non-zero diffracted intensity in directions other than exact 
Bragg reflection directions. For finite crystals, as used in practice, it is therefore 
necessary to give a more careful treatment of the geometry of diffraction. It must 
be emphasised that in the following treatment we are concerned with the geometry 
of diffraction, and not with accurate diffracted intensities. We shall assume the 
crystal to be a weakly scattering object (the kinematical approximation), which is 
approximately valid as regards the geometry of diffraction, but which is invalid as 
regards the intensities of electrons diffracted by crystals, apart from special cases 
(see $4). 

We define the structure amplitude F(g)  as the amplitude scattered by a unit 
cell at unit distance in the direction (k+g), i.e. the defining equation is (e.g. Hirsch 
et al 1977) 

F(g)  = C.P(g) exp ( -  2.rrig.Q) ( 3 . 5 )  
i 

where ri is the position of the ith atom in the unit cell having an atomic scattering 
amplitude ftB(g) given by equation (2.9). The use of the first Born approximation 
atomic scattering amplitude here is discussed in $4.1. Equation (3 ,5) represents 
scattering by all the atoms in the unit cell taking into account the phase difference 
for scattering in a direction (kt-g), where k is the incident wavevector. The  minus 
sign in the exponential of equation (3.5) is consistent with our choice of representing 
a plane wave travelling in the positive k direction as exp (+2.rrik.r) (see $1-3). 

Consider two unit cells within the crystal, at 0 and P, separated by rj. From 
simple geometry (see figure 8) the phase difference between waves scattered at 
0 and at P is - 2xvj. (k’ - k). If the crystal is at an exact Bragg position, k’ - k =g. 
Consider the crystal slightly deviated from the Bragg position so that 

k‘ - k =g + s (3 * 6) 

where s is a small vector in reciprocal space indicating the deviation from the exact 
Laue condition (see figure 7(b)). The deviation parameter s is defined as negative 
when the reciprocal lattice point is outside the Ewald sphere, as in figure 7(b) and 
s is positive if the reciprocal lattice point is inside the sphere. The  total amplitude 
scattered by the crystal in the direction k ’=(k+g+s )  to a point at a large distance 
Y is 

A@)= r - lFg C exp [-2niq.(g+s)] 
j 

(3.7) 

since q.g is an integer. The  summation is taken over all unit cells of the crystal. 
The  r-1 factor in equation (3.7) is frequently omitted in textbooks, which gives 
rise to a considerable apparent simplification of the kinematical theory. However, 

123 

Duncan Alexander
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Figure 8. Diagram illustrating the diffraction of an incident wave of vector k 
a t  large distance in the direction k', by two unit cells at 0 and P 
ri. 

n illustrating the diffraction of an incident wave of vector 
distance in the direction k', by two unit cells at 0 and 

Diagran 
a t  large 
ri. 

* k  
P 

to a point r 
separated by 

it is important to leave in the r-1 factor in order to show how the spherical-type 
wave of equation (3 .7)  finally yields a plane-type total Bragg scattered wave from 
a crystal. The  r-1 factor arises in the same way as in equation (2.4) and r is assumed 
to be large by comparison with the crystal dimensions. 

For simplicity, consider scattering by a rectangular parallelepiped crystal. Let 
the unit cell have sides a, b and c and let the crystal dimensions be A, B and C parallel 
to the unit cell sides, respectively. We may write 

vj = ua + vb + wc (3 * 8) 

where U, ZI and w are integers. Let s have components sa, Sb and sc so that 

where d", 6* and 2. are reciprocal lattice unit vectors. Then 

A(s) = r- lFg C exp [ - 2ri(uasa + V b s b  + wcsc)]. (3.10) 
u v w  

It is convenient to choose the origin at the centre of the crystal. E, exp (- 2riuasa) 
is a standard progression which sums to give 

sin rNIas, exp ( - 2 r i  uas,) = c sin ras, 
(3 * 11) 

u 

where N I  is the number of unit cells along the A dimension, i.e. NIa=A.  Since 
we are considering small deviations from the Bragg position, sa is small and sin 
ras ,z  ras,. Hence from (3.10) and (3.11) the intensity scattered in the direction 
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(k+g+s), at a large distance r,  is 

where Vcel l  is the volume of the unit cell. Equation (3.12) was first derived by 
von Laue (see Friedrich et a1 1912) and is known as the Laue interference function. 
In  going from equation (3.11) to (3.12) we considered s to be small. Physically 
this means that the phase angle ( 2 ~ r j . s )  in equation (3.7) varies slowly from cell 
to cell and we may therefore approximate the summation in equation (3.7) to an 
integral so that 

A ( s )  = r -IF, exp ( - 2nirj.s) = exp (-2nir.s) dr. (3.13) c 
j 

Evaluating the integral in equation (3.13) yields equation (3.12). Equation (3.13) 
states that the amplitude diffracted from a perfect crystal is proportional to the 
Fourier transform of a function which is unity inside the crystal and zero outside, 
This is called the shape transform of the crystal. Although proved here for the 
case of a rectangular parallelepiped crystal, the result holds generally for a crystal 
of any shape, on the kinematical theory. Each term in equation (3.12) is analogous 
to the Fraunhofer intensity diffracted by a single slit, of width A, B or C, in optics. 

There is therefore a complete analogy between the kinematical theory of the 
diffraction of electrons (or x-rays, neutrons, etc) by a crystal, and the diffraction 
of light by three diffraction gratings (the three gratings being mutually perpendicular 
if the crystal axes are mutually perpendicular). The  directions of the diffracted 
maxima are determined by the lattice vectors or, by analogy, by the grating spacings 
a, b and c (equation (3.4)). The intensity distribution of each diffracted beam, 
or each order of diffraction, is determined by the dimensions of the crystal or, by 
analogy, by the dimensions of the gratings A, B and C (equation (3.12)). 

The above description of the geometry of diffraction by finite crystals applies 
to any incident radiation (electrons, x-rays, neutrons, etc). Equation (3.13) shows 
that we may consider each reciprocal lattice point associated with a finite crystal 
to have a finite extension in reciprocal space given by the amplitude distribution 
A(s). In  x-ray diffraction this broadening is known as particle-size broadening, 
and the measured widths of diffracted beams may be used to determine the crystal 
dimensions A,  B and C (see, for example, James 1967). 

3.6. Kinematical diffraction by thin crystals 

In  transmission electron diffraction the specimens studied must be very thin 
(typically 1000 A thick for conventional 100 keV electron microscopy and diffraction), 
since the penetration of electrons through crystals is much less than that of x-rays 
or neutrons. The specimen is therefore approximately a thin plate, of thickness t 
(= C) much less than its lateral dimensions A and B. The terms in equation (3.12) 
involving A and B tend to 6 functions for large values of A and B. Hence the intensity 
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diffracted by a thin plate of thickness t is 

(3.14) 

Equation (3.14) shows that the intensity I ( s )  is spread out in the form of a spike 
normal to the crystal plate. This is shown schematically in figure 9, and is the well- 
known diffracted intensity distribution in optics of light from a slit of width t. The 
width, at half-height, of the spike in reciprocal space is approximately t-1. We 
can represent this finite distribution of scattered intensity in the Ewald sphere 
construction (93.4) by drawing a line of length t -1  through each reciprocal lattice 
point in a direction normal to the crystal plate (see figure 10). These extended 

I L-- I - __ ' 
-3t-1 -2 t -1  -t- '  

S 

Figure 9. The intensity distribution along the spike through a reciprocal lattice point for a 
plate crystal of thickness t ,  on the kinematical theory (see equation (3.14)). 

reciprocal lattice points are known as reciprocal lattice rods, or sometimes as rel-rods. 
On the Ewald sphere construction, the condition for reflection by a thin crystal is 
that a reciprocal lattice rod, rather than a point, should cut the Ewald sphere. 

For low-energy electron diffraction (LEED), the incident electrons penetrate only 
a thin surface layer of the crystal. The effective value of t is therefore very small 
and each reciprocal lattice rod is very long, extending to cut the Ewald sphere twice 
and yielding strong diffracted beams in both forward and backward directions. 
Resonance effects can occur when a reciprocal lattice rod is tangent to the Ewald 
sphere (which has a small radius of curvature for low-energy electrons). For a 
detailed treatment of LEED see Pendry (1974). 

We can calculate the absolute intensity, in the kinematical approximation, of 
the diffracted beam emerging from the crystal by using equation (3.14). For simplicity 
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i 

(01 ( b )  

Figure 10. Diagrams illustrating the symmetrical Laue case (a) in real space, (b) in reciprocal 
space, for a plate crystal of thickness t .  The intensity distribution along the 
spike in (b)  is given in figure 9 and it has a full width at half-height (FWHH) of 
t-1 as shown. 

consider the symmetrical Laue case (in which the Bragg planes are perpendicular 
to the crystal surface) shown in figure 10. The  spike then bisects the angle 26' between 
k and k' and the incident and diffracted beams enter and leave the crystal sym- 
metrically. Consider the total intensity scattered into a solid angle dL2 about the 
diffracted beam. In  real space r 2 dL2 = dS, where d S  is an area element on a plane 
of radius r .  I n  reciprocal space dQ = ds, dsb/k2 cos 8. Hence the total intensity 
scattered over the sphere of radius r about the diffracted beam direction k ' = k + g  
is 

Now AB cos 6' is the area of the crystal projected along k ' = k + g .  Thus the intensity 
per unit area of the diffracted beam, i.e. the diffracted beam flux, is 

(3.16) 

I t  is conventional to refer to -Tg(t) as the diffracted beam intensity, although 
strictly it is a flux. Also following convention we replace sc by s, where s is the com- 
ponent of s normal to the crystal plate, and we define a parameter 

5,  = 7kVcell COS B/F,(2B). (3.17) 

4, has the dimensions of length and is called the extinction distance for reasons 
to be given in 94. Typically 5, is several hundred A for 100 keV incident electrons. 
Equation (3.17) then gives the intensity scattered through 26' in the gth diffracted 
beam from a crystal of thickness t on the kinematical theory as 

(3.18) 



1846 C J Humphreys 

It should be noted that the total Bragg diffracted beam intensity, unlike equation 
(3.12), is not a function of r .  The validity of equation (3-18) will be discussed in 
§4* 

3.7. Double dagraction 

For incident fast electrons the Ewald sphere radius of curvature is very large 
with respect to reciprocal lattice vectors (for 100 keV electrons, k = h-1 z 27 A-1). 
Since for a thin crystal each reciprocal lattice spot is effectively extended into a 
spike, many spikes usually cut the Ewald sphere. Hence a typical electron diffraction 
pattern, using monochromatic electrons, has many diffraction spots. For mono- 
chromatic x-ray diffraction, on the other hand, the radius of curvature of the Ewald 
sphere is small (k- 1 A-1) and the crystal thickness is large, hence the crystal has to 
be orientated very carefully to obtain even one diffracted beam. 

Since a number of strong diffracted beams can easily occur in the diffraction 
of fast electrons, double and multiple diffraction must occur. An example of this 
is the 222 reflection in the diamond structure. The structure amplitude for the 222 
reflection, F(222), is zero if spherical atoms are assumed. However, atoms in the 
diamond structure are covalently bonded, and hence non-spherical, and F(222) 
has a small finite value. In  x-ray diffraction a very weak 222 reflection is observed, 
and a measurement of this intensity gives direct evidence of the bonding charge. 
I n  electron diffraction, on the other hand, the 222 reflection usually appears strongly 
on the diffraction pattern, due to the double diffraction from 111 (the electron beam 
is first scattered from 0 to 111 involving F(111) and is then re-scattered from 111 
to 222, again involving F(111)). Thus in this case the double diffraction to 222 
resulting from two successive 11 1 scatterings completely masks the small direct 
F(222) scattering. I n  general, if (hlklll) and (h2kzlZ) are two allowed diffraction 
spots, then (hl+hz, k l + k z ,  Z1+l2) is also an allowed double-diffraction spot. (It 
should be pointed out that forbidden reflections which result entirely from the choice 
of a non-primitive unit cell cannot be generated by double diffraction.) 

3.8. Forbidden rejections 

We have made the assumption that for a perfect crystal a reflection is forbidden 
if the structure factor for that reflection is zero ($3.3). This assumption is correct 
if the crystal is perfect and if it contains an integral number of unit cells. However, 
crystal surfaces are not atomically smooth but contain steps, the height of which 
may not be an integral number of unit cells. For example, consider a (111) surface 
of an FCC crystal. The  stacking of close-packed planes along [111] is ABCABCABC . . . 
in conventional crystallographic notation. A surface step may therefore be of height 
n/3 unit cells, where 1z is an integer, so that the crystal thickness does not necessarily 
correspond to an integral number of unit cells. Hence, although F ,  = 0 for a particular 
reflection, that reflection may be present with very weak intensity if the crystal is 
not an integral number of unit cells thick. The  fact that a finite intensity can occur 
in a ‘forbidden’ reflection for the above reason appears to have been first pointed 
out by Morris et al (1968). 

Cherns (1974) has utilised such ‘forbidden’ reflections to image directly monatomic 
surface steps on thin metal films (see figure 11 (plate)). Using a different direct 
imaging technique Moodie and Warble (1967) have resolved atomic scale surface 
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Figure 11. Monatomic surface steps on a 400 A thick evaporated (111) gold film imaged 
to atomic resolution using a ‘forbidden’ reflection (from Cherns (1979), by courtesy 
of North-Holland). 

Rep. Prog. Phys. 1979 42 facing page 1846 
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steps on magnesium oxide crystals. Since surface step sites are believed to be pre- 
ferred sites for chemical activity (e.g. reduction, oxidation and catalysis), the ability 
to image directly such sites may be of considerable importance in the determination 
of catalytic mechanisms, for example. 

4. Elastic scattering by non-absorbing perfect crystals 

4.1. The crystal potential 

The crystal potential ‘seen’ by incident electrons is of fundamental importance 
in electron diffraction, since it is this potential which is responsible for the scattering 
and it is this potential which features in calculations of diffraction contrast. Whereas 
a great deal of thought has been given by solid-state physicists to the nature of the 
potential seen by the conduction electrons in crystals, very little consideration has 
been given until recently to the nature of the potential seen by an incident beam 
of fast electrons (see, for example, Kambe and Molikre 1970, Dederichs 1972, Howie 
and Stern 1972, Humphreys 1977, Smart and Humphreys 1978). 

It is of interest to note that electron diffraction theory is basically similar to 
band theory (electron diffraction theory in fact came first (Bethe 1928)) except that 
in electron diffraction the incident electron energy is fixed and positive and the 
problem is to find permitted values of the electron wavevector inside the crystal: in 
band theory, on the other hand, the problem is to find permitted values of the electron 
energy (negative corresponding to bound states) for given values of the wavevector 
and so to build up E against K curves (Humphreys and Fisher 1971, Stern et a1 
1969). 

The  incident electrons undergo elastic and inelastic scattering in the crystal, 
which gives rise to diffraction, refraction and absorption, and which may be repre- 
sented by an ‘optical’ potential (see, for example, Yoshioka 1957, Mott and Massey 
1965), which is the potential that the incident electrons effectively see, of the form 

Vopt(r) = V ( r )  + iV’(r) + AV(r) (4.1) 
where V ( r )  is due to elastic scattering, V’(r)  is due to inelastic scattering, and AV@) 
is a real part addition to the potential due to virtual inelastic scattering processes. 
V’(r)  and AV(r) are considered further in $5. 

By definition a perfect crystal is periodic, hence we can expand the crystal potential 
as a Fourier series based on either the real space or the reciprocal space lattice, i.e. 
we may write V(r )  as 

V(r)=  C V ,  exp (2nig.r) (4 * 2) 
0 

where g is a reciprocal lattice vector. Equation (4.2) explicitly takes into account 
the translational symmetry of the crystal structure. V(r)  must also have the rotational 
symmetry of the crystal structure. This is taken into account in equation (4.2) 
by having the V ,  appropriately related. As a simple example, if the crystal possesses 
a centre of symmetry then V(r)  = V (  -r). Hence from equation (4.2) it follows 
that we must have Vg= V-, for all values of g. With the V ,  correctly chosen for a 
given crystal structure equation (4.2) is thus a valid expansion of V(r) .  We may 
similarly express V’(r) and AV(r) as Fourier series and the gth Fourier coefficient 
of the optical potential is therefore 

V,OPt y , + i V,’ + A V g  . (4.3) 



1848 C J Humphreys 

The real part of the optical potential is often called the crystal potential and any 
measurement of this real crystal potential therefore measures ( V ,  + AVg). Although 
calculations exist of AVO, the mean real part addition to the potential (Yoshioka 
1957, Ichikawa and Ohtsuki 1968), no calculations have existed until recently of the 
magnitude of the more important quantity AV, (g#O). I t  has now been shown 
(Rez 1978a) that for 100 keV incident electrons AV,/V, is typically between 10-4 
and 10-5, which is less than the current experimental errors in measuring the real 
part of the potential. Hence for fast incident electrons the real part of the potential 
is essentially due only to elastic scattering since virtual inelastic scattering is 
negligible. 

The  elastic scattering part of the potential, V(v) ,  is in principle due to both the 
Coulomb interaction between the incident electron and the crystal and to exchange. 
However, the exchange terms are negligible for incident electron energies over about 
50 keV (Rez 1978a). Thus we have the important result that for fast incident electrons 
(50 keV and above) exchange and virtual inelastic scattering are negligible and the 
crystal potential seen by the fast incident electron is simply Coulombic for the elastic 
scattering, plus an imaginary part iV’(v) to represent absorption, considered further 
in $5. 

Hence, the real crystal potential seen by incident fast electrons is simply related 
to the crystal charge density p(v) by Poisson’s equation. In  considering the scattering 
of fast electrons by crystals we are therefore in the fortunate position of knowing 
the nature of the crystal potential, unlike the situation in band theory or low-energy 
electron diffraction (LEED) in which exchange, correlation and virtual inelastic 
scattering complicate the situation considerably, 

The  electron microscope can be used for accurate measurement of the crystal 
potential. This will of course differ from isolated free-atom potentials since the 
crystal potential seen by the incident fast electrons includes all solid-state bonding 
effects. For example, it has recently been found using electron microscopy that 
V ~ O O  for graphite deviates by about 9% from the calculated spherical free-atom 
value (Goodman 1976); and the critical voltage effect (see $5.9) has been used to 
investigate in some detail the covalent bonding charge density distribution in Si and 
Ge (Hewat and Humphreys 1974). 

From equation (4.2) we have 

V,= -A- J V(v)  exp (-2nig.v) dv 
Vce1l cell 

where Vcell is the volume of the unit cell and the integral is taken over this cell. 
Comparing equations (4.4), (2.9) and (3.5) it is clear that 

Thus the Fourier coefficients of the real crystal potential are exactly related to struc- 
ture amplitudes F, for electrons as determined from the first Born approximation 
(equations (3.5) and (2.9)) provided that the potential V(r) in equation (2.9) takes 
into account solid-state bonding effects. The fact that equation (4.5) is exact when 
F, is calculated using an expression identical to the first Born approximation is a 
subtle point and it has caused a great deal of confusion in the literature. The ex- 

Duncan Alexander
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planation is that from equation (4 .4)  V,  must be exactly related to the Fourier 
transform of the atomic potential (corrected for solid-state bonding). It so happens 
that this Fourier transform is identical to the expression for the first Born approxima- 
tion (equation (2.9)). 

A number of authors (for example, Hoerni 1956, Boersch et a1 1964) have cal- 
culated fs and F ,  using higher-order Born approximations, or using phase-shift 
methods, which yield complex scattering amplitudes. These complex amplitudes 
have then been substituted in equation (4.5) to yield a complex potential. This is 
clearly wrong since only elastic scattering has been considered and the complex 
part of the potential (equation (4.3)) can only arise from inelastic scattering. Although 
the scattering factors calculated using higher-order Born approximations, or using 
phase-shift methods, give the correct results for scattering from free atoms and 
molecules (see §§2.1-2.3), it is the expression which happens to be identical to the 
first Born approximation, i.e. equation (2.9), which should be used in calculating 
f,, F,  and V,  for crystals, using equation (4.5). For further details see, for example, 
Fukuhara (1965) and Cowley and Moodie (1970). 

Scattering factors reliably corrected for solid-state bonding effects are not readily 
available for most materials and as a first approximation theoretical free-atom scatter- 
ing factors are usually used in equation (4 .5)  to calculate values of V,. For example, 
the relativistic Hartree-Fock free-atom values tabulated by Doyle and Turner 
(1968) are widely used in electron diffraction calculations. 

T o  a good approximation the effect of thermal vibrations of the atoms on the 
electron structure amplitude may be taken into account by the Debye-Waller factor, 
as in standard x-ray diffraction theory (e.g. James 1967). Hence FgT, the structure 
amplitude at temperature T,  is related to F,, the structure amplitude for zero atomic 
vibration, by 

where M = 87~2~,2(sin2 19)jAz = Bg2/4 where M is the Debye-Waller factor, c 2  is 
the mean-square displacement of the atom, and B = 8 n 2 2  is the ‘temperature 
factor’ of the atom. Values of B for different materials and temperatures are given 
in the International Tables for X-ray Crystallography (1962). I t  should be noted 
that M varies as g2, and thus for high-order reflections the Debye-Waller factor is 
extremely important. For example, for the 555 reflection in gold the room-temperature 
value of the structure amplitude is only one-half of the zero vibration value. The  
related Fourier coefficient of potential is also halved (equation (4.5)) and the extinction 
distance is doubled (equation (3.17)). It should be borne in mind that values of B 
and the related Debye temperature determined from diffraction experiments may 
be considerably different from those determined from specific heat measurements 
since the phonon spectrum is weighted differently. I t  is of course the Debye tem- 
perature determined from diffraction experiments which should be used in equation 
(4.6). 

FgT= Fg exp (- M )  (4 * 6) 

4.2. The breakdown of the kinematical theory 

crystal of thickness t as 
Equation (3.18) gives the diffracted intensity in the gth diffracted beam from a 

Duncan Alexander
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At the exact Bragg position, s = 0 and 

Now Ig( t )  cannot be greater than unity, the incident beam intensity, hence an upper 
limit of the foil thickness tmax for which kinematical theory is valid at the Bragg 
position is tmax = tg/n-. Since extinction distances are typically a few hundred A for 
100 keV incident electrons, tm,N 100 A. I n  fact this must be very much an upper 
limit since kinematical theory assumes only single scattering and hence assumes that 
the diffracted beam is very much weaker than the incident beam. We might expect 
kinematical theory to be valid if I g ( t ) z O * l ,  i.e. if t<30 A. Since typical specimen 
thicknesses in conventional 100 keV electron microscopy are N 1000 A, it is clear that 
kinematical theory normally cannot be used and instead a theory which considers 
multiple scattering within the specimen, a dynamical theory, must be used. 

The fact that single-scattering kinematical theories are not normally valid in the 
electron microscopy of crystals is not always appreciated and has caused, and still 
causes, considerable confusion, particularly in the interpretation of lattice images of 
crystals containing defects (see Cockayne et al 1971b). However if s, the deviation 
from the Bragg condition, is large then from equation (4.7) Ig( t )  may be small and 
kinematical theory may still be usefully applied (see, for example, Whelan 1975). 
Due to its very limited quantitative use we shall not consider the kinematical theory 
further in this review. 

4.3. Relativistic effects 

Electrons in a conventional electron microscope have an energy of 100 keV and 
travel with 55% of the speed of light. 1 MeV electrons in a high-voltage electron 
microscope travel at 94% of the speed of light. Thus a theory of diffraction and 
microscopy using fast electrons must take into account relativistic effects. 

Fujiwara (1962) and Howie (1962, see Whelan 1962) showed by different methods 
that the effects of electron spin appear to be negligible and hence fortunately we do not 
need to solve the Dirac equation. They showed that relativistic effects are adequately 
taken into account by solving the Schrodinger equation, provided that relativistic 
corrections to the electron mass and wavelength are made. Thus for an incident 
electron of velocity v and energy eE, where E is the accelerating potential, the 
relativistic mass and wavelength are : 

and 
m = mo( 1 - v2/c2)-1/2 (4.9) 

(4.10) h A = -  
[2moeE( 1 + eE/2moc2)] 

where c is the velocity of light. 
The  real part of the crystal potential V(v), and hence the V,, seen by the incident 

electrons is independent of the incident electron energy (provided this is sufficiently 
high that exchange and virtual inelastic scattering are negligible, see $4.1). The  
electron scattering amplitude and the structure amplitude f( 19) and F,, respectively, 
are a function of m and hence vary with the incident electron energy as [l - ( v / ~ ) 2 ] - 1 / ~ .  

The extinction distance tg (defined by equation (3.17)) varies as v (the variation 
in cos 8 being negligible), The  absorption distance ti, to be defined (equation (5.20)), 
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varies approximately as 9 2  (this neglects retardation effects (Terakura et al 1966) 
and aperture effects (Humphreys 1972)). It should be borne in mind that other 
parameters associated with the incident electron may need to be relativistically 
corrected. 

A relatively simple derivation of equations ( 4 . 9 )  and (4.10) is as follows. In  the 
non-relativistic case, the total electron energy W (= eE) is 

P 2  W = - + ( - e )  V (v) .  2m 
The equivalent relativistic equation is 

p 2 ~ 2 + m o 2 ~ 4 =  [e(E + V)+nzoc2]2= Wr2 

where Wr is the relativistic total energy: 

Hence 

Neglecting e2V2 gives 

Replace p by - ifiV and operate on +: 

W, = mc2 = e(E i- V )  + moc2. 

p2~2=e2E2+2eEmoc2+2mc2eV-e2V2. 

p2c2 - 2mc2eV = eE (2moc2 + eE). 

(1 +2$) * = 0. 8 4 m e V ( r ) +  8rr2moeE 
+ h2 ”#+ h2 

This is effectively the Klein-Gordon equation for electron diffraction. This differs 
from the non-relativistic Schrodinger equation (equation ( 2 . 1 ) )  in that: 

(a) m replaced mo in the potential energy term V(r) ,  which gives equation ( 4 . 9 )  ; 
(b)  E+ E (1 + eE/2moc2). 

Hence, using the de Broglie relationship, the relativistic wavevector is 

1 2 moeE(1+ eE/2moc2)1/2 
Xr h 

= - = _ _ ~ - -  

which gives equation (4 .10) .  

4.4. Dynamical diffraction theory 
Various theoretical approaches have been used for t,,e formulation of the dy- 

namical theory of electron diffraction. The  method which will be used in this review 
is based on that given by Bethe (1928), in which the wavefunction for fast electrons 
within the crystal is represented by a linear superposition of Bloch waves. This 
approach is analogous to the nearly-free electron model developed subsequently in 
band theory. 

Other approaches include the wave-optical method of Howie and Whelan (1961), 
which is similar to the x-ray diffraction theory of Darwin (1914); a different wave- 
optical theory of Cowley and Moodie (1957) using the concept of transmission 
through a large number of crystal slices of very small thickness; a real-space theory 
of Berry (1971) which considers the crystal as a periodic array of potential wells, 
with transmission and reflection of the incident electrons at the well boundaries, 
and a group-theoretical algebraic approach by Hurley et al (1978). The Bethe 
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(1928) theory has been developed by MacGillavry (1940), Sturkey (1%7), Fujimoto 
(1959) and Niehrs (1959a, b). The nature and inter-relation of some of the various 
theories of electron diffraction has been discussed by Goodman and Moodie (1974). 

The starting point in the Bethe theory is the Schrodinger equation for the wave- 
function #(r) of the fast electron within the crystal potential V ( r ) :  

8n2m 1 e 1 
h2 VZ#(r> + [E .t V(r) ]  #(r) = 0 (4.11) 

where m is the relativistic mass of the fast electron, given by equation (4.9), E is 
the incident electron accelerating potential (so that the total energy of the incident 
electron is Ie lE) ,  and V ( r )  is the real crystal potential defined here as being positive 
since the incident electrons are attracted by the atoms. 

We expand the periodic potential as a Fourier series based on the reciprocal lattice 
(see $4.1) 

m 

V ( r ) =  Vh exp (2nih.r). (4.12) 
- -M 

The electron wavefunction within the crystal may be represented by a Bloch wave 

#(r) = C(r )  exp (2nik.r) (4.13) 

where C(r )  has the periodicity of the lattice and hence may be expanded as a Fourier 
series based on the reciprocal lattice to give 

#(r)= C C, exp [2ri(k+g).r]. (4.14) 
Y 

The C, are known as the Bloch wave coefficients. 

with Fourier coefficients 
The constants may be collected together by defining a 'modified potential' U(r )  

Uh2EI.! Vh (4.15) h2 
and a quantity R given by 

2rnlel 
hz K2=-.-.. ( E +  J7 0) (4.16) 

where K is the magnitude of the mean electron wavevector in the crystal after allow- 
ing for the mean crystal potential (a small correction: typically E = l o 5  V, VOW 10 V). 

C B ([KZ-(k+g)Z:c,+ z, T/'s-hCn) exp [ ~ n i ( k + g ) . r l = ~ .  (4.17) 

Equation (4.17) holds for all points r in the crystal, hence the coefficient of each 
exponential term must be equal to zero (the coefficient is not a function of r).  Thus 
we have the set of equations 

Substituting equations (4.12)-(4.16) in (4.11) yields 

[K2-(k+g)Z]Cg+ Ug-hCh=O (4.18) 
h i g  

there being one such equation for each value of g (i.e. each reflection) considered. 
The  set of equations represented by equation (4.18) is exact provided an infinite 
number of g values is considered. In  practice an approximate solution considering 
a finite number of reflections must be used in calculations. Equation (4.18) can 
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be solved to any required degree of accuracy by choosing the appropriate number 
of reflections to consider. For n reflections, we have n equations similar to equation 
(4.18) and n different Bloch wave solutions. 

4.5. The two-beam approximation 

As a first approximation, often only two reflections are considered in equation 
(4.18) (this approximation is similar to the nearly-free electron approximation in 
band theory). The two-beam approximation is in many cases, but not always, valid 
as a first approximation for 100 keV incident electrons although it breaks down 
for higher incident electron energies. Physically we may expect the two-beam 
approximation to be valid if one diffracted beam is much stronger than all others 
so that an incident beam of wavevector k gives rise to only two strong beams leaving 
the crystal (the transmitted beam of wavevector k and the diffracted beam of wave- 
vector (k +g)). Mathematically the two-beam approximation is valid if the Bloch 
wave expansion of equation (4.14) can be terminated, to a good approximation, after 
the first two terms, i.e. 

$(v)= CO exp (2nik.r)+ Cg exp [2ni(k+g).v]. (4.19) 

In the two-beam approximation equation (4.18) is 

(K'-k')CO+ U-qCq=O 

[K2-- (k+g)2]Cg+ ugco=o. 
Writing equations (4.20) in matrix form: 

K2-k' 2) (;;)=o' 
Ug K - (k  +g) 

(4.20) 

(4.21) 

Equation (4.21) has a solution if the determinant of the coefficients is equal to 
zero, i.e. 

KZ - (k +g)2 
(4.22) 

Equation (4.22) is clearly an equation in k4. If we had considered n beams instead 
of 2 beams we would similarly have had an equation in k2%, with 2n roots. n of 
these roots are positive and n negative, corresponding to forward and backward 
propagation, respectively. Application of the boundary conditions (see $4.6) shows 
that for the transmission electron diffraction of fast electrons backward propagating 
waves are negligible (see, for example, Hirsch et al 1977), and hence we need only 
consider the n positive roots of k .  For low-energy electron diffraction, on the other 
hand, it is necessary to consider all 2n roots (see Pendry 1974). 

Now K is the magnitude of the fast electron wavevector after correction for 
the mean crystal potential (see equation (4.16)) and k is the magnitude of the wave- 
vector of the fast electron within the crystal. Since the Fourier coefficients of crystal 
potential V, are typically 5 10 V and for fast electron diffraction the incident electron 
accelerating voltage is typically 105 V it can be seen that K z k. Also for fast electrons 
K $-g, and therefore K z I k + g l .  Hence in equation (4.22) we may, to a very good 
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approximation, put 
K2 - I t2  = 2K(K - I t )  

K2 - (k+g)2= 2K(K - I k + g l ) .  
(4.23) 

The above approximation is known as the high-energy approximation. Use of 
this approximation makes equation (4.22) quadratic in K ,  rather than quartic, since 
essentially it neglects back-reflected waves. Setting equation (4.23) in (4.22) 
yields 

(4.24) 

Equation (4.24) has two roots k(1) and k(2). We will denote these roots by k(j) 

( K  - k)(K - I k +gl) = UgU-g/4K 2. 

(j=l, 2). 

4.6. The sign$cance of more than one Bloch wave 

Equation (4.24) shows that using the two-beam approximation we have two values 
of the electron wavevector inside the crystal for a given incident electron energy 
eE (where E is the accelerating potential). Similarly, if we consider n beams we 
have n values of ldj) (n-beam theory will be given in $4.9). Each value of k(j) is the 
electron wavevector corresponding to a different Bloch wave. We originally con- 
sidered a particular Bloch wave solution, equation (4.14), to the Schrodinger equation. 
We now find that more than one wavevector is possible inside the crystal. Hence 
the general solution is a linear combination of Bloch waves, each with a different 
wavevector. The  total wavefunction Y(r) of the fast electron is therefore given 

Y(Y)= &)$(5)(r)= C &) C Cg(j) exp [277i(k(n +g) . r ]  (4.25) 

using equation (4.14). d.3) is the amplitude (often called the excitation amplitude) 
of the j th  Bloch wave $(J)(r). 

Physically the crystal acts as an interferometer. An incident electron of energy 
eE and fixed wavevector is partitioned by the crystal into a set of Bloch waves of 
differing wavevectors k(n. As each Bloch wave propagates it becomes out of phase 
with its neighbours (due to its different wavevector). Hence interference occurs, 
for example if the crystal thickness varies interference fringes known as thickness 
fringes are formed. 

At the entrance surface of the crystal we must match the incident wave (assumed 
to be a plane wave throughout this review) with the total wave inside the crystal, 
given by equation (4.25). The boundary conditions are the usual quantum-mechanical 
ones for continuity of current at an interface, namely that Y and grad Y must be 
continuous. Define the a direction as the downward normal to the surface of the 
crystal. Let kZ(I) and k&5) be the components of k(j) in the x direction and in the 
plane of the surface, respectively. Consider the symmetrical Laue case (with g 
parallel to the surface, i.e. gz=O). It follows immediately from the continuity of 
Y(r) at the surface x = O  that the tangential components of k(j) must all be equal, 
and equal to the tangential component of the incident wavevector. We therefore 
set k&3) = kt for all j .  Hence, the wavevector of each Bloch wave differs only in the 
z direction in the symmetrical Laue case. In  addition, continuity of Y and grad Y 
at the crystal entrance surface yields that cdj)=C,(j)* (see $4.9). 

Since the Bloch waves have different wavevectors, W),  they have different kinetic 

by 

j U 
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energies. For elastic scattering the total energy (kinetic plus potential) is a constant 
equal to the incident electron energy. Hence each Bloch wave must have a different 
potential energy. This is physically due to a different localisation (defined as 
I $(J)(r) I 2) of each Bloch wave within the crystal. The situation can be compared 
to that in band theory: at a Brillouin zone boundary on nearly-free electron theory 
the valence electron Bloch waves below and above the energy gap have a different 
localisation within the crystal (of the form sin2 and cos2); hence their potential 
energies are different. However, in the band theory case this difference is for a 
particular wavevector k, i.e. a particular kinetic energy, and hence the total electron 
energy differs, yielding the familiar E against k curves of band theory. 

4.7. The dispersion surface 

The dispersion surface in electron diffraction is a plot of the allowed values 
of the 2: component of the Bloch wavevector k(j) in the crystal. I t  is the electron 
diffraction equivalent of the E against k curves of band theory, and of similar 
importance. 

Consider a particular Bloch wavevector k(j) with components k,(j) and kt as 
described above, i.e. 

(4.26) 
Using the high-energy approximation (see equation (4.23)) we have 

k(1)2 = kz(3')2 + kt2. 

K2 - k(3')2= K2 - k p -  kt2 z2K(K -k,U)) - kt2 (4.27(4) 

(4 -27(b)) 

K 2 -  (k(3') +g)2= (K2 -kz(3')2) - (@+ 2gkt+ g2) 

z 2K(K - k,(J)) - (kt +g)2 

since in the Laue case considered here g is parallel to kt. If we solve the Schrodinger 
equation as before, but take as the fast electron wavefunction the general solution 
(4.25) rather than a particular Bloch wave solution (4.14), then the two-beam 
approximation equation (4.21) becomes generalised 

'K  2 - kU)Z 

Setting equations (4.27) in equation (4.28) yields 

(4.28) 

(4.29) 

Equation (4.29) is a standard eigenvalue equation of the form 
AC(n = (kz(3') - K)C(3'). (4.30) 

Diagonalising the matrix A (using the normal methods) yields each eigenvalue 
(k@ - K )  and corresponding eigenvector C(j). 

Since U(r)  is real, U,= U-," (asterix denotes complex conjugate) and the matrix 
A is Hermitian. Hence the eigenvalues - K )  are real although the eigenvectors 
C,(j) are, in general, complex. If the crystal has a centre of symmetry and we choose 
this as the origin of r, then U,= U-, (see $4.1) A is real symmetric, and the eigen- 
values and the eigenvectors are all real (for further properties of A see 54.9). In  
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the two-beam approximation A is the 2 x 2 matrix given by equation (4.29) and 
we write the two eigenvalues as ( k Z ( l ) - K )  and ( k 2 ( 2 ) - - K ) .  From equation (4.29) 
it is clear that for a given value of kt, i.e. a given orientation of the incident beam 
with respect to the crystal, we have two values of k2(5), i.e. and k2(2) .  For a 
different value of kt we have different values of k2( l )  and Jz2(2). The dispersion surface 
is a plot of the permitted values of k,(j) against kt (where kt is the component of the 
incident wavevector parallel to the crystal surface). The  curve for a particular Bloch 
wave, i.e. for wave 1 or 2, is called a branch of the dispersion surface. Thus in the 
two-beam approximation the dispersion surface has two branches as shown in figure 
12. If n beams are considered we have n Bloch waves with n values of for a 
given kt and hence the dispersion surface has n branches (see figure 13). Since we 
are plotting the x component of W ) ,  the extended dispersion surface is periodic 
with g, i.e. it is a periodic zone scheme representation similar to the periodic zone 
scheme E against k curves of band theory. It should be noted that at the exact 
Bragg position kt = - 0 5g, the minus sign arising since the incident beam wavevector 
is directed to 0 and not to g. 

It is useful to consider 'free-electron theory' for the incident fast electron within 
the crystal. Neglecting diffraction, by setting U, = U-, = 0 in equation (4.29), 
yields as a solution that the electron wavevector should lie on one of two free-electron 

I 
I - B r . l l o ~ r  zone boundary 

Figure 12. The dispersion surface in the two-beam approximation. x is the incident wave- 
vector, K is the incident wavevector after correction for the mean crystal potential, 
The Ewald sphere is the sphere, radius K centre P. The dispersion surface is 
asymptotic to a sphere, radius K centre 0, and a sphere, radius K centre G, as 
shown. The surface is a plot of kdj)  against kt (see text). The waves excited in 
the crystal correspond to the wave-points W ( l )  and W@),  W(1) and W(2) are 
the points of intersection of the dispersion surface branches 1 and 2 with the 
normal n to the crystal, the normal passing through the end-point of x as shown. 
For clarity only the wavevectors from wave-point W ( l )  are shown (i.e. &cl) and 
k("+g) .  The diagram is not to scale. 
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0.01 A-’ 

Figure 13. n-beam dispersion surface for 100 keV electrons incident upon copper. Note 
the periodicity of the surface (i.e. this is a periodic zone scheme representation), 
The dispersion surface branches are clearly asymptotic to spheres (distorted in 
the figure since the kz scale is enlarged relative to kt).  

spheres of radius K,  one centred on the origin of reciprocal space and one centred 
on the reciprocal lattice point g as shown in figure 12. These spheres intersect at 
the Brillouin zone boundary, i.e. at the exact Bragg position for which kt = - 0 * 5  g.  
Switching on the crystal potential (i.e. setting U, # 0) removes this degeneracy. 
The dispersion surface branches become asymptotic to the free-electron spheres 
of radius K away from the Bragg position. ( K  is the incident electron wavevector 
corrected for the mean inner crystal potential, hence the free-electron spheres 
are in fact ‘corrected’ free-electron spheres for the fast electron in the crystal.) 

The numbering system used for labelling the dispersion surface branches and 
the corresponding Bloch waves is a topic of some confusion. Prior to about 1971, 
most calculations used the two-beam approximation and the system normally used 
in publications was to label the top branch of the dispersion surface (i.e. the branch 
with the highest k,(n value) branch 2 (i.e. k,(2)) and the next branch, branch 1. 
Since about 1971, n-beam calculations (nz> 2) have been more widely used, most 
of which adopt an ordered labelling scheme (Humphreys and Fisher 1971) which 
numbers the dispersion surface branches from the upper to the lower, i.e. 1, 2, 3, 4, 
etc, in order of decreasing kz(j). This scheme will be used throughout this review. 

Just as the Ewald sphere construction is a useful geometrical aid in kinematical 
diffraction theory, the dispersion surface is a useful geometrical aid in dynamical 
diffraction theory. We know that the tangential components of k(l) are all equal 
to the tangential component of the incident wavevector (see $4.6). Hence, to find 
the allowed values of the kU) for a given orientation of the crystal with respect to 
the incident beam we construct a normal to the crystal surface through the end 
of K at P in figure 12 (or equivalently through the end point of x ,  the vacuum wave- 

124 
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vector). The  intersections of this normal with the branches of the dispersion surface 
give the 'wave-points' corresponding to k(n. The individual wavevectors k(J) and 
k(j) +g can then be drawn in as shown. 

4.8. DiSfracted intensities: two-beam theory 

of thickness t is 
From equation (4.25), the electron wavefunction at the bottom of the crystal 

Y(t) =  CL(^) C C,(j) exp [2ni(k(j) +g)$j. (4.31) 

Since z is defined as perpendicular to g, gz = 0. At the bottom surface of the crystal 
the Bloc11 waves decouple into their plane wave components, so that the amplitude 
in the diffracted beam direction ( k + g )  is 

vg( t )  = oi(j)Cg(j) exp (2nihZ(j)t) (4.32) 

i g 

3 

where a(J)  = CO(~)*  (see $ 4.6). 
Hence the intensity scattered in the gth diffracted beam is 

I,(t) = I Co(J)+C,(j) exp (2nikz(j)t) I 2, (4.33) 
j 

Consider the crystal set at the exact Bragg position for the reflection g, so that the 
reciprocal lattice point g lies on the Ewald sphere and Ikl = Ik+gl.  kt, the com- 
ponent of the incident beam wavevector along the direction g, is then - 0*5g, and 
equation (4.25) or (4.29) is easily solved to give 

and 
(4.34) 

(4.35) 

taking the Cg(j) to be normalised, i.e. C,C,(j)2= 1, and assuming a centrosymmetric 
crystal (i.e. U, = U-,). 

From figure 12, (kz(l) - k,(Z)) is the separation of branches 1 and 2 of the dis- 
persion surface, and equation (4.34) gives the minimum value of this separation, 
which occurs at the Bragg position. The  extinction distance is defined to be the 
inverse of this minimum separation, i.e. 

[ g = ( k z ( ' )  -k~ , (~ ) ) - l=K(coS  eB)/ug.  (4.36) 

The expression for the extinction distance given by equation (4.36) is identical to 
that used in kinematical theory (equation (3.17)), as can be seen by using equations 
(4.5) and (4.15), except that K, the mean wavevector of the fast electron within 
the crystal, replaces the incident wavevector used in the kinematical theory expres- 
sion, a very small correction. OB is typically 10-2 rad for 100 keV incident electrons 
and hence to a good approximation we may set cos O B =  1 in equation (4.36). 

From equations (4.33)-(4.36), the intensities diffracted from a .perfect crystal 
of thickness t at the Bragg position on the two-beam dynamical theory are: 

Io(t) = cos2 (nt/[,) 

Ig(t) = sin2 (nt/ fg) 
(4.37) 

where Io(t) and Ig(t) are the transmitted and diffracted intensities, respectively, 
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plotted in figure 14. For varying t there is an interchange of intensity between the 
two beams analogous to the energy interchange of two coupled pendulums. Intensity 
is conserved as expected (i.e. Io(t) + Ig(t) = 1). The intensity in the diffracted beam 
is zero for t = n [ ,  ( n  an integer), hence the term extinction distance. The periodicity 
of thickness fringes is cg in both the transmitted and the diffracted beams (see figure 
14), i.e. tg is the 'oscillation distance' resulting from the interference between the 
two superimposed Bloch waves having different k vectors. 

Equation (4.28) or (4.29) can also be solved by hand for the crystal deviated 
from the Bragg position. Using the Ewald sphere construction (figure 7(b ) )  simple 
geometry shows that the deviation parameters s and kt are related by 

(4.38) 

Figure 14. The variation of intensity with crystal thickness for a crystal at a Bragg position, 
two-beam theory, no absorption. tg is the extinction distance, i.e. the periodicity 
of the thickness fringes. 

I t  is convenient algebraically to introduce a further deviation parameter /3 (Takagi 
1962) defined by 

In  terms of /3 the solution of equation (4.28) or (4.29) for an arbitrary deviation can 
be written as follows : 

cot /3 = s f g  = w. (4 * 39) 

(4.40) 

Equations (4.40) are very useful compact analytical forms. I n  the general case 
the direct and diffracted beam intensities may be easily shown to be 

(4.41) 
Io(t)= 1 -Ig(t)  
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where 
S’= (s2 + tg-2)1’2.  (4.42) 

Equation (4.41) is similar in form to the kinematical theory equation (3,18) 
except that s is replaced by s’. This is a very important difference, however, since 
in most electron scattering experiments the crystal is oriented close to a Bragg position 
so that s is small and s’ differs appreciably from s. Thus, as argued qualitatively in 
$4.2, kinematical theory normally is not valid. However, if s is large then s ’ z s ,  
the diffracted beam is very weak, and kinematical theory may be a useful approxima- 
tion under these conditions (see Cockayne et a1 (1969) for the application of kine- 
matical theory to the weak-beam method of dislocation imaging). 

4.9. The many-beam dynamical theory and matrix notation 

The two-beam approximation considered above is often a valid first approximation 
for 100 keV incident electrons. However it breaks down even as a first approximation 
for higher-energy incident electrons (see Humphreys et a1 1971). Hence for all 
accurate quantitative work, and for some qualitative work, a many-beam dynamical 
theory is necessary. This is a straightforward algebraic extension of the two-beam 
theory, although the many-beam equations usually require a computer for their 
solution. The  necessary extensions of the two-beam theory are briefly presented 
below. 

The  total wavefunction of the fast electron within the crystal is given by equation 
(4.25). The many-beam theory eigenvalue equation (the so-called secular equation) 
is a straightforward extension of the two-beam equation (4.29), i.e. 

(4.43) 

(4.44) 

If n beams are considered (including the forward scattered beam for which 
g= 0) A is an (n  x n) matrix, and there are n eigenvalues and n Bloch waves, each 
Bloch wave having n plane wave components. 

For a non-centrosymmetric crystal A is Hermitian since U,= U-g*, the eigen- 
values are real and the (n x a) eigenvector matrix C, the columns of which are the 
complex eigenvectors C(n, is unitary, i.e. 

C-l= Ct = e*. (4 * 45) 

The physical interpretation of equation (4.45) is clearer if the terms are explicitly 

c Cg(0Cg(J)* = (4.46) 
written out, which yields : 

B 
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(4.47) 

i.e. the eigenvectors form a complete orthogonal and normalised set. 
For the particular case of a centrosymmetric crystal A is real symmetric, all the 

eigenvalues and the eigenvectors are real and C is a real orthogonal matrix (i.e. 
e= C-1). If the n eigenvalues are plotted out, a dispersion surface with n ‘branches’ 
is obtained, as in figure 13. 

The boundary condition of continuity of the wavefunction at the top crystal 
surface gives immediately that for an incident beam of unit amplitude the amplitudes 
a(j) of the Bloch waves excited in the crystal must be such that Xja(j)Co(j) = 1, or in 
matrix form 

C a = u  (4.48) 

where the column vector U has the first element equal to 1 and all other elements 
zero. Using equation (4.45) : 

a = C - ~ U  = P u .  (4 * 49) 

Thus a(j)  = Co(j)*, as assumed earlier in 54.6. 

already been given as 
The amplitude of the gth diffracted beam leaving the bottom of the crystal has 

vg.(t) = E exp (2nik2W). (4.32) 

We may write the amplitudes of all the diffracted beams as the column vector t, 

where 

j 

Thus using equations (4.49) and (4.32) the amplitudes of all the diffracted beams 
are 

U = C[exp (2r ik ,W)]~a  

= C[exp (2nik,(j)t)]~C-L 
(4.50) 

where [ ]D denotes a diagonal matrix. Thus the diffracted beam amplitudes from 
a crystal of thickness t are completely specified by the eigenvalues and eigenvectors 
of A .  Equation (4.50) may be written in the compact form (Fujimoto 1959, Sturkey 
1962) 

U = exp (iAt)u. (4.51) 

5. Elastic scattering in absorbing crystals 

5.1. Inelastic scattering and absorption 
The theory developed in 54 considered only elastic scattering in a perfect non- 

absorbing crystal. We now consider the possibility of inelastic scattering and ab- 
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sorption. There are three main inelastic scattering mechanisms for fast electrons 
incident on a crystal. The  incident electrons may be inelastically scattered by single- 
electron excitations, plasmons and phonons. The excitation of single electrons 
has been considered in $2.4 in connection with inelastic scattering by a single atom. 
In  a crystal we also have the possibility of collective excitations, both collective 
electron excitations (plasmons) and collective atom excitations (phonons). 

The  general dynamical theory of the inelastic scattering of electrons by crystals 
was first formulated by Kainuma (1955) and Yoshioka (1957) and has been reviewed 
by Kambe and Molikre (1970). The theory of plasmon scattering has been discussed 
by Howie (1963), single-electron excitations by Cundy et a1 (1969) and Humphreys 
and Whelan (1969), and phonon scattering by Takagi (1958), G j ~ n n e s  (1966), Natta 
(1968), Melander and Sandstrom (1975a, b) and Rez et a1 (1977). In  this review we 
shall be mainly concerned with a simple phenomenological treatment of the effects 
of inelastic scattering although the important concept of resonance errors is discussed 
in $5.10. 

Inelastic scattering causes the incident electrons not only to lose energy but 
it may also cause them to be angularly scattered out of Bragg-reflected beams. In  
an electron microscope an objective aperture is used to select one or more Bragg- 
reflected beams to form an image, and hence many of the inelastically scattered 
electrons are excluded from the image. These electrons are effectively absorbed. 
However, not all inelastic scattering produces absorption. For example, the angular 
distribution of incident electrons inelastically scattered by plasmons is sharply peaked 
about the forward-scattered and the Bragg-reflected beams. Thus many plasmon- 
scattered electrons pass through the objective aperture and contribute to the image. 
These electrons are therefore not absorbed and an important question is whether 
or not such electrons exhibit the same image contrast effects as the elastically scattered 
electrons. It must be emphasised that absorption in electron microscopy is not 
‘true absorption’ in the sense of photoelectric absorption in which the incident 
photon is totally absorbed. Absorption as commonly understood in electron microscopy 
is due to electrons being excluded from the image because they have been inelastically 
scattered outside the objective aperture. 

5.2. The phenomenological treatment of absorption 

In  optics it is well known that the effects of absorption can be treated mathe- 
matically by letting the refractive index be complex. In  a somewhat analogous manner 
the refractive index of a crystal for incident electrons can be made complex and 
hence the optical potential Vopt(r) is complex (see equation (4.1)). Yoshioka (1957) 
formally showed that the effect of inelastic scattering processes on the elastic scat- 
tering by crystals could be taken into account by the addition of an imaginary part 
iV’(r) to the potential. The  magnitude of V‘(r) is typically less than or equal to 
one-tenth of the real part of the potential (Humphreys and Hirsch 1968). From the 
discussion of absorption given in $5.1 it will be clear that V‘(r) is a function of the 
objective aperture size. The  theory outlined below is an approximate phenomeno- 
logical approach to a complex situation, and it does not properly consider the small- 
angle inelastically scattered electrons which pass through the objective aperture. 

However, in practice the phenomenological theory is found to work extremely 
well, both qualitatively and quantitatively, and it can account for a very wide range 
of experimental observations. 
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Since the imaginary part of the potential, V’(r), is associated with the crystal 
lattice, it can be expanded as a Fourier series based on the reciprocal lattice in a 
similar manner to the expansion of the real part of the potential (see equation (4.3)). 
We can then take absorption into account by modifying the elastic scattering theory 
(equations (4.11) to (4.5 1)) so that 

V(r)-+ V(v) + iV’(r) 

V,+Vg+iV,’ 
Ug+ U, + i U,‘. 

Virtual inelastic scattering processes give rise to a very small real part addition 
to the potential AV(r) (see $4.1). For convenience of notation we incorporate AV(r), 
AV, and AU, into V(r), V ,  and U,, respectively, on the right-hand side of equations 

If the potential in the Schrodinger equation (equation (4.11)) is made complex 
(5.1). 

it follows that the wavevectors k(j)  inside the crystal will be complex, i.e. 

k(j)-+k(j) + iq(5). (5.2) 

From equation (4.25) the total wavefunction of the fast electron within the crystal 
is then given by 

Y ( v ) =  a(5) C,(A exp [2ni(k(j) +g) . r ]  exp (-2nqcn.r). ( 5 . 3 )  
j !J 

Thus each Bloch wave is exponentially attenuated as it propagates through the 
crystal, as physically expected. I t  follows from the boundary conditions ($4.6) 
that the direction of q(j) is along the inward surface normal for allj. In  the absence 
of absorption each Bloch wave excitation amplitude in the crystal a(3) is a constant 
(equal to C O ( ~ ) + ,  see $4.6). The effect of absorption is to replace a(j)  by an expo- 
nentially attenuated amplitude a(j)(z) where 

a(j)(x) = a(j) exp ( - 2~rq(j)x) (5.4) 

where the origin of x is taken at the top surface of the crystal and x lies along the surface 
normal. 

We have seen that for purely elastic scattering in a general non-centrosymmetric 
crystal U(r )  is real, and therefore U,= U-,” and A is Hermitian ($4.9). Since the 
imaginary part of the potential iU’(r) is purely imaginary, we must have U,’= U-,”’ 
and therefore for the complex optical potential : 

( U ,  + iUg’) # (U-, + iU-,’)”. 

Hence the matrix A(abs), for an absorbing crystal, given by setting equation ( 5 . 1 )  
in equations (4.43) and (4.44), is a complex general matrix. Obtaining eigenvalues 
and eigenvectors of this matrix is a problem of some difficulty but standard computer 
programs are available. 

The  problem simplifies if the crystal has a centre of symmetry, since then 
U, = U-,, U,’ = U-g’ and 

( U ,  + iU,’) = ( U-, + i U-,’). 

Thus A(abs) is complex symmetric, the eigenvalues are complex and the eigen- 
vector matrix C is complex orthogonal. 



1864 C J Humphreys 

For electron diffraction calculations which require high precision, for example 
in the accurate determination of crystal potentials and charge densities, the full 
complex matrix should be diagonalised (e.g. Hewat and Humphreys 1974). This 
is time-consuming on a computer, however, and for the vast majority of applications 
it is a very good approximation to treat absorption by a perturbation method since, 
as mentioned earlier, V’(r)  is typically 6 0 . 1  V(r ) .  A formal non-degenerate per- 
turbation treatment of absorption is given by Metherell (1975). In  particular cases 
degenerate or nearly degenerate eigenvalues occur (see 45.9), and it is then necessary 
to use degenerate perturbation theory (see Sprague and Wilkens 1970) or to diagonalise 
the complex matrix as described above. 

The  formal perturbation treatment of absorption is equivalent to, and yields 
the same result as, the treatment given below in which the approximations made 
are more easily seen. Setting equations (5.1) and (5.2) in (4.18) gives 

{K2-[(k+g)2-q2+2iq.(k+g)]}Cg+ Ug-hCh+i U g - h ’ C h = O .  (5.5) 
h # g  h 

In  perturbation theory the wavefunction is unchanged to first order, hence 
the C, in equations (5.5) and (4.18) are the same. Subtracting equation (4.18) from 
equation (5.5) gives 

-2iq.(k+g)Cg+i c Ug-h’Ch=O (5.6) 
h 

where we have assumed that q2<(k+g)2 for a small perturbation. In  the sym- 
metrical Laue case q is along the surface normal (defined as the x direction) and 
g is perpendicular to this, hence q.g=O. Also q .k=qkzzqKz  to a very good ap- 
proximation. Thus equation (5.6) is, for the j th  Bloch wave, 

Zq(j)K2Cg(3’) = c Ug-h’Ch(j) .  (5.7) 
h 

Multiplying both sides by Cg(f)*, summing over g and assuming that the Cg(j) are 
normalised (equation (4.46)) gives 

Equation (5.8) in matrix form is 

Hence p(n, the imaginary part of the wavevector for the j th  Bloch wave, is easily 
calculated from the eigenvectors and the matrix of the U’(v) Fourier coefficients. 

5.3. Anomalous absorption and anomalous transmission 

Equations (5.3) and (5.4) show that the (amplitude) absorption coefficient of the 
j t h  Bloch wave is 2~rq(j) and from equation (5.9) it is clear that there is a different 
value of q ( j )  for each Bloch wave. Hence some Bloch waves are more strongly ab- 
sorbed than average and others are more strongly transmitted, which gives rise 
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to so-called anomalous absorption and anomalous transmission, respectively. The  
physical reason for anomalous absorption is that the periodic imaginary part of 
the potential V'(r) has maxima in those regions of the unit cell in which inelastic 
scattering is strongest, A consideration of the basic inelastic scattering mechanisms 
(see $5.1) shows that phonon scattering is strongly localised at the atoms, single- 
electron excitations are relatively weakly localised at the atoms and plasmon scattering 
is not localised at all to first order. Hence we expect V'(r) to have maxima at atom 
sites. Clearly those Bloch waves which have maximum electron density at atom sites 
will be strongly absorbed and those which have maximum density between atoms 
will be weakly absorbed. 

This effect is most clearly illustrated by considering the two-beam approximation 
in a centrosymmetric crystal of simple structure set at an exact Bragg reflecting posi- 
tion. Figure 15 shows the reflecting planes with the regions of maximum inelastic 
scattering drawn around each atom site. From equations (4.25) and (4.35) the 
wavefunctions of Bloch waves 1 and 2 are 

#l)(v)=21/2 cos (ng.r) exp [2ni(k(l)+0*5g).v] (5. lo) 

$(2)(r)= -i21/2 sin (ng.v) exp [2ni(k(2)+0.5g).v]. (5.11) 

The  electron density in each Bloch wave is 

Type 1 wave Type 2 wave 

(5.12) 

(5.13) 

Reflecting 
planes 

P 
7 

Figure 15. Schematic diagram illustrating the nature of Bloch wave absorption in the two- 
beam case at the Bragg reflecting position. Regions around atoms where the 
inelastic scattering is a maximum are shown shaded. The Bloch wave current 
flow is parallel to the reflecting planes. The type 1 wave is absorbed more than 
the type 2 wave, which 'channels' between the atoms. 
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where the x coordinate is defined parallel to g. The origin of Y is at a centre of sym- 
metry (see $4.7) which we choose to be an atomic site in the simple crystal structure. 
Equations (5.10) and (5.12) show that the current flow of Bloch wave 1 is in the 
direction (W + 0.5g), which is exactly parallel to the reflecting planes when the 
crystal is at the Bragg position. The electron probability has a cos2 (rgx) modulation 
normal to the reflecting planes, i.e. a maximum at the atom sites (see figure 15). 
Equations (5.11) and (5.13) show that wave 2 is also a standing wave in the x direction 
and a travelling wave in the 2: direction with current flow in the direction (k(2) + 0 -5g) 
again exactly parallel to the reflecting planes. For wave 2, however, the electron 
probability is proportional to sin2 ( rgx) ,  i.e. it has minima at the atom sites (figure 
15). Since the inelastic scattering is a maximum around atom sites it is clear that 
the absorption of wave 1 is above average and that of wave 2 is below average. A 
modified form of figure 15 was first used by Hashimoto et al (1962). It should be 
noted that the ordered labelling scheme used in the present review (see $4.7) and 
in many recent papers differs from that used by Hashimoto et a1 (1962), in that Bloch 
wave 1 of Hashimoto et a1 (1962) is here labelled Bloch wave 2 and vice versa. 

40, the imaginary part of the wavevector corresponding to mean absorption, is 
given by setting Ug’=O for all g except g=O in equation (5.8) or (5.9). This gives, 
using (4.46), 

40 = Uo‘/ZKZ. (5.14) 

The (amplitude) mean absorption coefficient is, using equation (5.4), 

the intensity absorption coefficient being 
60’ is defined as 

= 4x40. The mean absorption length 

to’=Kz/Uo’ (5.16) 

so that the mean absorption coefficient for amplitude is, using equation (4.15), 

r 2rme 
to’ h2Kz ‘‘’a 

KO= -=- (5.17) 

At an exact Bragg position and 
or (5.9) give, using equation (4 

using the two-beam approximation, equations (5.8) 
35), 

(5.18) 

For simple crystal structures, and taking the origin at an atom site, the Fourier coeffi- 
cients of U’(r) are all positive and decrease with increasing g. It is clear therefore 
from equations (5.18) and (5.19) that, on the two-beam approximation, wave 1 
is strongly absorbed and wave 2 is well transmitted. It is conventional to define 
an anomalous absorption length tg’, by comparison with equations (5.16) and 
(4.36), as 

[g’= Kz/Ug’. (5.20) 
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The amplitude absorption coefficient of Bloch waves 1 and 2 at the Bragg position 
is then 

(5.21) 

5.4. The orientation which maximises the penetration 

and it is given simply by 
In  an amorphous material the transmitted intensity is not a function of orientation 

I ( t )  = Io exp ( - pot) (5.22) 

where IO is the incident intensity. 
In  a crystal, the transmitted intensity is a sensitive function of orientation owing 

to diffraction. In  electron microscopy it is often desirable to study as thick a specimen 
as possible in order to minimise surface effects. I t  is therefore necessary to use the 
crystal orientation, relative to the incident beam direction, which gives the maximum 
transmitted electron intensity. 

The  intensity of the gth diffracted beam from a crystal of thickness t is, from 
equations (4.33) and (5.4), 

(5.23) 

For small crystal thicknesses, at least two Bloch waves normally significantly contri- 
bute to Ig(t). As t increases, the number of waves which make a substantial con- 
tribution to Ig( t )  decreases due to the term exp (-2nqcJ)t). For thick crystals only 
one wave effectively contributes to Ig(t)  at a given orientation, the wave with the 
smallest p(5) value for that orientation. Let this wave be wave i, then for a thick 
crystal equation (5.23) reduces to 

Is(t) = I Co(6) I 2 I Cg(t) I 2 exp ( - 4nq(6)t). (5.24) 

The  orientation which maximises the transmitted intensity for the gth diffracted 
beam is given by the orientation for which equation (5.24) is a maximum. As an 
example we take the particular case of the 'bright-field' forward scattered beam 
with g= 0. Equation (5.24) is then 

Io(t) = I Co(i) I 4 exp ( - 4nqW). ( 5  .25) 

Figure 16 plots values of the excitation amplitude di) = CO(~)* and of the absorption 
eigenvalue q(i)  as a function of orientation for 100 keV electrons incident upon 
copper. Bloch wave 1 is not included since it is very strongly absorbed at all orienta- 
tions, and in thick crystals it does not contribute significantly to the transmitted 
intensity. 

From figure 16, the minimum values of q( j )  occur for wave 2 when the crystal 
is at the Bragg position for the (ZOO), (600), etc, reflections. (The $3) values are 
periodic with Bragg deviation, as can be shown from equation (5.8) (see Metherell 
and Fisher 1969).) However, from equation (5.25), for good transmission the 
excitation of this Bloch wave d 2 )  = CO@)* ( = Co(2) in centrosymmetric copper) 
must also be large. In  this case Co(2) is largest between the (200) and (400) positions, 
and the orientation of maximum transmission will occur between the first and second 
Bragg reflecting positions. In  very thick crystals the absorption term is dominant 
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Figure 16. Values of the absorption eigenvalue q(0 and the excitation amplitude e@) for 
Bloch waves 2, 3 and 4 as a function of orientation for 100 keV electrons incident 
upon copper (from Humphreys et a1 (1971), by courtesy of The Philosophical 
Magazine). 

and the position of best transmission is with the crystal set only slightly positive 
of the first-order Bragg position. This is confirmed in figure 17 which plots the 
calculated transmitted intensity, for the bright-field and several dark-field beams, 

Figures 16 and 17 are typical of results obtained for the majority of materials and 
incident electrons of energy 100 keV or less, for which the orientation which maxi- 
mises the penetration is slightly positive of the first-order Bragg position for the 
bright-field beam, and at their respective Bragg positions for the dark-field beams. 

With increasing electron energy above 100 keV, the absorption of wave 2 increases 
and its excitation decreases while waves 3 and 4 increase in importance. Even- 
numbered Bloch waves generally have absorption minima at the first, third, etc, 
Bragg positions, and odd-numbered waves have minima at the symmetry position, 
second, fourth, etc, Bragg positions. Since successively numbered waves have 
alternately minimum and maximum absorption coefficients at a given Bragg position 
(with minor exceptions), the orientations which give best transmission at 100 keV 
become positions of poor transmission at higher voltages. The best orientations 
for maximising the penetration using 1 MeV electrons have been investigated in 
some detail both experimentally and theoretically, and tables giving these orientations 

, as a function of the orientation of the incident beam with respect to the crystal. 
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Figure 17. The transmitted intensity, for bright-field and various dark-field beams, as a 
function of orientation for 100 keV electrons incident upon copper 2000 A thick 
(from Humphreys e t  a1 (1971), by courtesy of The Philosophical Magazine). 

have been published by Humphreys et al (1971). An electron micrograph of a bent 
crystal is shown in figure 18 (plate) which illustrates the variation of intensity with 
orientation for a number of different Bragg reflections excited. The orientation which 
maximises the penetration for incident electron energies up to 10 MeV has been 
studied theoretically by Humphreys (1972) and experimental studies up to 3 MeV 
have been made by Fujita et a1 (1974) and Rocher et a1 (1974). As shown in figure 19 
for electrons incident upon aluminium, the orientation for good penetration is a 
function of the incident electron energy. Incident energies greater than about 
10 MeV are unlikely to be useful for diffraction work owing to the effects of 
bremsstrahlung and radiation displacement damage on the specimen. The optimum 
energy for maximising the penetration in light atomic weight materials is about 
3 MeV, and rather less than this for heavy materials (see Humphreys 1972). 

5.5. Back-scattering of electrons 

So far we have considered the scattering of fast electrons by crystals with particular 
reference to electron transmission, and the back-scattering of electrons has been 
ignored. If the specimen is thin, as used in transmission electron microscopy, it 
is a valid approximation to neglect the back-scattered electrons. However as the 
specimen thickness increases the back-scattered intensity increases until for solid 
specimens the back-scattered intensity is large (for example, over 30% of incident 
20 keV electrons are back-scattered from solid copper). 

The traditional method of calculating electron back-scattering is to use Monte 
Carlo methods with appropriate scattering models. These methods ignore diffraction 
and hence essentially are only applicable to ‘amorphous solids’. However Monte 
Carlo techniques have yielded valuable information on electron back-scattering, 
x-ray production, etc, from a wide range of materials (see Heinrich et al 1976). 

In  this review we are concerned with scattering by crystals, and hence with 
diffraction effects, and we shall not consider ‘amorphous solid’ Monte Carlo methods 
further. Hirsch et aZ(l962) predicted that when electrons were incident upon crystals 
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Figure 19. Electron penetration in aluminium as a function of the accelerating voltage for 
various orientations of the crystal (from Humphreys (1972), by courtesy of The 
Philosophical Magazine). 

the intensity of the back-scattered electrons (and also x-rays) should depend upon 
the orientation of the crystal relative to the incident beam. This was confirmed 
experimentally by Duncumb (1962) and Hall (1966) for thin crystal specimens. 
Diffraction effects were first observed in back-scattered electrons from bulk specimens 
by Coates (1967) who observed weak Kikuchi-like patterns superimposed on scanning 
electron micrographs. He used these orientation-dependent patterns to determine 
the crystallographic orientation of the specimen. The  patterns are formed because 
the back-scattered electron intensity is a function of the angle of incidence of the 
beam. Booker et al (1967) qualitatively interpreted this orientation dependence in 
terms of the anomalous absorption effect (see 95.3). The patterns are known as 
Coates patterns, or as electron channelling patterns, and a typical example is shown 
in figure 20 (plate). 

A qualitative explanation of the orientation dependence of back-scattered electrons 
is as follows. For simplicity we assume the crystal is oriented near a Bragg reflecting 
position and make the two-beam approximation. Within the crystal the incident 
electron density is as shown schematically in figure 15. The main back-scattering 
mechanism is phonon scattering, which is localised at the atomic sites, hence wave 1 
is back-scattered more strongly than wave 2. With the crystal set slightly off the 
Bragg position in the s<O sense the type 1 wave is preferentially excited, while 
when set with s > 0 the type 2 wave is preferentially excited. Hence there are more 
back-scattered electrons on the s < 0 side of the Bragg position than on the s> 0 
side. This behaviour is opposite to that which occurs with transmitted electrons 
(see 95.4) and explains the observations of Duncumb (1962) that dark bend contours 
observed using transmitted electrons correspond to bright bend contours observed 
using back-scattered electrons. 

A complete quantitative theory of back-scattered electrons should include diffrac- 
tion effects (i.e. multiple elastic scattering), multiple inelastic scattering and energy 
losses. Such a theory has not yet been formulated, although considerable progress 
has been made. Back-scattering theories for perfect crystals which take into account 
diffraction but ignore energy losses and only deal crudely with multiple inelastic 
scattering have been developed by Hirsch and Humphreys (1970), Vicario et al 
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Figure 18. Bright-field bend contours at a [ l l O ]  zone axis in gold (1 MeV incident electrons). 
Note how the optimum orientations for maximising the penetration are a function 
of the Bragg reflection excited (from Humphreys et aZ(1971), by courtesy of The 
Philosophical Magazine). 
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(1970) and Reimer et al (1971). For a comparison of these theories see Spencer 
et a1 (1972). The  above theories account qualitatively very well for the observed 
dependence of the intensity of back-scattered electrons upon the orientation of the 
crystal with respect to the incident beam. The  above theories were generalised 
to include back-scattering from imperfect crystals by Clarke and Howie (1971) and 
Spencer et a1 (1972). 

A theory has also been developed which takes into account diffraction and treats 
multiple inelastic scattering more accurately, but ignores energy losses (Spencer 
and Humphreys 1973). This theory agrees quantitatively with experiment. Also 
a theory has been developed which includes diffraction and energy losses, while 
still treating multiple inelastic scattering crudely (Sandstrom et al 1974). Further 
details of both the theory and applications of electron channelling patterns are given 
in the article by Booker and Humphreys (1975). 

The  Coates patterns, or electron channelling patterns, described above result 
from the variation of back-scattered electron intensity as a function of the angle 
of incidence of the incident beam. The  orientation dependence arises from diffraction 
of the incident beam before back-scattering occurs. A different type of orientation 
dependence has been observed by Venables and Harland (1973). In  their electron 
back-scattering patterns the crystal is in a fixed orientation relative to the incident 
beam and angular variations in intensity of the back-scattered electrons are observed. 
These patterns, as distinct from ‘electron channelling patterns’, arise from diffraction 
after back-scattering has occurred. 

5.6. The reciprocity theorem 

The reciprocity principle was originally proved by Helmholtz for the case of 
the propagation of sound waves. The principle essentially states that if a certain 
signal is detected at a point A when a source is placed at another point B, then the 
same signal in amplitude and phase would be detected at B if the source were placed 
at A. von Laue (1935) proved the above statement for the case of electron diffraction 
and elastic scattering, and Pogany and Turner (1968) extended the theory to include 
inelastically scattered electrons with small energy loss, for which case there is a 
reciprocity of intensities rather than of amplitudes. 

This elegant and important theorem has found considerable application in 
electron microscopy in recent years in the interpretation of images formed using 
the scanning transmission electron microscope (STEM). Cowley (1969) and Crewe 
and Wall (1970) have shown using the reciprocity theorem that under the appropriate 
conditions STEM images should be similar to the corresponding images obtained 
using TEM (transmission electron microscopy). However, STEM and TEM images 
are not usually identical for a variety of reasons: in the normal modes of operation 
of STEM the incident and collected angular cones of electrons do not correspond 
in a reciprocal manner with those in TEM (Howie 1972, Booker et a1 1973); in thick 
specimens there is appreciable inelastic scattering; in the imaging of defects, if the 
column approximation (see $6.4) breaks down then reciprocity is not easily applicable 
(Humphreys and Drummond 1976a). Thus although the reciprocity principle is 
very useful, its correct application requires care. 

5.7. Convergent-beam electron dtrraction 

One method of observing the variation of diffracted intensity as a function of the 
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Figure 20. Electron channelling pattern for 30 keV electrons incident on a silicon crystal 
with a (1 11)  surface normal. The pattern has been differentiated electronically 
to enhance the contrast. 
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angle of incidence, as plotted theoretically in figure 17, is by using convergent-beam 
electron diffraction (CBED). In  this method an electron beam is focused onto the 
specimen (as distinct from the reasonably parallel beam used in normal transmission 
electron microscopy). If the incident beam is defined by a circular aperture (usually 
placed in the condenser lens system), each spot in the diffraction pattern is spread 
into a circular disc. Each point in a disc corresponds to a particular angle of incidence, 
so that the variation of intensity across each disc represents the variation of intensity 
in each diffracted beam as a function of the angle of incidence. 

The  CBED technique was first used by Kossel and Mollenstedt (1939) and has 
been developed by Hoerni (1950), Goodman and Lehmpfuhl (1964) and Cockayne 
et al (1967). The  importance of the technique lies in the high angular resolution 
of lO-4rad observable in each diffracted disc, a large number of diffracted beam 
discs being observable simultaneously. 

Applications of the CBED technique include determining Fourier coefficients of 
the crystal potential (Goodman and Lehmpfuhl 1967), determining crystal point 
groups and space groups (Goodman and Lehmpfuhl 1968, Gjmnes and Moodie 
1965, Buxton et a1 1976), measuring crystal thicknesses to an accuracy of one unit 
cell (Goodman and Moodie 1974) and measuring lateral changes in lattice parameters 
(Jones et al 1977). The  CBED method has recently been combined with the critical 
voltage technique ($5.9) which yields particularly accurate values of Fourier coeffi- 
cients of the crystal potential (Moodie et al 1978). An example of a CBED pattern is 
shown in figure 21 (plate). 

5.8. Zone axis patterns 

CBED patterns are formed using a convergent beam incident upon a flat specimen 
and they are observed in the diffraction plane. An alternative method of recording 
a rocking curve (i.e. an intensity against angle of incidence curve) is to use a parallel 
beam incident upon a uniformly bent crystal and to observe in the image plane. 
As the crystal bends through Bragg reflecting positions the image (dark-field or 
bright-field) is crossed by ‘bend contours’, also known as ‘extinction contours’. 
The image of a particular diffracted beam is similar to that of the corresponding 
CBED disc, except that the bent crystal image has lower angular resolution than that 
of a CBED pattern. The  reason for this is that the ‘parallel’ incident beam required 
for the bent crystal method in practice must have a finite convergence which limits 
the angular resolution attainable. 

If the beam is incident along a zone axis and the crystal is bent in a dome or 
cup shape then bend contour zone axis patterns (ZAPS) are produced (see figure 22 
(plate)). Such patterns contain information on the projected crystal potential and 
the use of ZAPS images has been termed ‘real-space crystallography’ (Steeds et al 
1976), by comparison with x-ray crystallography in which information is obtained 
from a reciprocal-space diffraction pattern. 

Electron microscopy and diffraction methods, such as ZAPS, lattice imaging and 
CBED, have some significant advantages over x-ray diffraction techniques. In  parti- 
cular, x-ray diffraction methods use relatively large crystals and the structure obtained 
is a structure averaged over the diffracting volume of the crystal. In  electron micro- 
scopy, on the other hand, highly magnified images can be formed of thin crystals 
so that the structure is ‘projected’ in the z direction only, and any structural defects are 
apparent in the image. In  the diffraction mode, CBED patterns can be formed using 
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Figure 21. [OOOl] convergent-beam zone axis pattern (100 kc\' electrons) of a Laves phase 
precipitate (approximate composition Fel.aCro.sSio.lSin.~~lo) in a sample of 316 
stainless steel. (Courtesy of N Evans and J W Steeds.) 
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electron spot sizes of very small diameter and hence only a very small diffracting 
volume of crystal may be used which, by observing the image, may be chosen to be 
free of defects. Hence electron microscopy and diffraction may be used for the 
structural analysis of precipitates, crystal phases, etc, on a much finer scale than is 
possible using x-ray diffraction methods. 

5.9. The critical voltage effect 
The critical voltage effect is one of the more remarkable discoveries in electron 

diffraction. If a crystal is set at a Bragg reflecting position normally one expects 
the diffracted beam intensity to be strong, unless the crystal thickness is an integral 
number of extinction distances, owing to the constructive interference of waves 
scattered in the diffracted beam direction. However, for a particular incident electron 
accelerating voltage, known as the critical voltage, V,, the diffracted beam intensity 
is very small, due to destructive rather than constructive interference. The  critical 
voltage is a function of the material, Bragg reflection and temperature used. 

This effect was discovered in Japan about ten years ago (Nagata and Fukuhara 
1967, Uyeda 1968, Watenabe et a1 1968). I t  was quickly realised (see Watenabe 
et aZl968) that the critical voltage is very sensitive to the first-order Fourier coefficient 
of the crystal potential, V,, and hence can be used to determine V,  very accurately 
(to better than 1%). Comparison of experimental critical voltage determined V,  
values with theoretical free-atom values, gives information on the ionicity of atoms 
in a crystal (Watenabe and Terasaki 1972), covalent bonding charge redistributions 
(Hewat and Humphreys 1974) and band structures in metals (Smart and Humphreys 
1978). 

The sensitivity of V, values to the critical voltage can also be used to measure 
Debye temperatures, and the degree of long-range and short-range order in alloys 
(Lally et a1 1972), and to measure alloy compositions (Butler 1972). 

The effect essentially arises because of an accidental degeneracy of two Bloch 
waves. The  simplest case to consider is the minimising of a second-order reflection 
due to this effect. In  general, at any voltage, the intensity of a second-order reflection, 
12,, is given by (using equation (5.23)): 

1Zg(t) = I Co(j)*C2,(j) exp (2nikZW) exp (- 2.rrqcj)t) I 2. (5 .26)  

For a crystal set at the second-order reflecting position, Bloch waves 2 and 3 
normally have the strongest excitation amplitudes, and wave 1 the next strongest. 
The  excitations of all other Bloch waves are very small. Also waves 2 and 3 are 
usually the least absorbed waves, wave 1 being the most strongly absorbed. Equation 
(5 .26)  can therefore be written in the form 

j 

where A represents the contributions of all waves other than 2 and 3. Because of 
anomalous absorption, A is very small for reasonably thick crystals. 

Below a certain accelerating voltage, the critical voltage, wave 3 is antisymmetric 
and wave 2 symmetric. The  kinetic energies of the two waves are different and hence 
k,(2)#k2(3). As the accelerating voltage is raised, the kinetic energies of waves 2 
and 3 become more nearly equal until at the critical voltage, V,, the kinetic energies 
are identical and k,(2) = kZ(3). This is an accidental degeneracy of the two Bloch 

125 
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Figure 22. [OOOl] bend contour zone-axis pattern of TIS.. 600 kcV incident electrons. 
(Courtesy of K K Fung and J W Steeds.) 
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waves. On passing through the critical voltage the symmetries of waves 2 and 3 
interchange and the dispersion surface branches separate and are non-degenerate 
again. 

At Y = V,, k,@) = kz(3), C O ( ~ ) C Z , ( ~ )  N - co(3)C2g(3) and q ( 2 )  N ~$3). Hence from 
equation (5.27) waves 2 and 3 destructively interfere and Izg(t) is very small. More 
complicated critical voltage effects occur in two-dimensional diffraction situations 
(Steeds et a1 1976) but in each case the cause is due to an accidental degeneracy of 
Bloch waves (Buxton and Loveluck 1977). 

The  accidental degeneracy theoretically occurs at a precise value, V,, of the 
electron accelerating voltage. The  utility of the effect depends upon the experimental 
accuracy with which V,  can be determined. The most accurate method appears 
to be the one recently proposed by Moodie et al (1978), in which a Kikuchi line 
within a convergent-beam electron diffraction disc is observed at the critical voltage. 
It is expected that the critical voltage method will continue to be developed and 
that the important problem of measuring electron densities and lattice potentials 
in crystals will be studied with increasing precision on a wide variety of crystals. 

5.1 0. Inelastic scattering and resonance errors 

equation (3 .3) ,  i.e. 
For elastic scattering, the Laue condition for a diffracted maximum is given by 

k' - k = g .  (3 .3)  

As discussed in $3.5, the Laue condition strictly applies for a perfect, infinite crystal 
only. For a finite crystal we have finite diffracted intensity when 

k ' - k = g + s  (3 *6) 

where s is a small vector in reciprocal space. 

have 
For inelastic scattering the situation is similar. For an infinite crystal we must 

k - k = q  (5.28) 

where k and k' are the incident and the scattered electron wavevectors, respectively, 
and -4 is the wavevector of the crystal excitation created (plus a reciprocal lattice 
vector if an umklapp process is involved). For a finite crystal we have 

k ' - k = q + 6 k  (5.29) 

where 6k is known as a resonance error. Hence the wavevector change of the fast 
electron will not in general be exactly opposite to that of the crystal excitation created. 
6k for inelastic scattering is clearly analogous to s for elastic scattering. In  addition, 
for a crystal of finite thickness q is not continuous but discrete, since in a crystal 
of thickness t the allowed wavevector components qz are given by nit, from applying 
periodic boundary conditions (where n is an integer). 

The  concept of resonance errors in electron diffraction was introduced by Howie 
(1963), and has been applied to scattering by perfect crystals by Young and Rez 
(1975) and in detail by Rez et a1 (1977). For finite perfect crystals resonance errors 
are important because the same phonon, for example, can give rise to transitions 
to a given final-state Bloch wave from different initial-state Bloch waves. This leads 
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to partial coherence effects in the inelastically scattered electron (Rez et a1 1977). 
For an imperfect crystal the resonance error in a sense couples to the defect strain 
field since both effects give rise to phase changes in the inelastically scattered electrons. 
Calculations of electron scattering by crystalline defects taking into account inelastic 
scattering and resonance errors have been made by Melander and Sandstrom 
(1975a, b) and Rez (1976). A qualitative discussion of resonance errors has been 
given by Humphreys (1977). 

6. Diffraction from imperfect crystals 

6.1. Introduction and general theory 

In  the last twenty years an enormous expansion in the theory and practice of 
electron diffraction and microscopy of imperfect crystals has occurred. This has 
largely been a result of the discovery that dislocations could be imaged in an electron 
microscope (Hirsch et a1 1956, Bollmann 1956). In  one section of a review article 
it is impossible to cover this topic adequately: we shall therefore be highly selective 
and present the general theory, give some applications, comment upon some ap- 
proximations made in image interpretation and mention some recent developments. 
Early developments have been well covered in the book by Amelinckx (1964). More 
recent work is discussed by Hirsch et a1 (1977) and Humphreys (1979). 

Let a perfect crystal be deformed. If the j th  atom is moved from position rj 

to rj+R(rj) the potential at any point r in the deformed crystal is clearly different 
from that at point r in the perfect crystal. In  the deformable ion approximation, 
the potential at any point r in the deformed crystal is identified with the potential 
at the point (r-R(r))  in the undeformed crystal. Hence the potential in the deformed 
crystal can be expanded as a Fourier series, as was done for the undeformed crystal 
(equation (4.2)), i.e. 

V(v)=  V, exp (-2nig.R) exp (2nig.r). (6.1) 
B 

This deformable ion type of potential is the potential normally used in electron 
diffraction calculations for imperfect crystals. The  potential is not valid if R(r) 
varies rapidly, e.g. close to a dislocation core. In  addition the potential neglects 
changes in Vg due to changes in the volume of the ‘unit cell’ which again occurs 
near to a dislocation core, for example. The rigid ion model is probably a better 
approximation than the deformable ion model for rapid variations of the displacement 
R (see Rez 1978b). In  the rigid ion approximation the imperfect crystal potential 
is the sum of atomic potentials: 

V(r)  = Vatomic(r- q - R&)). (6.2) 
j 

The correct potential would take into account not only the atomic positions in 
the deformed crystal, which in general are not accurately known, but also the valence 
electron redistribution in the neighbourhood of the defect, which again is not known. 
There are therefore difficulties in the interpretation of defect images at very high 
resolution, i.e. at about 4 A  or better. However, away from the defect core region 
the deformable ion approximation, equation (6. l), should be valid, and we shall use 
this below. 

Comparing equations (6.1) and (4.2) it is clear that the Fourier coefficient Vg 
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in the undeformed crystal becomes V ,  exp ( - 2 ~ i g . R )  in the deformed crystal. 
Similarly the electron wavefunction at a point Y in the deformed crystal may be 
written as (cf equations (5.3) and (5.4)) 

Y(r)= &)(Y) C,(j) exp [2ni(k(j) +g).u] exp (-2nig.R) 
3 9 

where &(Y) is the amplitude of thej th  Bloch wave at position Y. In  a perfcct crystal 
each Bloch wave amplitude &)(Y) only changes due to absorption (equation (5.4)). 
In  an imperfect crystal, the effect of the displacement R(Y) is to cause scattering 
between the Bloch waves, so that a(j)(r) may increase or decrease due to scattering 
to and from other Bloch waves. It is this scattering which produces the defect 
contrast. Scattering between different Bloch wave states, i.e. from one branch 
of the dispersion surface to another, is called interbranch scattering. Scattering 
along the same branch of the dispersion surface is called intrabranch scattering. 

In  order to evaluate equation (6.3), the variation of &)(Y) with r due to the 
displacement R(r) must be calculated. This is a problem of some complexity and 
most calculations in electron diffraction and microscopy make a simplifying ap- 
proximation known as the column approximation (Hirsch et a1 1960, Howie and 
Whelan 1961). I n  this approximation the impeffect crystal is divided into narrow 
columns with the length of each column being parallel to the reflecting planes operat- 
ing. The  displacement in a given column is assumed to vary only along the length 
of the column, defined as the x direction, so that the displacement is R(z). The 
basic assumption of the column approximation is that each column may be chosen 
sufficiently narrow that the displacement within it is essentially only a function 
of x,  yet sufficiently wide that an electron entering the top of the column is not 
scattered out of the column in its passage through the crystal. Use of the column 
approximation greatly facilitates calculations for imperfect crystals since it essentially 
enables the problem of solving a coupled set of three-dimensional second-order 
partial differential equations to be reduced to that of solving a complete set of one- 
dimensional (in x only) first-order ordinary differential equations, i.e. equation 
(6.4) below. This important approximation is discussed further in $6.4. 

Using the column approximation, the problem of calculating the variation of 
&(Y) with r due to a displacement R(r) reduces to evaluating in a given column 
the variation of ol(j)(x) with depth x due to R(x). Substituting equations (6.1) and 
(6.3) into the Schrodinger equation (equation (4.11)), and using the column ap- 
proximation, gives the variation of &)(x) with x as 

Equation (6.4) represents the change in amplitude of the j th  Bloch wave in 
a slice of crystal of thickness dx at a depth z. The last term gives the amplitude 
lost due to absorption within the slice. The  first terms give the amplitude gained 
(or lost if negative) due to interbranch scattering (the terms for which i#j) and 
intrabranch scattering (i = j ) .  

Equation (6.4) may be integrated numerically for a given R(x) using standard 
computer routines to yield a(”(t), the Bloch wave amplitudes at the bottom surface 
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of the crystal of thickness t. The  intensity of the gth diffracted beam is then given 
by, from equation (4.32), 

Ig(t) = I d)(t)Cg(j) exp (2.rrikZ(l)t) I 2. (6.5) 
j 

Thus we may calculate the diffracted intensities from a crystal containing any 
defect of given displacement R. 

A very important question is that of uniqueness. Do different defects, with 
different displacement functions R, give rise to different and unique diffracted 
intensities? Head (1969) has shown that the component of the displacement field 
in the direction of the diffracting vector is uniquely specified by the corresponding 
electron micrograph. The  proof is for two-beam or many-beam systematic diffraction 
conditions; it assumes that there is a direction in the crystal along which the displace- 
ments are constant and the column approximation is assumed also. Hence, given 
these assumptions, a set of three micrographs taken with non-coplanar diffracting 
vectors uniquely identify a defect and specify its displacement field. For an arbitrary 
‘cross-grating’ orientation, Head (1969) showed that three independent micrographs 
also uniquely identify the defect displacement field, although there is no longer 
a direct connection between one micrograph and one component of the displacement 
field. 

Hence the electron microscope is an extremely powerful tool for determining 
defect strain fields. As an illustration we consider below the particular case of 
dislocations. 

6.2. Imaging of dislocations 

Initially some general principles will be illustrated for a simple screw dislocation 
followed by a more general discussion. For a detailed discussion of the images 
of dislocations with complicated displacement fields see the book by Head et a1 
(1973). 

The  simplest case to consider is a screw dislocation parallel to the plane of the 
specimen and at depth y.  We also assume isotropic elasticity theory in an infinite 
medium. The  displacement at a depth 2: in a column of perpendicular distance x 
from the dislocation is then given by 

From equation (6.4) there is no interbranch or intrabranch scattering (and 
hence the defect is invisible) if, for all reflections g operating, 

(6 7 )  
d 

-- (9. R)  = 0. 
dx 

For equation ( 6 . 7 )  to hold everywhere in the crystal this implies that for a dis- 
location there is no image contrast if 

g.R=O (6 * 8) 

for all g. Normally in 100 kV microscopy the crystal is oriented so that only one 
diffracted beam is strong, which clearly facilitates Burgers vector analysis. (The 
term ‘defect invisibility’ means that the scattering from the region of crystal con- 
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taining the dislocation is identical to and indistinguishable from the scattering from 
the rest of the (perfect) crystal.) 

The  following results are obtained using equations (6.6) and (6.4): 
(i) If g.b=O the dislocation image is invisible. Thus the Burgers vector can be 

determined. 
(ii) If g . b =  1, and if the dislocation lies near the middle of a reasonably thick 

foil oriented near the Bragg position, the image consists of a single dark peak of similar 
shape in both bright-field and dark-field. Figure 23 shows a computed image profile 
using two-beam theory. The dark peak is a result of anomalous absorption (see 
$5.3) and may be simply explained using two-beam theory as follows. At the top 
surface of the crystal Bloch waves 1 and 2 have approximately equal amplitudes 
d l )  and d2) (if the crystal is near the Bragg position). Wave 1 is strongly absorbed, 
and if the crystal is reasonably thick mainly electrons represented by wave 2 reach 

-0 L - 0 2  0 0.2 0 L  
Figure 23. Computed bright-field (full curve) and dark-field (broken curve) images for a 

screw dislocation in the middle of a thick foil with t = 8 t v  and g. b = 1, two-beam 
theory, 100 keV incident electrons. The crystal is at an exact Bragg position 
and the intensity is plotted as a function of x / t V ,  where x is the distance from 
the dislocation core. The horizontal broken line indicates the perfect crystal 
background intensity (from Howie and Whelan (1961), by courtesy of The Royal 
Society). 

the dislocation. Since the amount of interbranch scattering from wave i is propor- 
tional to a(", the interbranch scattering by the dislocation is mainly from wave 2 
to wave 1, which is then strongly absorbed as it propagates to the lower surface 
of the crystal. Hence a dislocation (or any defect which produces interbranch 
scattering) near the middle of a thick foil produces a decrease in the transmitted 
electron intensity. 

(iii) If the crystal is very thin, so that absorption is negligible, bright-field and 
dark-field images are complementary owing to electron conservation. Most speci- 
mens, however, are sufficiently thick for absorption to be important, as in case (ii) 
above. 

(iv) If the dislocation is inclined, running from the top to the bottom of the 
specimen (i.e. varying y in equation (6,6)), the image profile varies as y varies and 
typically near the top and bottom of the specimen the image appears like a zigzag 
line, with black and white oscillations in contrast. This effect is not due to the 
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changes in strain field near the surface (which should be taken into account in cal- 
culations) but is a dynamical diffraction effect due to the fact that the dislocation 
is situated in the beat pattern of the Bloch wave fields. From equation (6.4) the 
amount of interbranch scattering is a function of exp [2.rri(kz(Q -k,(j))x]. Now 
(A,@) - kz(j))-l is equal to the extinction distance f s  for branches i and j .  It follows 
that the depth periodicity of the oscillations is the extinction distance, and thus 
this effect can be used to simply measure the distance of the dislocation from the 
surface. 

(v) The image peak has a width of about O-Zf,. Since extinction distances 
for low-order reflections are typically in the range 200-1000 A for many materials, 
the width of the image is typically in the range 40-200 A. Hence the effective resolu- 
tion when imaging dislocations in the conventional manner described so far (i.e. 
a bright-field or a dark-field image with the crystal oriented near a low-order Bragg 
position) is rather poor. The weak-beam imaging technique, which results in narrower 
images, will be described in $6.3. 

(vi) For g. b = 2, the image of a screw dislocation near the middle of a reasonably 
thick foil consists of two dark peaks. For an inclined dislocation near the foil surfaces 
oscillating contrast is again produced. 

(vi;) The  bright-field image of an inclined screw dislocation is symmetrical 
about the centre of the dislocation, while the dark-field image is asymmetrical, 
being similar to the bright-field image near the top surface of the foil and pseudo- 
complementary to it near the bottom surface. Hence the sense of the inclination of 
the dislocation may be determined. 

For an edge dislocation to be invisible, it follows from the edge dislocation dis- 
placement R, in an infinite isotropic medium, that both g.b  and g.br\u must be 
zero, where U is a unit vector along the dislocation line. These conditions are fulfilled 
by choosing a diffracting vector which is along the line of the dislocation. As with 
the case of a screw dislocation, invisibility physically occurs because the diffracting 
planes are undistorted by the dislocation. 

Edge dislocation profiles are qualitatively similar to the screw dislocation profiles 
described above (exhibiting oscillatory contrast near the surface, etc) for the same 
physical reasons. Due to the different strain fields the image of a pure edge dislocation 
is, however, wider than that of a screw, typically by a factor of about two. 

A mixed dislocation produces displacements in all directions, hence it is impossible 
to find a diffracting vector to render the dislocation invisible. The Burgers vector 
can only be found by detailed comparison of calculated profiles with experimental 
images. Also the simple invisibility criteria stated above for pure edge and screw 
dislocations were derived using isotropic elasticity : they do not apply to materials 
in which elastic anisotropy is important. Again, for such materials a detailed com- 
parison of calculated and experimental micrographs must be made. The anisotropic 
elasticity description of R must normally be computed numerically for use in the 
diffraction calculation. 

The conventional method of displaying the calculated intensity of electrons 
scattered from a crystal containing a defect is to draw an intensity profile (see, for 
example, figure 23), i.e. a plot of the variation of the intensity along a line traversing 
the defect. However, as mentioned above, defect identification often requires the 
detailed comparison of an experimental micrograph with theory. T o  facilitate this 
the concept of ‘computed micrographs’ was proposed (Head 1967, Humble 1970, 
Head et al 1973), in which computed intensities are presented directly in micrograph 
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form for easy comparison with experiment. The method proposed by Head (1967) 
to present the calculated intensity values in the form of half-tone ‘micrographs’ 
utilises a standard computer line printer, and this display method is the one most 
widely used at the present time. The normal dots in a halftone reproduction are 
replaced by line printer characters: a grey scale is produced by using punctuation 
marks (e.g. full stop, colon, etc) at the light end of the scale and by overprinting 
characters at the dark end. The  number of shades of grey normally employed using 
this method is about ten. Better quality computed micrographs can be produced 
using cathode ray tube displays (Maher et a1 1971) or sophisticated optical instru- 
ments. Figure 24 (plate) shows such computed micrographs, which are almost 
indistinguishable in quality from experimental micrographs. 

6.3. The weak-beam method 

The main disadvantage of the conventional dislocation imaging methods discussed 
above is that, although the instrumental resolution of a modern 100 kV electron 
microscope is typically about 3 A (point-to-point), dislocation image widths are of 
the order of 100 19. Thus not only is the resolution capability of the microscope not 
utilised but also, and more importantly, the dislocation images are sufficiently broad 
that fine structure in the object (e.g. a pair of partial dislocations separated by 50 A) 
cannot be resolved. The  main advantage of the weak-beam method (Cockayne et 
a1 1969) is that the dislocation image width is very much narrower (typically about 
15 19) than conventional strong-beam images and hence higher resolution work 
is possible. Figure 25 (plate) shows a comparison of a conventional strong-beam 
image and weak-beam image. The narrower dislocation images and hence higher 
resolution is clearly evident in the weali-beam image. 

A simple qualitative explanation of the weak-beam technique is as follows. If 
a perfect crystal is oriented at an exact Bragg position, the corresponding diffracted 
beam is strong (unless the crystal thickness happens to be an integral multiple of 
the extinction distance). As the crystal is tilted away from the Bragg position, the 
intensity in the diffracted beam decreases, so that the diffracted beam becomes a 
‘weak beam’. If the crystal contains a dislocation, the lattice planes around the 
dislocation are locally tilted and hence some of these planes may locally be tilted 
back into the Bragg position. If this is the case, the scattercd intensity from perfect 
crystal regions will be weak, but the intensity scattered locally from the region of 
crystal that satisfies the Bragg condition will be strong. As the deviation of thc 
perfect crystal from the Bragg position increases, the dislocation image comes from 
crystal regions that are increasingly distorted, i.e. increasingly close to the dislocation 
core. 

Most applications of the weak-beam technique have been concerned with the 
measurement of stacking fault energies, obtained from the separadon of two partial 
dislocation image peaks (Cockayne et a1 1969, 1971a, b, Stobbs and Sworn 1971, 
Jenkins 1972). However, the method is increasingly being used to reveal dislocation 
structures at high resolution (Ray and Cockayne 1971, Bicknell 1971, Nordlandcr 
and TholCn 1973, Jenkins et al 1973, Carter and Hirsch 1977, Carter and Holmes 
1 977). 

6.4. The column approximation and elastic dafSuse imaging 

As noted in $6.2, most calculations in electron diffraction and microscopy make 
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Figure 24. Computed micrographs (on left) and experimental micrograph (on right). The 
computed micrographs were produced using an optical instrument which can 
reproduce 64 shades of grey from digitised intensities. The specimen was copper 
irradiated with 30 keV Cu+ ions and the defects produced are dislocation loops 
of various types which can be identified by comparing the experimental and 
computed micrographs (for further details see Saldin et a1 (1979), by courtesy of 
The Royal Society). 
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the column approximation. Although this approximation is normally valid for 
medium or low resolution electron microscopy (Howie and Basinski 1968, Jouffrey 
and Taupin 1967), for high-resolution microscopy (resolution better than about 
10 a), the column approximation can break down significantly (Humphreys and 
Drummond 1976b). 

The breakdown of the column approximation is particularly noticeable if the 
crystal is not oriented at an exact Bragg position. The  electron flux is then not 
parallel to the columns of the column approximation and hence an incident electron 
is not contained within this column on propagating through the crystal. There is 
therefore a net ‘sideways’ scattering which the column approximation cannot take 
into account. Figure 26 shows weak-beam images of a dislocation calculated with 

Figure 26. Calculated weak-beam images of an edge dislocation in Cu with (- ) and 
without (- - - -) the column approximation. Dislocation at depth gg (=4-78  A) 
inafoilthickness4gg, g=220,  s = - 2 + 5 x 1 0 - 2 ~ - 1 ,  u=[lIz],  b=[liO], 100keV 
electrons (from Humphreys and Drummond (1977), by courtesy of The Institute 
of Physics). 

and without assuming the column approximation. The shapes of the images are 
very similar but there is a marked shift in the image peak positions. The column 
approximation calculation puts the image peak on the wrong side of the projected 
dislocation core position in this case. Although in this case the shapes of the images 
are similar at very high resolutions (better than about 4 a) the column approximation 
may break down completely (Humphreys and Drummond 197613) since it does not 
correctly take into account elastic diffuse scattering. 

Whereas a perfect crystal scatters into discrete Bragg directions, an imperfect 
crystal scatters in all directions. This scattering by the imperfection(s) into directions 
other than Bragg directions is known as elastic diffuse scattering. If very high resolu- 
tion electron micrographs of defects are to be correctly interpreted it is necessary 
to take the elastic diffuse scattering properly into account. In  addition, in order to 
achieve higher resolution than is possible using the weak-beam technique, it may 
be necessary to use explicitly the elastic diffuse scattering for imaging (Fields and 
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Figure25. A weak-beam (top) and a strong-beam (bottom) image of the same region of a 
silicon specimen containing inclined dislocations. The strong-beam dark-field 
image (bottom) was formed using a strong 220 reflection. The weak-beam image 
used the same 220 reflection, but under weak-beam conditions. The dislocation 
geometry and dissociation is clearly observed in the weak-beam image (from Ray 
and Cockayne (1971), by courtesy of The Royal Society). 

Rep.  Prog. Phys. 1979 42 facing page 1881 
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Cowley 1977, Humphreys and Drummond 1977, Humphreys et a1 1977, Krakow 
et a1 1977, Spence 1977). 

For an isolated defect the elastic diffuse scattering is peaked around the Bragg 
directions, the scattering from regions of small distortion being close to the Bragg 
directions and the scattering from the highly disordered region around the dislocation 
core being further away. Figure 27 shows the intensity distribution in the diffraction 
pattern due to a single dislocation, calculated dynamically and without using the 
column approximation. The  elastic diffuse scattering between the Bragg spots is 
clear and this diffuse intensity is evidently very sharply peaked about the Bragg 
positions (the intensity axis in figure 27 is logarithmic). 

I n  order to calculate the diffuse scattering in the diffraction plane, the wavefunction 
of the fast electron at the bottom surface of the crystal is calculated, not using the 

Figure 27. The intensity distribution in the diffraction pattern due to the elastic diffuse 
scattering from a Cu crystal containing an edge dislocation. All parameters as 
in figure 26 caption except that dislocation at depth f g  in a foil thickness 2& 
(from Humphreys and Drummond (1977), by courtesy of The Institute of Physics). 

column approximation. The  Fourier transform of this wavefunction gives the 
amplitude in the diffraction plane. (The intensity distribution of figure 27 is the 
squared modulus of this amplitude.) The image can be calculated by considering 
an aperture placed at any chosen position in the diffraction pattern and calculating 
the Fourier transform of the amplitude within this aperture. Corrections can also 
be made for defocus and aberrations using the appropriate transfer function. Figure 
28 shows dark-field images of an edge dislocation for a crystal set at the exact Bragg 
position. Figure 28(c) has the same aperture as figure 28(b) except that there is a 
very small stop in the centre of the aperture (i.e. an annular aperture). The complete 
change of the image demonstrates the importance of elastic diffuse scattering. 

At present it is not clear what are the optimum experimental conditions necessary 
in order to obtain information on the arrangement of atoms in dislocation cores and 
around point defects. I t  is, however, clear that such information must be contained 
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Figure 28. Dark-field images for an edge dislocation in Cu. Crystal at exact Bragg 220 
position: (a) usual calculation, (b) image calculated for objective aperture diameter 
&g centred on diffraction spot, (c)  image calculated for annular aperture centred 
on diffraction spot: aperture diameter ag, central stop diameter g/359 (from 
Humphreys and Drummond (1977), by courtesy of The Institute of Physics). 

in the elastic diffuse scattering from such defects. It is expected that within the 
next 10 years it should prove possible to determine from high-resolution electron 
micrographs the atomic configuration in dislocation cores and around point defects 
and other imperfections. Thus the scattering of fast electrons by crystals can be 
used not only to measure precisely perfect crystal parameters such as the bonding 
charge density ($55.7 and 5.9) and the crystal symmetry ($55.7 and 5.8) but also to 
characterise the atomic structure of crystal imperfections. 
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