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What are we going to study?

m

PSI

Some basic notions of metallurgy Irradiation effect on alloy
IFMIF

Tritium breeding blanket viewed from the Material
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Presentation by Prof. A. Moeslang =PrL
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NUKLEARFORUM/SCHWEIZ
FORUM NUCLEAIRE/SUISSE

Karlsruhe Institute of Technology

February 27, 2014
EPFL, Lausanne, Switzerland

Structural materials for fusion power plants —
international progress and challenges

Anton Méslang, Institute for Applied Materials
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*

- A

§r s

KIT — University of the State of Baden-Wiurttemberg and
National Research Centre in the Helmholtz Association
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High Performance Materials for Energy

Advanced Reactors ~ Future Systems
First Reactors n—

1950 1970 1990 2010 2030 2050

ITER IFMIF DEMO Power Plant
Strategic Missions:
* Electricity, Heat, Hydrogen
* Environmental compatibility
» Cost effectiveness, sustainability

Safety first

Specific challenges for fusion: e T
* Short development path : . __
* Loading more demanding (e.g H/He) ar
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A brief reminder

Some simple definition
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Stress-strain curve (Constitutive relation)
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Slip Lines on a Deformed Sample PSI
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Brittle and ductile material

Purely brittle

Stress, o
. Brittle — Ductile
£
Are(:ja _ Absorbed e
Brittle with a slight
amount of ductility
>
Strain, &

Stress

Strain
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What are dislocations? PSI

1D Line defects, in which crystal registry is lost

A machine to cut bonds on one plane, and then re-stitch them together,
one by one Dislocation Glide Carry local deformation and stress

Edge, screw, mixed dislocations
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Explanation Burgers Vector

m

Burgers wector, b

Burgers vector,h

The dislocation line runs along the core of the dislocation,
where the distortion with respect to the perfect lattice is greatest.

Burgers vector b:

Magnitude and direction of the lattice distortion resulting
from a dislocation in a crystal lattice
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Edge dislocation

 |llustration with bonds

* Localenvironmentis
different only at the core.

e Localized shear

* b perpendicularto line
direction

Lite vertor

£ 994 Encyclopaedia Britannica, Inc. /

3

Burgers wector, h
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Creep curve

High temperature progressive deformation of a material at constant stress is called creep.

* Primary creep, Stage |, is a period of decreasing creep rate. Primary creep is a period of primarily transient
creep. During this period deformation takes place and the resistance to creep increases until stage II.

« Secondary creep, Stage |l is a period of roughly constant creep rate. Stage Il is referred to as steady state
creep.

* Tertiary creep, Stage lll, occurs when there is a reduction in cross sectional area due to necking or effective
reduction in area due to internal void formation.

/ Total Elongation

T atage I
¥4

S Rg=Ti

http://www.materialsengineer.com/

1111 CA-Creep-Stress-Rupture. htm
CIEE
/ Stage - P
Stage 11 rate
alll 5 -l s

‘I_Initial Load
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Diffusional Creep: Illustration

BOUNDARY
DIFFUSION

/Diffusion\

Grain-boundary

AR

Nabarro-Herring Coble

Note that the vacancies and atoms move in opposite directions.
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Dislocation Creep: lllustration
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Dislocation Creep

Glide is movement of a dislocation on its slip plane. Not particularly temperature sensitive.

Climbis movement of a dislocation perpendicular to its slip plane. This occurs when dislocations
absorb or emit vacancies. It’s a diffusive process, requiring diffusion of vacancies towards or away
from the dislocation core. Much more temperature sensitive than glide.
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Testing of materials
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Testing of materials
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SSTT in relation with IFMIF
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Some metallurgical
testing methods
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Traction (tensile) machine
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Screw driven tensile machine
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Traction test

m

¥ s 4,3 !
‘ % i WA 0dS i
Lo 500 (11

a) tensile tester for flat miniature specimens
b) Fracture surface and necking:
top: ductile with important necking,
bottom: brittle with almost no necking
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Small punch test

Nuclearized Small Punch
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Impact Testing — Charpy Test - DBTT
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http://lwww.twi.co.uk/technical-knowledge/job-knowledge/
job-knowledge-71-mechanical-testing-notched-bar-or-impact-testing/
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Ductile-to-Brittle Transition — wwii Liber

ty Ships EPFL
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Some of the first Liberty Ships completed suffered from hull and deck cracks and some were actually lost to these early defects.
During the course of WWII there were nearly 1,500 instances of significant brittle fractures due to low grade of steel which suffered
from embitterment. It was discovered by Constance Tipper of Cambridge University that ships that were used in the North Atlantic
were exposed to temperatures that could fall below a critical point and cause the hull to fracture quite easily. One of the most
common types of crack began at the square corner of a hatch with coincided with a welded seam with both the weld and the corner
acting as stress concentrators. Along with the poor quality of steal the ships were usually grossly overloaded and many of the
problems occurred during severe storms at sea that placed the ships and crew in even more danger. Various reinforcements were
applied to the design to deal with the cracks.
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Charpy test- DBTT Quenched / Annealed

m

PSI

90 ——® Energy absorbed versus

80 |- Annealed temperature for a steel in

70 | annealed and in quenched
= 60} and tempered states
& 20r ). C. Miguez Suarez and K. K.
@ 40 Chawla, Metalugia-ABM, 34
w g0l Quenched (1978)

20 L Tempered

10 |

0

| | |
100 200 300 400
Temperature, K
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Charpy test - DBTT Composition

Temperature (°F)
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Influence of carbon content on the

Charpy V-notch energy-versus temperature behavior for steel

"Effects of Alloying Elements on Notch. Toughness of Pearlitic Steels,". Trans. ASM, V.43 (1951), pp. 1175-1214
& reprinted in “Callister, Materials Science and Engineering, 2" edition, p 313”
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Charpy test - DBTT Irradiation

m

70 ~

energy absorption A4

20

10

0 | 1 1 }
- 80 —40 0 40 °C 80

temperature T

Fig. 12.31. Energy absorbed at fracture as a function of temperature
for carbon steel («). After irradiation by 1.9 x 10'° n/cm? the transition

to brittle fracture (reduced absorption) occurs at a higher temperature
(A. H. Cottrell, AERE Harwell) (b).
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Charpy test - DBTT :: Irradiation

m

¢ Eurafer97-25 mm plate, unirr.
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Charpy test - DBTT :: Irradiation and annelaed

Annealing experiment after 65-70 dpa at ~335°C
Strategy for recovery of irradiation embrittlement

O EUROFERS97 _
104 0 EUROFER97 HT || OPEN Sym_bolz__ .
= A F82H-mod non-irradiate
= 8- o Closed symbols:
5 Bor60 irradiated
)
5 ) #==|rradiated and
L ® .
54 annealed at
S 550°C/3h
o
E 2
0_
-100 0 100 200 300
Test Temperature (OC) E. Gaganidze et al, JNM 2011

B How often can this recovery be repeated?
® What happens if large concentrations of He are present?
B |IFMIF would easily answer such important questions

A.Mdslang W-GIFT-5 Charleston SC, October 15, 2011
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Material and Fusion

36/16

Why do we need to study
material science when we
work in the field of fusion?

Presentation by Prof. A. Moeslang
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The principle of DT fusion reactors PSI

Reactor containment

r y
[ Lithium
blanket

Deuterium

Primary Vacuum

fuels vessal | Helium
|
r_/_' B ™
Lithium
L,
Generator
JE3E1135Ee Steam Turhine
generator
i
¥, |_-_-__'.'.__
.I':HII.-.- o,
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The functions of the Breeder Blanket (1) y PSI

m

P

Reactor containment

y ~,  Produce and recover
Tritium

- W (fuel for DT plasma)
Lithium

t::mV

H

Deuterium

Primary  Vacuum | | I DT
leels%EV: _ oT Q—.. Heliu|n|1
Lithium
L,
-
Generator
]
) ||1Eﬂ]][[]]n
JE55.1135c Steam Turhine
| generator
—
Fusion (plasma): T+D = |“He @ 17.6 MeV :
Breeding (blanket): +6Li = ‘He+T +4.8 MeV Brper
I
Balance: D+°6Li = 2%He +22.4 MeV
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The functions of the Breeder Blanket (2)
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PSI

Reactor containment

- ~ Produce and recover
Tritium
H N w (fuel for DT plasma)
Lithium |
Protect vacuum b'ay !
vessel and coils Deuterum
against radiation /
. ) . OT
damages/heatlng e R;E:;CSL;JZ{_ ! Helium
fuels(_/: _ 0T, Q—.. ]
X Lithium ~—
P <)
Generator
I
Lty
JG85.11358 Steam Turbine
generator
Convert neutron Al
. I.I...r.-\';.

energy into heat
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Why are we interested in materials?

m

PSI

Fusion produces high energy neutrons.
These neutrons in turn create two type of effects:

1. Transmutation into other materials (Among others H and He)

2. Mechanical defects (Frenkel pairi.e. vacancy and interstitial atom)

40/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies June 34, 2025



m

DEMO: neutron spectra in materials
FIGURES
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Figure 3. Comparison of the neutron-energy spectra in DEMO; (a) as a function
of depth into different regions of the containment vessel at the equatorial position
(A) in figure 2; and (b) in the first two layers of the divertor as a function of
position ((E-G) in 2).
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- defect production

m

dpa/year
oo

0 10 20 30 40 50 60
Depth into vessel from plasma facing wall (cm)

Figure 4. Defect production rates, expressed in dpa per year units for different
elements shown as a function of depth into the FW at A in figure 2.
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Figure 5. Variation in the (a) He, and (b) H, concentrations in pure Fe as a
function of time for the spectra at different FW positions in DEMO — see figure 2.
The equivalent dpa/year in pure Fe at each position are also given.
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Production of H and He
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Fe transmutation producing H and He
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“5Fe(n,a)>3Cr (°°Fe + n—=> °3Cr + a)
(incident n threshold at 2.9 MeV)

&

*6Fe(n,p)°®Mn
(incident n threshold at 0.9 MeV)
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Irradiation effect — point defect / cascade

Frenkel Pair

dense zone
knocking @SS 9900000 O ®
.. P 000606 Y X |
g, O (K O

000000 ® O

Foden 01.0 0000 0 00 ©
atom,PKA OO O O 50
OOOOOEOO O OOO PKA %&?}pmg
OOOOOOOO X o o
OO O O O O X . A OOO O
@ O O O O O 6 X N O
diluted zone
@ Interstitial [ ] vacancy

Seeger A (1962), Radiation damage in solids 1. IAEA Vienna: 101
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Irradiation effect -... + transmutation

- @

’ ) Energetic projectile
e (for example neutron)
i . . . PKA
Jl.."
® T = Lattice atom
oy T
5] - _= .- S . Self-interstitial atom
A > ;
- s \ -
3 . ,‘ . :_ | Vacancy
‘ ® - @ 5
/ ol
. - - il Ty ) Helium
J' i " 4 I 3 /
- .‘ ’ " . Transmuted atom
® | ,
T T T o o

®

| )
(100) \ ¢ /

Replacement Core of small Dynamic
collisions cascade crowdion
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What happens under irradiation?

m

PSI

M,: Incident particle with E,
M,: Lattice atom

The lattice atom gets:

E...= E.4* M *M,/(M+M,)?

|f

* E, .= Wignerenergy (15-25¢eV): the atom is ejected from its lattice site
* E, ...>>Wignher energy: displacement cascade
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PSI

Frenkel pair =PrL

Kittel: Introduction to solid state physics

@ gt

Defect Structure

$36333%%9%2
2505050 e
9°9:929°9°:9°9°

Schottky and Frenkel defects in an ionic crystal. ) 00 QQ 000 0000
The arrows indicate the displacement of the ions. - g AL 2 €
wsindi P ooaqFrenkel defect)ooao °

» In a Schottky defect the ion moved to the surface of
the crystal;

» in a Frenkel defect it is removed to an interstitial
position.
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Notion of dpa

Ref. Norgett, Robinson & Torrens (NRT) Nucl. Eng. Design 33 (1975) p.50-54 .
Number of atoms displaced during irradiation

“o

v

P,

Plot of

v

damage energy £and

g & 8

g
o

number of Frenkel pairs N,

produced by a

primary know-on atom

DAMAGE ENERGY (heV)

of given energy:
calculated for iron using the

& & 8 8

standard method

NUMBER OF FRENKEL PAIRS Phy.U2ED

proposed in the text.

A FERE A ERE R

80 120 60

PRIMARY ENERGY (keV)

8
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Cascade dependency on energy

200 keV R f

W 10 keV
(avg figsion

50 keV a2
// (avg. fusion) A
,

Comparison of MD simulations of
displacement cascades in Fe for different
PKA energies

http://dx.doi.org/10.1063/1.1880013
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4.1-
Irradiation Damage =  PSI

300

o 250 5 0 .

= Irradiation hardening

'-z" 200 o

: of solution annealed

" 0

316 steel

3

g- 50 |-

I‘I|l011? — ll;;‘lﬂ — H'lilﬂlig — “'I|]0]20
NEUTRON FLUENCE, E > 0.1 MeV neutrons per Cm2
300 e T T
N o L2 Los Alamos Spallation

g oy S oehrse i Radlatlon Effects Facility

"R | + owRsoe ) (Be(d,n) neutrons: ~1 MeV)

3 . n  OWIR: Omega West Reactor (fission
é 150 ] neutrons: keV-10MeV,1.5 MeV)

& ] A RTNS-II: Rotating Target Neutron
a o Source-II (14 MeV neutrons)
g 50 + ]

http://dx.doi.org/10.1016/0022-3115(94)90004-3
0 L ' [ | P | 1 1 I T T I | PR | 1

103 10-2
BES displacements per atom
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Irradiation stages - Time scale

Duration
(ps)

Event

Result

10°

10°+to
0.2

0.2-0.3

0.3to3

3to 10

More
than 10

Transfer of recoil energy
fromirradiation particle
Slowing down of PKA,
generation of collision
cascade

Spike formation

Spike relaxation,
interstitial ejection,
transition fromheated to
undercooled liquid core
Spike core solidification
and coolingto ambient
temperature

Thermal intercascade
recombination, thermal
migration of pointdefects
from the cascade,
reaction of migrating
point defects

Primary knock-on atom

Vacancies and low energetic
recoils, subcascades

Low density hot molten
droplet, shock front

Stable selfinterstitials atomic
mixing

Depleted zone, disordered
zone, amorphous zone,
vacancy collapse

Surviving defects, migrating
interstitialsand vacancies,
stationary fluxes of vacancies
andinterstitialsto sinks,
growth/shrinkage of point
defect clusters, solute
segregations
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m

Material science and technology PSI

Materials for fusion must be low activation and retain their mechanical and thermal properties
under irradiation

Nuclear reactions Cascades Diffusion processes
Production of Production of Formation of the
impurities vacancies and  final microstructure
(He, H) interstitials
: : : =
10-16 10-13-108 10 Time [s]
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MD cascade simulation

2500 rF o r 1 r 1y 11 & © °©r 1 1 1T 1T ¥ |1
MD cascade simulation data

for bcc iron

EESSRnoEE
PKA energy ~3keV

System Temp. 100 K
Number of point-defects

N

S

o
——i

=
U
o
o

number of point defects

1000 (interstitials and vacancies)
500 \\
=G
0 -
0 1 2 3 4 5 6

time [ps]

Early period of the development of the center of a cascade in copper as result
of a molecular dynamics simulation

http://msg.igcar.gov.in/mpd/ibcss/index.php/research/77-general/122
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Cascade illustration

 PSI

nautron E' < E

An illustration of
cascade primary-damage

production a
. . /s
(iron atoms not shown in neutron E

a—c and f): p—

* (a-c) MD simulation snapshots of initial
intermediate and final dynamic stage

of a displacement cascade ¢ -\
« (d-e) vacancy and self interstitial o . | o
Interstitial Vacancy-solute cluster complex
defects —
« (f) vacancy-solute cluster complex g
formed after long-term cascade aging . b
L N —
- . -
L . . Q
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Kinetic rate

theory Finite element

modelling

Fracture
toughness P S I
versus ;

temperature

"Um - 1 cm

Discrete 0O
dislocation(]
dynamics O

i3] Interaction F s ] Creep
"\ dislocations- F i tests
> | defects

T l 200
ensie 100 5.523 K, 0.30 dpa
6. 523 K, 0.75 dpa

Nanocrystal

Interaction
edge
dislocation-
void

Stacking
fault

tetrahedron
TEM simulated image

Atomic displacement
cascade

1-30 nm, 1-10 ps

Formation energies

of point defects 0.1 nm
57/16

Tnm-1pum,10ps -s

1-5nm,2ps -s

TEM image

kRT equations

(KT' = G(] - £, ) - k\?l)rC\‘ - 1 DCC,
ot

% = J(l 75;') - kazDsz - 'URDJC'C‘_

0.1nm-1m, 1 ps - years

Time
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What material for fusion?

Criteria:

* Specific radioactivity
 Radioactive decay heat
* Half-life radio nuclides
* Waste disposal

Candidate materials presently under development have a chemical composition based on low
activation elements: Fe, Cr, V, Ti, W, Ta, Si, C

e Steel of the 9Cr type such as EUROFER 97:
8.9wt.% Cr, 1.1TwWt.% W, 0.47 wt.% Mn, 0.2wt.% V, 0.14 wt.% Ta,
0.11 wt.% C, Fe for the balance.

* Oxide (Yttria) dispersion strengthened (ODS) steel.
* SiC,/SiC: SiC fiber in SiC matrix
* Vaalloys
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What is a steel?
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Fe-C Phase Diagram =PrL

61/16

 PSI

The Iron Carbon Phase Diagram

3000
1600 [
Liquid iron carbon
1400 solution 15500
1200 (IS
with dissolved

p— 2000 oo
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-
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-
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0
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Fe Atomic Percent Carbon Fe,C
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TTT diagram for carbon steels
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The Schaeffler-Diagram |

Ni Eq Fe e
12 2 % P -5’ > ALFjstSnited
o ace-Centere

N ;EIE Mo O- Cubic (FCC)

28 ; AUETENITE ; f” Hf.rms

Austenlte

Ferrlt E
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Cr equivalent
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The Schaeffler-Diagram Il

m

 PSI

Nickel-Equivalent
% N1+30% C+0.5% Mn
Nickel 1s a former of austenite

Chromium-Equivalent
% Cr+% Mo+1.5%S1+0,5%Nb+2%T1+
Chromium 1s a former of ferrite

The Nickel-Equivalent and the Chromium-Equivalent are the
key parameters which determine the microstructure.

Reminder: low activation: Fe, Cr, V, Ti, W, Ta, Si, C
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Material for fusion reactor

65/16

Criteria: Specific radioactivity
* Radioactive decay heat
e Half-life radio nuclides

* Waste disposal

Candidate materials presently under development
have a chemical composition based on low activation elements:
Fe,Cr,V,Ti,W, T3, Si, C

e Steel of the 9Cr type such as EUROFER 97:
89wt.%Cr, 1.1 wt.% W, 0.47 wt.% Mn, 0.2 wt.% V,
0.14 wt.% Ta, 0.11 wt.% C, Fe for the balance.

* Oxide (Yttria) dispersion strengthened (ODS) steel

* SiC; in SiC matrix, Va alloys
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DECAY TIME of Irradiated elements

m
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EUROfusion - wpMAT PSI

Eberhard Diegele, EUROfusion PMU

Based on EFDA contracts
05/1244 and 06/1910

AKIT =CC

AM EN
Karlsruhe Institute of Technology ON NE

Ciemat () #) JULICH

FORSCHUNGSZENTRUM

REZ
GY=®

Z This work has been camed out within the framewerk of the

EURCRusion Consordum and has recewed funding from the

N T
¥ Eurcpean Union's Horzon 2020 research and nnovaton
programme undar grant agreement rumber 633053
The views and oprions expressed haren do rot
necessarly refiect those of the European Commission

Courtesy: E. Diegele EUROfusion
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EUROFER

m

Chemical composition of EUROFER 97-2

Element MIN Value MAX Value | Remarks
(wthe) (wt%h)
Carbon 0.090 0.120 Target 0.11
Manganese 0.20 0.60 Target 0.4
Phosphorus 0.005
Sulphur 0.005
Silicon 0.050
Nickel 0.01
Chromium 8.50 9.50 Target 9
Molybdenum 0.005 ALAP
Vanadium 0.15 0.25
Tantalum 0.10 0.14 Target 0.12 Undesired elements
Tungsten 1.0 1.2 Target 1.1 (Nb, Mo, Ni, Cu, Al, Si, Co)
Titanium 0.02
Copper 0.01
Niobium 0.005
Aluminium 0.01
Nitrogen 0.015 0.045 Target 0.030
Boron 0.002 ALAP
Cobalt 0.01 ALAP
As+Sn+Sh+Zr 0.05
Oxygen 0.01 ALAP: As low as possible

Courtesy: E. Diegele EUROfusion
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Sample -
St ee l Plates bar Specification for =
" ThicknessDiameter | 8mm | 14mm 25 mm @ 100 mm Eurofer-97
Certificate ref (heat, E83698 E83697 E83699
Bohler)
C 0.12 0.12 0.12 0.09-0.12
Si 0.04 © 0.06 0.07 <0.05
Mn 0.49 046 0.44 0.20-0.60
P <0.005 <0.005 <0.005 <0.005
S 0.004 0.004 0.004 <0.005
Cr 8.93 8.90 8.97 8.50-9.50
Mo <0.0010 0.0023 <0.001 <0.005
Ni 0.020 0.022 ) 0.007 <0.005
\' 0.20 0.20 0.19 0.15-0.25
W 1.08 1.07 1.10 1.0-1.2
Cu 0.0019 0.0039 0.0022 <0.005
Co 0.006 0.006 0.004 <0.005
Ti 0.006 0.009 0.009 <0.01
Al 0.009 0.008 0.008 <0.01
Nb 0.0017 0.0020 <0.001 <0.001
B <0.001 <0.001 <0.001 <0.001
N 0.021 0.020 0.017 0.015-0.045
Pb <(.0003 <0.0003 <0.0003
Ta 0.15 0.15 0.14 0.05-0.09
o] 0.006 0.0007 0.0012 <0.01
As <0.005 <0.005 <0.005 As+Sn+Sb+Zr
Sn <0.005 <0.005 <0.005 <0.05
Zr <0.005 <0.005 <(0.005
Sb <0.005 <0.005 <0.005
Heat treatment
Normalising Tempering 980°C - 980°C - 979°C ~
27 min- air-cool 30.6 min- air cool 1 h 51 min - air
Tempering 760°C — 90 min air- | 760°C — 90 min — air- 739C —
cool cool 3h 42 min - air

Table 3-1: Chemical compositions and heat-treatments of Bohler Eurofer97 products, from [5].
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Specification: alloying elements

m

PSI

=
N\
e

Rational behind the specification — alloying elements <=

Alloy Radiologically Specification F82H
Heat /
Analyses desired (theor.) EUROFER 97 for comparison

A) Cr 8,5-9,5[9,0] 7.7
C 0,09-0,12[0,11] 0.09
Mn 0,20-0,60[0,40] 0.16
P < 0,005 0.002
) < 0,005 0.002
Vv 0,15-0,25 0.16
B < 0,001 0.0002
N, 0,015 - 0,045 0.006
o, < 0,01 (0,01)

target values [ ]
(A) Main alloying elements of 8-10Cr F/M steels
(B) Varied "substitutional" alloying elements of 8-10Cr F/M steels - Fusion Reduced Activation -
Variant - eg replacing Mo by W ...

(B) w 1,0-1,2[1.1]
Ta 0,06 - 0,09
Ti < 200 ppm < 0,01 (100 ppm)

Courtesy: E. Diegele EUROfusion
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PSI

m

Specification: impurities

Rational behind the specification — impurity control )

C) Radiologically undesired tramp-elements

Alloy Radiologically Specification Achieved F82H
desired (theor.)  EUROFER 97 EUROFER97 comparison
Q) Nb <0,01 ppm [<0,001 (10 ppm)] 2-7 ppm 1 ppm
Mo <1ppm [< 0,005 (50 ppm)] 10-30 ppm 30 ppm
Ni <10 ppm [< 0,005 (50 ppm)] 70-200 ppm 200 ppm
Cu <10 ppm [< 0,005 (50 ppm)] 15-20 ppm 100 ppm
Al <1ppm [<0,01 (100 ppm)] 60-90 30 ppm
Ti < 200 ppm < 0,01 (100 ppm) 50-90 100 ppm
Si <400 ppm <0,05 (500 ppm) 400-700 1100 ppm
Co <10 ppm [< 0,005 (50 ppm)] 30-70 50 ppm
Target for
“low activation”
“low level waste” Two major heats

Diff. chem. analyses

Courtesy: E. Diegele EUROfusion

71/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies June 34, 2025



Activation PSI

) mainly determined by Nb, Mo and Al

Short-term behaviour (<50 years) mainly determined by Co, Ni and Cu

KIT | Rainer Lindau | EFDA-1244

Courtesy: E. Diegele EUROfusion
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Activation = PSI

\
E

(C
{
N

au | EFDA-1244

Courtesy: E. Diegele EUROfusion
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Material candidates

RAFM steels e.g.

m

F82H (Japan): Fe-7.5Cr-2W-0.21Mn-0-15V-0.1Si-0.09C
« JLF-1 (Japan): Fe-9Cr-2-W-0.45Mn-0.25V-0.2Si-0.1Cn
« ORNL 9Cr-2WVTa (US): Fe-9Cr-2W-0.4Mn-0.3Si-0.25V-0.1C
« Sandvik HT9 (US): Fe-12Cr-0.6Mn-0.6Ni-0.52W-0.38Si-0.3V-0.2C

« EUROFER: (Europe) Fe-8.9Cr-1.1W-0.47Mn-0.2V-0.14Ta-0.11C
« CLAM (P.R. of China): Fe-9Cr-1.6W-0.4Mn-0.21V-0.15Ta-0.11C

Better radiation resistance than austenitic
steels, but structure thermal stability limited
by dislocation glide and the alpha/gamma
transition.

Oxide dispersion strengthening (ODS)
—> increases and

Max operation temperature: 650° C

Yield Strength R_ _ [N/mm]

80O
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Waste

Calculation of radioactive life time and recycling limit
of a fusion power plant

Material masses after 100 years

36,004

Ref. EU Fusion Power
Plant Conceptual

Study (PPCS) , EFDA

Mass (tonnes)

O non-active material
B recycle material (simple process)
B recycle material (complex process)

B permanent disposal waste
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Beneficial aspects

Once the reactor is stopped, there is low « after heat » generation
What could happen then if after the reactor was shut-off there is a loss of cooling?

Two cases: ITER and Fusion Power Plant

77/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies June 34, 2025



m

Safety Characteristics of ITER PSI

First Fusion Machine Undergoing Full Nuclear License

Carlos Alejaldre

Deputy Director General
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Major accident (1)

m

The fuelis introduced continuously as Deuterium and Tritium gas

The amount of fuel in the reactor is sufficient only for a few minutes. The gas feed can be
easily shut-off

The conditions for the establishing fusion reactions are delicate. Hence any departure
from these conditions will lead to the stopping of the reactions. No chain reaction.

,Fukushima type“ accident (loss of cooling) for a fusion reactor is not possible since the

€ ;
amount Of ,,after heat 1S l‘OW Temperature of the in-vessel components, VV,
thermal shield and TF coils
300
Calculation for ITER /«—v——é |
Ref. C. Alejaldre 200 = = =
Nuclear Forum 2012 .;;-.T 100 -
E o
3 -_.-F_
www.asn.fr/sites/ E’ oo 1 P 1P P 25
rapports-exploitants-ecs-2012/ /
200 -
Autres/ITER/ '
ITER-Cadarache.pdf ~00
Time, days
—BL — DV —FW VVin
— VWV out Thsh1 out Thshlin —TF
79/16
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Major accident (2)

m

PSI

Loss of cooling after shut down in case of a fusion power plant

1400

1200

1000

800

800

temperature (C)

400

200

I,

S

N

20 40 a0

fime (days)

a0

100

Also in a electricity producing
reactor, a loss of cooling
accident does not lead to the
melting of the reactor vessel
(Melting temperature of
stainless steel: 1500° C).

A, B, C and D refer to models

Ref. EU Power Plant
Conceptual Study
EFDA
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Characterization of irradiation damage

dpa= displacement per atom

MWy/m? n.m2 dpa (Fe)
1 1.4.10% 9.5
0.3 -1 (ITER) 0.4-1.4.10% 2.8-9.5
3 —4 (DEMO reactor) 4-56.10% 28 -76
10— 15 (REACTOR) 14-21.10% 95 -143

e He production: 10 appm/dpa
e H production: 40 appm/dpa

Main difficulty is the non-availability of suitable neutron sources :
energy = 14 MeV and high fluence
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· He production: 10 appm/dpa


· H production:   40 appm/dpa
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Mechanical effects

9Cr type of steel

800

L B L B NI B B

LRI BN I R '
- o [MPa] Ttest=Tirrad._'

Hardening (H) sool
Loss of ductility (LD) 500:
Loss of fracture toughness 400

Loss of creep strength 3°°:"

1. RT, unirradiated 7
2. RT, 0.37 dpa 1
200 H 3. RT, 0.93 dpa —
I 4. 523 K, unirradiated
100 I 5. 523 K, 0.30 dpa |
. 6. 523 K, 0.75 dpa € [%]
Swelhng (1] S I T N T T T I B R

0 1 2 3 4 5 6 7 8 9 10

Shelf Energy [J]
10 T e T 1 11T
or 'YX ] L X X ... o® ¢ 7]
Change in the 8- . R T
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5 i
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Effect on the microstructure

PSI

The final microstructure of the irradiated material results from

interactions between the various irradiation-induced defects. It can
be formed of:

Small defect clusters
Dislocation loops
Stacking fault tetrahedra
Precipitates

Voids

He bubbles
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PSI

Out-of-Fusion Applications of
Material Science
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Accelerator driven system ADS =PrL g PSl
From an
accelerator ADS: another concept for a

fission reactor with criticity k<1

I - Target unit
2 - Sub-critical core
3.- Inner Vessel

4 - Reactor Vessel

5 — Safety Vessel

6 — Reactor Roof

7 — Intermediate Heat Exchanger
8 — Transfer Machine

9 —Rotor Lift Machine

SRk L ls oo F okl
npaonncannnd

;6.950
‘arges level - .
e : 10 — Riser Channels
®K - i 11 — Downcomer
s : . <
@_ﬂf 12.- Reactor Vessel Cooling Systen
b > 13 — Seismic Support Pads

- : 14 - Rotating Plug

o N
Bttt v

[ I _‘,l F;., L}i—f-‘ ’?‘ 15 - Proton Beam Pipe
5 ‘ ; " | i : ‘74 ) ;

{j SR P ‘fL-;”.-.-ii".- : L“ * L ‘L‘g 16 — Bending Magnet

s A U I AR 0 WSt el |

88/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies June 34, 2025



Specific Environmental and
Irradiation Conditions

m

 PSI

Advanced fission reactors

fission neutrons
(Core structure: 3-30 dpal/year)
Max. operating temperature: 1600° C

Compatible with
Fusion reactor ADS demonstrator
14 MeV neutrons High energy protons and neutrons
(First wall: 30 dpa/year in Fe (Beam window: 100 dpa/year

15 appm He/dpa and 50 appm H/dpa) 50 appm He/dpa, 500 appm H/dpa)
Max. operating temperature = 650° C Max. operating temperature: 550° C
Compatible with Compatible with
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PSI

m

Example

The Myrrha project
http://www.nuklearforum.ch/fr/forum-nucl%C3%A9aire-suisse/nos-manifestations/rencontre-du-
forum-accelerator-driven-systems-myrrha
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€

STUDIECENTRUM VOOR KERNENERGIE
CENTRE D’ETUDE DE LENERGIE NUCLEAIRE

Accelerator

» 600 MeV - 4 mA proton

> T T T T ) T T ) Tl T

Multipurpose
Flexible
Irradiation
Facility

m

MYRRHA

Reactor
» Subcritical or Critical modes
*» 65 to 100 MWith

Spallation Source

Fast
Neutron

Source
Lead-Bismuth

coolant
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Synergy with other fields CP=L & pSI

Advanced fission reactors-Gen IV

Oxide dispersion strengthened steels
Refractory metals and alloys

/C, SiC, SiC/SiC ceramic composites

Intermetallic alloys

Accelerator Driven System
demonstrator (ADS Next slide)

Fusion reactor Reduced activation ferritic/martensitic steels

Oxide dispersion strengthened steels

Reduced activation ferritic/martensitic steels
Oxide dispersion strengthened steels
Refractory metals and alloys
SiC/SiC ceramic composites
Vanadium alloys
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Comparison of material challenges PSI

Comparison of Gen IV and Fusion Structural Materials

Environments
1200 ———— IR R e e e e S.Zinkle et al., IAEA
: ] FEC 2012 San Diego
1000 [F R N
@ 800 } ....... T S __
@ I ' i
© 600 /
o [ ” V alloy, ODS steel
£ _ |
IE 400 J F/M steel
200 % TN m— ............................................ N
\ Current (gsen II) fission r actors ]
| ITER fusion réactor
0 50 100 150 200 250

S.J. Zinkle & J.T. Busby, Mater. Today 12 (2009) 12

Displacement Damage (dpa) SJ. Zinkie OECD NEA Workshop on Structural
Materialsfor Innovative Nuclear Energy Systems
Karlsruhe, Germany, June 2007 . .

All Gen IV and Fusion concepts pose
severe materials challenges
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Temperature window

Operating Temperature Windows for Structural Alloysin Fusion

Reactors W : : E

Mo (TZM)

Ta8W2Hf

Nb-1Zr-.1C

V-ACr4Ti

—> ODSfarriticst.

_ F/M stedl
316 SS

I ncond 718
CuNiBe

—_ sc/sc

—

0 20 40 60 80 1000 1200 1400
Tenperaure ("C)

* Lower temperature limit of alloys based on radiation hardening/ fracture toughness

embrittlement (K< ~30 MPa-m!?)—large uncertainty for W,.Mo due to lack of data

* Upper temperature limit based on 150 MPa creep strength (1% in 1000 h); chemical

compatibility considerations may cause further decreases in the max operating temp.

S.J. Zinkle and N.M. Ghoniem, Fus. Eng. Des.

OAx RiDGE NaT il
U8 Dot or Eareer U 51-52 (2000) 55; S.J. Zinkle et al. STAIF2002 UT-BATTELLE
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PSI

How shall we test our material?

We need a 14 MeV neutron source!
With a high flux and fluence!

96/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies June 34, 2025



Characteristics of damage in materials

MWYy/m? n.m dpa (Fe)
1 1.4.10% 9.5
0.3 -1 (ITER) 04-1.4.10% 2.8-9.5
3 —4 (DEMO reactor) 4-5.6.10% 28 -76
10 — 15 (REACTOR) 14-21.10% 95-143

e He production: 10 appm/dpa
e H production: 40 appm/dpa

dpa = Displacement per atom
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IFMIF
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Multimodal Options for Materials

Research to Advance the Basis for Fusion
Energy in the ITER Era

Steve Zinkle', Anton Moslang?, Takeo Muroga’®, Hiro Tanigawa®
10ak Ridge National Laboratory, Oak Ridge, Tennessee, USA
?Karisruhe Institute for Technology, Eggenstein-Leopoldshafen, Germany
3National Institute for Fusion Science, Toki, Gifu, Japan
4Japan Atomic Energy Agency, Aomori, Japan

24" | AEA Fusion Energy Conference

San Diego, Califormnia
October 8-13, 2012
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IFMIF

There are several options to close the current knowledge

gap 1n fusion-relevant radiation effects in materials
 Anintense neutron source (in concert with enhanced theory and modeling) is needed to

improve understanding of basic fusion neutron effects and to develop & qualify fusion

structural materials

Current knowledge
base on ferritic steels

10000 s
1000 : _
- Fusion ]
o 100 reactor :
£ E
£
£ [
© 10 =
=
1 N
1980-1986 - B fission
[ w™ (RTNS-ID B reactors
L‘k n
0.01 0.1 1 10 100 1000

displacement damage (dpa)

Option A: IFMIF + fission reactors +ion beams + modeling
Option B: robust spallation (e.g., MTS) + fission reactors + ion beams + modeling

appmHe

displacement damage (dpa)

10000
I MTS
1000 | :
F Fusion 3
\ reactor
100 ¢ IFMIF o]
| ITER
® g (2030) o
C ‘ a
L B m
1 - .
E e
1980-1986 m fission
[ W™ (RTNS-ID n reactors
LL | ]
O A v v e
0.01 0.1 10 100 1000

Optlon C:'modest spallation (e.g.,.SNS/SINQ) + fission reactors + ion beams + modehng
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IFMIF (1)

m

e |nternational fusion material irradiation facility IFMIF:
a neutron source capable of simulating the fusion neutron with high flux

 |FMIF is the key infrastructure for fusion material science

Typical Reactions:  ’Li(d,2n)’Be ®Li(d,n)’Be ®Li(n,T)*He
Deuterons: 32, 36, 40 MeV 2x 125 mA Beam footprint 5x20 cm?
High flux Medium flux Low flux
Liquid Li Jet (>20 dpa, 0.5L) (20-1dpa,6L) (<1dpa,>8L)

lon || B i _
Source RFQ Drift Tube Linac

. Deuteron Accelerator Region > | Test Cell >
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IFMIF: neutron spectrum

IFMIF vs. the Spallation source MaRIE

Neutron spectra Relevant for damage A.Méslang W-GIFT-5 Charleston SC, October 15, 2011
and transmutations
in steels

1E13

1E12

1E11 —— MTS sample can #3 N
—— MTS sample can #7 \
1E10 — DEMO first wall

IFMIF back plate \\
1E9L | —— IFMIF HFTM
‘IEB IR RETT L1 L Lol L ] \.1.

1E-3 0,01 0,1 1 10 100 1000
neutron energy [MeV]

neutron flux density [Cm'2 s’ Me\/”]
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IFMIF: neutron spectra

m

IFMIF Neutronics - Achievements

International Fusion Materials Irradiation Facility

Improvement of neutron spectra with moderator/reflector

Neutron energy [MeV]

=103 . :
> ;
g 10° jhj"ﬂx ; IFMIF High Flux Test Module |
o 3 1 :
" I 1:1—“—.'1.]"] :_—‘_‘—IT‘-L‘—L |
g 10°3 e, Tl
- E } g oL t
ST SN P2 S |
1| —0o— CDA-Design (1996) 7 BT
%‘ , 1|~ KEP-Design (001 h"“":f [
c 10 ,E_ — DEMO fusion reactor ‘]_
[1}] i T Y
T ] 1
x 10 3 !
S
“ 0]
C 10 T T T LR | T TR rrTTTT T
107 10° 107 10° 10’

n-flux density [10" s' cm® MeV ]

—
o

: |
IFMIF Medium Flux Test Module

—
2]
1

— — —
2.3 3

—o— CDA-Design (1996)
—— KEP-Design (2001)
—— DEMO fusion reactor

2
|

—
O—L

—
OQ

® 10 10" 10° 10
Neutron energy [MeV]

—
o

- Moderator/reflector: — Substantial improvements in neutron spectrum adaption
— Irradiation volume increase by ~20%

—
Lg_wrem.\' » e,

E
nergy

dvanced

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

A. Moslang - 19th IAEA Fusion Energy

22
Conference, Lyon, France, October, 2002

102/16 MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies

' PSI

June 34, 2025



IFMIF: He, H & dpa

m

IFMIF Neutronics - Achievements

International F usion Materials Irradiation Facility

Irradiation DEMO ITER IFMIF IFMIF
Parameter HFTM MFTM
Total n-flux, (n/(cm? s) 1.3.10" 410" (4+10)-10" (2+6)-10™
H production, (appm/fpy) 1200 500 1000+1500 300+500
He production, (appm/fpy) 300 120 250+600 70+120
Displacement damage 5, 12 20:55 7:10

H per dpa, (appm/dpa) 40 45 4050 30+50

He per dpa, (appm/dpa) 10 11 10+12 8+14

- Correct scaling of He, H and dpa production
- Accelerated irradiation in limited volume

)
J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA A, Moslang - 19th IAEA Fusion Energy
Conference, Lyon, France, October, 2002

E Lg_u'renr.\', ine,
A r.an::;r g

23
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Overview of IFMIF =P~L . PSI

H. Matsui et al.,
SOFT Conference,
2004
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PSI

PF

m

Schematic View

H. Matsui et al.,
SOFT Conference,

2004
[/| — | Liquid Li Target
D* Beam (10MW) Neutrons
T (~1017n/s)
D* Accelerator Specimens

High flux region(20 dpa/y)
is0.51

- Small sample test
technology

accelerator based
deuterium—lithium (d—
Li)
MEEHRRHME JR &M HEQR IEAMIKGRFUSION =+ EPFL :: PHYS-632 :: Fusion and industrial plasma technologies
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DONES
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Nucl. Fusion 58 (2018) 105002

Special Topic

=PrL

_________

" Accelerator Systems
Accelrirator Ancillaries

D ——— . Test Cell
1 RF iner System H Test Systems

- Injector -+ e Hh |

100 katy a5 Mey 40Me\-' P " .
RFQ  MEBT  SRF Linac : Lithium Svsteins Ancillaries

Test Systems

Impurit',I mnnimring-'- b Secondary Tertiary
loop inLi loop
-
Eradl i
Cooling:

water }

Control
System T [t pump I
YTrap  Coldtrap i |_tank

Impurity J_ ﬁ

CODAC S'y'stem

Slte Buildin Layout & Site Infrastructures
é‘ Plant Es Buildings Central Instrumentation Maching Protection
HVAC, Electrical Power Supply, HRs, etc, and Control Systems System
Systems Remote Handling System Safety Control System
Figure 1. IFMIF-DONES facility schematic plant configuration.
RF Power DD
Ex200kW  2x20 kW zsxmo kw 2?x200 kw Beam footprint
l] ] | ] ] 200 x 50 mm?
2
LEBT MEBT HEBT 100 x 50 mm
Ion ALLLELLLLLLLLLLLE ) lllll LLLLLEL] I I'lllls lllllll }II llllllllllll \‘* ------- Q
ini
source
100 keV 5 MeV 8 14 22 30 40 MeV
Benm Dump

Figure 2. IFMIF-DONES accelerator systems configuration schema.

MATERIAL SCIENCE and ITS APLICATION IN FUSION :: EPFL :: PHYS-632 :: Fusion and industrial plasma technologies

PSI

June 34, 2025



Test Cell
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H. Matsui et al.,
SOFT Conference,
2004

Low flux
irradiation
tubes

High flux
test module

Medium flux
test modules

Li Target

Li tank
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Small Specimen Test Technology PrL

H. Matsui et al.,
SOFT Conference,
2004

Specimen Present Comments
type geometry
Tensile

developed

On the basis of

. : : Fatigue i developed
miniaturized specimens,

0.5 liter (high flux test module)

Bend/Charpy Standard achieved
is sufficient to get within DFT
15-20 years a representative Creep Miniaturization
test matrix up to about needs verification
150 dpa for a variety of Crack growth
materials.

Fracture
toughness

1 cm
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		Specimen 
type

		Present geometry

		Comments



		Tensile

		

		developed



		Fatigue

		

		developed



		Bend/Charpy
DFT

		

		Standard achieved;
R&D ongoing



		Creep

		

		Miniaturization needs verification



		Crack growth

		

		International R&D ongoing



		Fracture 
toughness

		

		International R&D ongoing






DEMO

m

DEMO : areactor producing electricity
|_ast step before the first of a kind commercial reactor
DEMO1: Pulsed plasma reactor — 500 Mw,- Self sufficient with T
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Material science and technology for DEMO

110/16

PSI

Issue: validation of the mechanical properties of low
activation materials under irradiation by high dose of 14

MeV neutrons

14 MeV neutrons caused specific irradiation damage
combined with embrittlement by H or He created by
transmutation in the material
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The Materials Development Strategy -
FM Steels

EUROFER 9Cr WVT7a (8.9wt.% Cr, 1.1 wt.% W, 0.47 wt.% Mn, 0.2 wt.% V, 0.14 wt.% Ta, 0.11 wt.% C, Fe
for the balance) Reduced Activation Ferritic Martensitic Steel

(7.5 tons heat was ordered in EU in 2004)
— Target
e Composition tailored to reduce activation and waste.
e Breeding blanket with operational window 300-550° C.
e Two more steps:
— Optimization of mechanical properties (EUROFER-2).
— Development towards “low activation” (EUROFER-3).

— Use for first generation breeding blankets, i.e.
— The reference structural material for the DEMO blankets.
— Used inthe ITER TBMs.
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The Materials Development Strategy -
FM Steels

ODS (oxide dispersion strengthened) steels
First pre industrial heat of 50 kG was produced

- Target
* Increased operating temperature up to
— 650° C using EUROFER (9Cr) type ODS material
— 750° C using nano-composited ferritic steels (12-14Cr)
e Improved (creep) strength (HT) and still good properties at LT of ~300° C.
- Use
* To replace step-by-step EUROFER in more “advanced” concepts.
e As Back bone material for gas-cooled divertor concepts
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PSI

Discussion points

What are the important points from this lesson
according to you?
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IFMIF EPFL.
the neutron source for the Fusion Program

J. Knaster, R. Heidinger and S. O'hira
on behalf of IFMIF/EVEDA team

PSI
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10m IAEA Fusion Energy Conference
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Things to know / Exercise PSI

What do you know about material deformation (behavior, types, factors, ...)
How can you test materials. Why do we care for sample miniaturization
What is embrittlement. Why does it happen. Why is it relevant for us.

What is a steel. How is it formed.

How do the mechanical properties change with radiation

Motivation and setup of IFMIF

el B o RO ©

3 Groups: Discuss the points above, maybe extend. Ask questions. Present the essentials.
e Group1:a,d
e Group2:b,e
e Group3:c,f
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