

CFT exercises week 7

Exercise 1 Correlation functions from embedding formalism

Using the embedding space formalism, compute the two-point function of a spin 2 primary:

$$\langle O_{AB}(P_1)O_{CD}(P_2) \rangle . \quad (1)$$

Then project the result to the d -dimensional physical space.

Hint: the building blocks are η_{AB} , P_1 , P_2 . It is useful to begin by constructing a transverse matrix W_{AB} .

Exercise 2 Conformal Blocks from Casimir differential equation

In the embedding formalism, each primary operator is promoted to an homogeneous field on the future light-cone of the origin of \mathbb{M}^{d+2} ,

$$\mathcal{O}(\lambda P) = \lambda^{-\Delta} \mathcal{O}(P) , \quad P^2 = 0, \quad \lambda > 0 . \quad (2)$$

In this formalism, conformal transformations are just $SO(d+1,1)$ Lorentz transformations of Minkowski space \mathbb{M}^{d+2} . The conformal block decomposition can then be written as

$$\langle \mathcal{O}_1(P_1) \mathcal{O}_2(P_2) \mathcal{O}_3(P_3) \mathcal{O}_4(P_4) \rangle = \sum_k C_{12k} C_{k34} G_{\Delta_k, l_k}^{(12)(34)}(P_1, \dots, P_4) \quad (3)$$

where

$$G_{\Delta, l}^{(12)(34)}(P_1, \dots, P_4) = \frac{1}{P_{12}^{(\Delta_1+\Delta_2)/2} P_{34}^{(\Delta_3+\Delta_4)/2}} \left(\frac{P_{24}}{P_{14}} \right)^{\frac{\Delta_{12}}{2}} \left(\frac{P_{14}}{P_{13}} \right)^{\frac{\Delta_{34}}{2}} g_{\Delta, l}(u, v) , \quad (4)$$

$P_{ij} = -2P_i \cdot P_j$ and u, v are conformal invariant cross ratios

$$u = \frac{P_{12}P_{34}}{P_{13}P_{24}} , \quad v = \frac{P_{14}P_{23}}{P_{13}P_{24}} . \quad (5)$$

The conformal blocks are eigenfunctions of the conformal Casimir,

$$\frac{1}{2} (J_{1,AB} + J_{2,AB}) (J_1^{AB} + J_2^{AB}) G_{\Delta, l}^{(12)(34)}(P_1, \dots, P_4) = \mathcal{C}_{\Delta, l} G_{\Delta, l}^{(12)(34)}(P_1, \dots, P_4) , \quad (6)$$

with eigenvalue $\mathcal{C}_{\Delta, l} = \Delta(\Delta - d) + l(l + d - 2)$, where

$$J_{AB} = i \left(P_A \frac{\partial}{\partial P^B} - P_B \frac{\partial}{\partial P^A} \right) \quad (7)$$

are the Lorentz generators in \mathbb{M}^{d+2} with indices $A, B = 0, 1, \dots, d+1$.

a. * Show (using Mathematica) that (6) together with (4) is equivalent to

$$\mathcal{D} g_{\Delta,l}(u, v) = \frac{1}{2} \mathcal{C}_{\Delta,l} g_{\Delta,l}(u, v) \quad (8)$$

where

$$\mathcal{D} = (1 - u - v) \frac{\partial}{\partial v} \left(v \frac{\partial}{\partial v} + a + b \right) + u \frac{\partial}{\partial u} \left(2u \frac{\partial}{\partial u} - d \right) \quad (9)$$

$$- (1 + u - v) \left(u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v} + a \right) \left(u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v} + b \right) \quad (10)$$

and $a = (\Delta_2 - \Delta_1)/2$ and $b = (\Delta_3 - \Delta_4)/2$.

b. It is convenient to parametrize the cross ratios by

$$u = z\bar{z} , \quad v = (1 - z)(1 - \bar{z}) , \quad (11)$$

where z and \bar{z} are independent variables. Show that for the choice $x_4 \rightarrow \infty$ and $x_{13}^2 = 1$ in Euclidean space, we have $z = |z|e^{i\theta}$ and $\bar{z} = |z|e^{-i\theta}$ with $|z|^2 = x_{12}^2$ and θ the angle between the vectors x_{12} and x_{13} .

c. Transform to the coordinates z and \bar{z} defined in (11) and obtain

$$\mathcal{D} = \mathcal{D}_z + \mathcal{D}_{\bar{z}} + (d - 2) \frac{z\bar{z}}{z - \bar{z}} \left((1 - z) \frac{\partial}{\partial z} - (1 - \bar{z}) \frac{\partial}{\partial \bar{z}} \right) \quad (12)$$

with

$$\mathcal{D}_z = z^2(1 - z) \frac{\partial^2}{\partial z^2} - (a + b + 1)z^2 \frac{\partial}{\partial z} - abz . \quad (13)$$

d. The small $|z|$ behaviour of the conformal block can be obtained from the leading order OPE. This was derived in class:

$$g_{\Delta,l} \approx \frac{l!}{2^l(h-1)_l} |z|^\Delta C_l^{h-1}(\cos \theta) \quad (14)$$

where $C_l^{h-1}(\cos \theta)$ is the Gegenbauer polynomial. Notice that this limit is particularly simple in two and four dimensions

$$g_{\Delta,l} \approx \frac{1}{2^l} |z|^\Delta \frac{e^{il\theta} + e^{-il\theta}}{1 + \delta_{l,0}} , \quad d = 2 , \quad (15)$$

$$g_{\Delta,l} \approx \frac{1}{2^l} |z|^\Delta \frac{e^{i(l+1)\theta} - e^{-i(l+1)\theta}}{e^{i\theta} - e^{-i\theta}} , \quad d = 4 . \quad (16)$$

In two dimensions, the partial differential equation separates in two ordinary differential equations. Show that

$$g_{\Delta,l} = \frac{k_{\Delta+l}(z)k_{\Delta-l}(\bar{z}) + k_{\Delta+l}(\bar{z})k_{\Delta-l}(z)}{2^l(1 + \delta_{l,0})} \quad (17)$$

satisfies the boundary condition (15) if $k_\beta(z) \approx z^{\beta/2}$ for small z , and the Casimir differential equation if

$$\mathcal{D}_z k_\beta(z) = \frac{\beta}{2} \left(\frac{\beta}{2} - 1 \right) k_\beta(z) . \quad (18)$$

Conclude that

$$k_\beta(z) = z^{\beta/2} {}_2F_1 \left(\frac{\beta}{2} + a, \frac{\beta}{2} + b, \beta, z \right) . \quad (19)$$

e. Check that

$$g_{\Delta,l} = \frac{z\bar{z}}{2^l(z - \bar{z})} (k_{\Delta+l}(z)k_{\Delta-l-2}(\bar{z}) - k_{\Delta+l}(\bar{z})k_{\Delta-l-2}(z)) \quad (20)$$

satisfies both the differential equation and the boundary condition in $d = 4$.