
CFT exercises week 7

Exercise 1 Correlation functions from embedding formalism
Using the embedding space formalism, compute the two-point function of

a spin 2 primary:
〈OAB(P1)OCD(P2)〉 . (1)

Then project the result to the d-dimensional physical space.
Hint: the building blocks are ηAB, P1, P2. It is useful to begin by con-

structing a transverse matrix WAB.

Exercise 2 Conformal Blocks from Casimir differential equation
In the embedding formalism, each primary operator is promoted to an

homogeneous field on the future light-cone of the origin of Md+2,

O(λP ) = λ−∆O(P ) , P 2 = 0, λ > 0 . (2)

In this formalism, conformal transformations are just SO(d + 1, 1) Lorentz
transformations of Minkowski space Md+2. The conformal block decomposi-
tion can then be written as

〈O1(P1)O2(P2)O3(P3)O4(P4)〉 =
∑
k

C12kCk34G
(12)(34)
∆k,lk

(P1, . . . , P4) (3)

where

G
(12)(34)
∆,l (P1, . . . , P4) =

1

P
(∆1+∆2)/2
12 P

(∆3+∆4)/2
34

(
P24

P14

)∆12
2
(
P14

P13

)∆34
2

g∆,l(u, v) ,

(4)

Pij = −2Pi · Pj and u, v are conformal invariant cross ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (5)

The conformal blocks are eigenfunctions of the conformal Casimir,

1

2
(J1,AB+J2,AB)(JAB1 +JAB2 )G

(12)(34)
∆,l (P1, . . . , P4) = C∆,lG

(12)(34)
∆,l (P1, . . . , P4) ,

(6)
with eigenvalue C∆,l = ∆(∆− d) + l(l + d− 2), where

JAB = i

(
PA

∂

∂PB
− PB

∂

∂PA

)
(7)
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are the Lorentz generators in Md+2 with indices A,B = 0, 1, . . . , d+ 1.
a.* Show (using Mathematica) that (6) together with (4) is equivalent to

D g∆,l(u, v) =
1

2
C∆,l g∆,l(u, v) (8)

where

D =(1− u− v)
∂

∂v

(
v
∂

∂v
+ a+ b

)
+ u

∂

∂u

(
2u

∂

∂u
− d
)

(9)

− (1 + u− v)

(
u
∂

∂u
+ v

∂

∂v
+ a

)(
u
∂

∂u
+ v

∂

∂v
+ b

)
(10)

and a = (∆2 −∆1)/2 and b = (∆3 −∆4)/2.
b. It is convenient to parametrize the cross ratios by

u = zz̄ , v = (1− z)(1− z̄) , (11)

where z and z̄ are independent variables. Show that for the choice x4 → ∞
and x2

13 = 1 in Euclidean space, we have z = |z|eiθ and z̄ = |z|e−iθ with
|z|2 = x2

12 and θ the angle between the vectors x12 and x13.
c. Transform to the coordinates z and z̄ defined in (11) and obtain

D = Dz +Dz̄ + (d− 2)
zz̄

z − z̄

(
(1− z) ∂

∂z
− (1− z̄) ∂

∂z̄

)
(12)

with

Dz = z2(1− z) ∂
2

∂z2
− (a+ b+ 1)z2 ∂

∂z
− abz . (13)

d. The small |z| behaviour of the conformal block can be obtained from
the leading order OPE. This was derived in class:

g∆,l ≈=
l!

2l(h− 1)l
|z|∆Ch−1

l (cos θ) (14)

where Ch−1
l (cos θ) is the Gegenbauer polynomial. Notice that this limit is

particularly simple in two and four dimensions

g∆,l ≈
1

2l
|z|∆ e

ilθ + e−ilθ

1 + δl,0
, d = 2 , (15)

g∆,l ≈
1

2l
|z|∆ e

i(l+1)θ − e−i(l+1)θ

eiθ − e−iθ
, d = 4 . (16)
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In two dimensions, the partial differential equation separates in two or-
dinary differential equations. Show that

g∆,l =
k∆+l(z)k∆−l(z̄) + k∆+l(z̄)k∆−l(z)

2l(1 + δl,0)
(17)

satisfies the boundary condition (15) if kβ(z) ≈ zβ/2 for small z, and the
Casimir differential equation if

Dzkβ(z) =
β

2

(
β

2
− 1

)
kβ(z) . (18)

Conclude that

kβ(z) = zβ/2 2F1

(
β

2
+ a,

β

2
+ b, β, z

)
. (19)

e. Check that

g∆,l =
zz̄

2l(z − z̄)
(
k∆+l(z)k∆−l−2(z̄)− k∆+l(z̄)k∆−l−2(z)

)
(20)

satisfies both the differential equation and the boundary condition in d = 4.
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