
CFT exercises week 6

Exercise 1 Operator Product Expansion - scalar case
The general form of the OPE of two scalar operators is

O1(x)O2(0) =
∑
k

C12k

|x|∆1+∆2−∆+l

[
F (12k)
a1...al

(x, ∂y)Oa1...al
k (y)

]
y=0

(1)

where the sum runs over all primary operators Ok with spin l and dimension
∆.

a. Show that scale invariance implies that

F (12k)
a1...al

(
λx, λ−1∂y

)
= λlF (12k)

a1...al
(x, ∂y) (2)

b. Compute the three-point function of scalar primary operators,

〈O1(x)O2(0)O3(w)〉 =
C123

|x|∆1+∆2−∆3 |w|∆3+∆2−∆1 |x− w|∆1+∆3−∆2
, (3)

using the OPE above, and derive[
F (123) (x, ∂y)

(
1 +

y2 − 2y · w
w2

)−∆3
]
y=0

=

(
1 +

x2 − 2x · w
w2

)∆2−∆1−∆3
2

.

(4)
c.* Write a Mathematica program that uses the last equation to compute

the coefficients an,m for n+ 2m ≤ 10 in the derivative expansion

F (123) (x, ∂y) =
∞∑

n,m=0

an,m(x · ∂y)n(x2∂2
y)m (5)

Suggestion: choose w2 = 1 in equation (4).
d.* Make a table of your results and try to guess an analytic formula for

an,m. The function

Pochhammer[t,k] = (t)k =
Γ(t+ k)

Γ(t)
= t(t+ 1) . . . (t+ k − 1) (6)

will be very useful.
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Exercise 2 Radial quantization of a free scalar field.

1 Consider the action for a free massless scalar field in Euclidean signa-
ture:

SE =

∫
ddx

1

2
(∂µφ)2, gµν = δµν . (7)

We want to quantize the theory on a surface of constant radius r =
(xµxµ)1/2. Different “constant time” surfaces are related by the scale
transformation r → eλr. If we define σ = log r, time evolution is
realized by the shift: σ → σ + λ. σ will be our time variable.

Change coordinates in the action to (σ, θi), where θi collectively denotes
the d−1 angular variables in spherical coordinates - for instance, when
d = 3, θi = (θ, φ). Show that the action becomes

SE =

∫
dσ

∫
dΩ

1

2

(
(∂σχ)2 + ∂iχ∂

iχ+

(
d− 2

2

)2

χ2

)
, χ = e

d−2
2
σφ,

(8)
where dΩ is the area element on a sphere of radius 1 (for instance,
when d = 3, dΩ = sin θdθdφ). Disregard, as usual, total derivatives.

2 The usual Legendre transform almost gives the following Hamiltonian:

H =

∫
dΩ

1

2

(
−(∂σχ)2 + ∂iχ∂

iχ+

(
d− 2

2

)2

χ2

)
. (9)

Actually, the procedure yields −H, which has a negative spectrum. One
way to understand the minus sign is to think about the Wick rotation
from Lorentzian signature (we can discuss this in class). Find a com-
plete set of solutions of the equation of motion. For simplicity, work in
d = 3. Recall that the spherical harmonics Ylm(θ, φ) form a complete
set of solutions of the Laplace equation on a sphere. They have the
following properties:

�S2Ylm =

(
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2
φ

)
Ylm = −l(l + 1)Ylm, (10)

∞∑
l=0

l∑
m=−l

Y ∗lm(θ, φ)Ylm(θ′, φ′) =
δ(θ − θ′)δ(φ− φ′)

sin θ
, (11)∫

dΩYlm(θ, φ)Y ∗l′m′(θ, φ) = δll′δmm′ , (12)

Y ∗lm = (−1)mYl,−m. (13)
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In particular, start with the following ansatz:

χ(σ, θ, φ) =
∑
lm

blm(σ)Ylm(θ, φ). (14)

Show that it is possible to expand the solution in terms of two sets of
constant modes, a+

lm and a−lm, such that

H =
∑
lm

1

2
ω(a−lma

+
lm + a+

lma
−
lm), ω = l +

1

2
. (15)

In defining the modes, you should keep in mind that χ is not a real
field. Instead, you should impose the following hermiticity property:

χ†(τ) = χ(−τ). (16)

3 The quantization of the theory follows from imposing the canonical
commutation relations:

[χ(σ, θ, φ), ∂σχ(σ, θ′, φ′)] =
δ(θ − θ′)δ(φ− φ′)

sin θ
. (17)

The denominator on the right hand side is present in order to compen-
sate the factor sin θ in the differential dΩ. The plus sign, as opposed
to the usual factor i, is related to the Wick rotation: defining a real
time variable t = −iσ one recovers the missing imaginary unit. Plug
the mode expansion in the commutation relations and deduce that the
energy spectrum is labeled by n-tuples of positive integers (l1, . . . , ln),
n = 0, 1, 2, . . . :

El1,...ln =

(
l1 +

1

2

)
+ · · ·+

(
ln +

1

2

)
. (18)

4 Compare the spectrum with the scaling dimension of the local operators
in the theory. Do they match? The state operator correspondence is
the statement that the answer to this question is affirmative.

5 In the usual quantization on constant time slices, the Hamiltonian can
be recovered as the integral of T00 on a fixed time-slice. Consider now
the current jµ = −Tµνxν , where Tµν is the traceless stress-tensor. The
expression for the latter in arbitrary dimension is as follows:

Tµν = ∂µφ∂νφ−
1

2
gµν (∂φ)2 − ξ (∂µ∂ν − gµν�)φ2, ξ =

d− 2

4(d− 1)
.

(19)
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Compare the Hamiltonian (9) with the flux of the current on a sphere:∫
dΩ rd−1 x

µ

r
jµ. (20)

If you want, you can keep the parameter ξ generic until the end, and
check that this operator and the Hamiltonian have different spectra,
unless the stress-tensor is chosen to be traceless.

Exercise 3 The two point function of a scalar primary operator can be writ-
ten as an inner product

〈O(−τ1, x1)O(τ2, x2)〉 = 〈O(τ1, x1)|O(τ2, x2)〉 , (21)

where
|O(τ, x)〉 = O(τ, x)|0〉 , τ < 0 . (22)

In the quantization with constant x1 = τ surfaces, it is natural to decom-
pose the state |O(τ, x)〉 into an eigenbasis of momenta P̂µ. Notice that the
conjugation rule implies that P 1 is hermitian and P̂ j for j = 2, . . . , d is
anti-hermitian. In fact, P̂ 1 = H is the hamiltonian and P̂ jL = −iP̂ j is the
hermitian operator representing spatial momentum in the Lorentzian theory.
We can then write

|O(τ, x)〉 =
∑
α

∫
Edk
(2π)d

ψα(τ, x;E, k)|E, k, α〉 , (23)

where |E, k, α〉 is an eigenstate of momentum

Ĥ|E, k, α〉 = E|E, k, α〉 , P̂ j |E, k, α〉 = ikj |E, k, α〉 , (24)

and the label α distinguishes states with the same momentum eigenvalue.
Use

[
P̂µ, Ô(τ, x)

]
= ∂µÔ(τ, x) to show that

ψα(τ, x;E, k) = eτE+ik·xqα(E, k) . (25)

Using the normalization 1 〈E, k, α|E′, k′, α′〉 = (2π)dδαα′δ
d−1(k−k′)δ(E−

E′), show that the two point function becomes

〈O(−τ1, x1)O(τ2, x2)〉 =
1

(τ2 + x2)∆
=

∫
dEdk
(2π)d

e−Eτ+ik·xρ(E, k) , τ > 0 ,

(26)
1If the normalization includes a positive factor depending on E and k, that will not

change the positivity properties of the spectral density.
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where τ = −(τ1 + τ2), x = x2 − x1 and the spectral density is ρ(E, k) =∑
α |qα(E, k)|2. Show that

ρ(E, k) =
2π

d
2

+1

Γ(∆)Γ
(
∆− d

2 + 1
)Θ (E − |k|)

(
E2 − k2

4

)∆− d
2

. (27)

Conclude that there is no particle interpretation of this spectral density for
generic ∆. Conclude also that reflection positivity (or unitarity) implies that
∆ ≥ d

2−1. Give a particle interpretation to the spectral density for ∆ = d
2−1

and ∆ = d− 2.
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