

CFT exercises, week 1

Exercise 1 Consider the propagator of a massive scalar field in Euclidean space,

$$G(x) = \int \frac{d^d k}{(2\pi)^d} \frac{e^{ik \cdot x}}{k^2 + m^2}. \quad (1)$$

Determine its large-distance behaviour (for $x \gg 1/m$). Hint: Use the identity

$$\frac{1}{A} = \int_0^\infty dt e^{-tA}, \quad (2)$$

to do the Fourier transform to position space and evaluate the t integral using the saddle point approximation.

Estimate the behaviour of the propagator in the opposite limit $x \ll 1/m$. How does it compare with the propagator of a massless field?

A possible definition of correlation length is

$$\xi^2 = \frac{\int d^d x x^2 G(x)}{\int d^d x G(x)} \quad (3)$$

Show that this gives

$$\xi^2 = -\frac{1}{\hat{G}(0)} \left. \frac{\partial}{\partial k_\mu} \frac{\partial}{\partial k^\mu} \hat{G}(k) \right|_{k=0} = \frac{2d}{m^2} \quad (4)$$

where $\hat{G}(k)$ is the propagator in momentum space and in the last step we used the form of the propagator of a free massive scalar field.

Exercise 2 Show that the scaling form

$$f_s(t, h) = \left| \frac{t}{t_0} \right|^{\frac{d}{y_t}} \Phi_\pm \left(\frac{h}{h_0} \left| \frac{t}{t_0} \right|^{-\frac{y_h}{y_t}} \right) \quad (5)$$

of the singular part of the free energy, predicts the following expressions for the critical exponents introduced in section 1.1.1 of the notes,

$$\alpha = 2 - \frac{d}{y_t}, \quad \beta = \frac{d - y_h}{y_t}, \quad \gamma = \frac{2y_h - d}{y_t}, \quad \delta = \frac{y_h}{d - y_h}. \quad (6)$$

Check that these imply the following scaling relations,

$$\alpha + 2\beta + \gamma = 2, \quad \alpha + \beta + \delta = 2. \quad (7)$$

In general, the scaling relations can be more complicated if there are more relevant operators.

Exercise 3 Argue that the correlation length ξ satisfies

$$\xi(u_t, u_h, u_I, \dots) = b \xi(b^{y_t} u_t, b^{y_h} u_h, b^{y_I} u_I, \dots). \quad (8)$$

Use this to derive the following critical behaviour of ξ at zero magnetic field,

$$\xi \sim |t|^{-\frac{1}{y_t}} \quad \Rightarrow \quad \nu = \frac{1}{y_t}. \quad (9)$$

Compare this behaviour with the one of the correlation length of the 1D Ising model, found in problem 1.2.1 of the notes, that is

$$\xi = \frac{\text{const}}{\log \tanh 1/t}. \quad (10)$$

Exercise 4 Mean Field Approximation

Prove Feynman's inequality

$$\text{Tr } e^{-H} \geq \text{Tr } e^{-H' - \langle H - H' \rangle_{H'}}, \quad (11)$$

where $[H, H'] = 0$ and

$$\langle \mathcal{O} \rangle_{H'} = \frac{\text{Tr } \mathcal{O} e^{-H'}}{\text{Tr } e^{-H'}}. \quad (12)$$

Choosing the hamiltonian H' to maximize the right hand side of (11) is a systematic way to implement a mean-field approximation. Use the hamiltonian

$$H' = -h' \sum_x s(x) \quad (13)$$

to study the Ising model hamiltonian on a hyper-cubic lattice,

$$H = -J \sum_{\langle x,y \rangle} s(x)s(y) - h \sum_x s(x) \quad (14)$$

in the mean-field approximation. Show that the free energy per spin in this approximation

$$f_{MF} = -\frac{1}{N} \log \max_{h'} \text{Tr } e^{-H' - \langle H - H' \rangle_{H'}}, \quad (15)$$

can be written as

$$f_{MF} = \min_M \left[-\log 2 - hM + \frac{1 - Jz}{2} M^2 + \frac{1}{12} M^4 + \mathcal{O}(M^6) \right], \quad (16)$$

where z denotes the number of nearest neighbours of each spin. What is the critical temperature? Plot the phase diagram and compute the thermodynamical critical exponents for the Ising model in d dimensions using this approximate free energy.

To determine the spin two-point correlation function we need to allow for space dependent magnetic fields $h(x)$ and $h'(x)$. By moving to Fourier space, determine the spin two-point function at zero magnetic field and read off the ν and η critical exponents in the mean-field approximation.