CFT exercises, week 1

Exercise 1 Consider the propagator of a massive scalar field in Euclidean
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Determine its large-distance behaviour (for x > 1/m). Hint: Use the identity
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to do the Fourier transform to position space and evaluate the t integral using
the saddle point approximation.

Estimate the behaviour of the propagator in the opposite limit x < 1/m.
How does it compare with the propagator of a massless field?

A possible definition of correlation length is

space,
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where G(k) 18 the propagator in momentum space and in the last step we
used the form of the propagator of a free massive scalar field.

Exercise 2 Show that the scaling form
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of the singular part of the free energy, predicts the following expressions for
the critical exponents introduced in section 1.1.1 of the notes,
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Check that these imply the following scaling relations,
a+28+v=2, a+ 4+ 50 =2. (7)

In general, the scaling relations can be more complicated if there are more
relevant operators.



Exercise 3 Argue that the correlation length £ satisfies
E(ug, up,ur,...) =b& (¥ uy, b up, b uy, ... ) . (8)
Use this to derive the following critical behaviour of & at zero magnetic field,
1
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Compare this behaviour with the one of the correlation length of the 1D Ising
model, found in problem 1.2.1 of the notes, that is
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Exercise 4 Mean Field Approximation
Prove Feynman’s inequality
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where [H,H'] =0 and .
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Choosing the hamiltonian H' to mazimize the right hand side of (11) is a
systematic way to implement a mean-field approximation. Use the hamilto-
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to study the Ising model hamiltonian on a hyper-cubic lattice,
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i the mean-field approrimation. Show that the free energy per spin in this
approximation
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can be written as
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where z denotes the number of nearest neighbours of each spin. What is
the critical temperature? Plot the phase diagram and compute the thermo-
dynamical critical exponents for the Ising model in d dimensions using this
approximate free energy.

To determine the spin two-point correlation function we need to allow for
space dependent magnetic fields h(z) and h'(z). By moving to Fourier space,
determine the spin two-point function at zero magnetic field and read off the
v and n critical exponents in the mean-field approximation.



