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Modern PV-Technologies

3.1: Solar cell materials

F.-J. Haug

Ecole Polytechnique Fédérale de Lausanne

PV-Lab 
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Materials

• Absorbers (semiconductor)

– c-Si (best compromise btw. cost and efficiency)

– CIGS, CdTe (high efficiency, potential bottleneck rare materials)

– Organic, dye, perovskite (under research)

– GaAs + III-V (highest efficiency, highest cost)

– Thin film silicon (moderate efficiency, large area)

• Contacts (metals, TCOs)

– Ag (reflectivity, conductivity)

– Al (normally high reflectivity, but…)

– In2O3:SnO2 (ITO, rare element In)

– ZnO (unstable with acids/bases)

– SnO2:F (FTO, poor transparency)
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Absorption in a medium 

Wave vector in medium defined with refractive index 𝑛 + 𝑖𝜅

Field amplitude and intensity:

Absorption coefficient: exponential decay of intensity

Issue: how to find 𝑛 or 𝜀

𝑘 =
2𝜋

𝜆𝑒𝑓𝑓
=
2𝜋

𝜆0
𝑛 + 𝑖𝜅 =

2𝜋

𝜆0
𝜖

𝐸 𝑥, 𝑡 = 𝐸0 exp 𝑖 𝑛 + 𝑖𝜅 𝑘0𝑥 − 𝜔𝑡

𝐸 𝑥, 𝑡 2 = 𝐸0 exp 𝑖 𝑛 + 𝑖𝜅 𝑘0𝑥 − 𝜔𝑡
2

= 𝐸0
2 exp − 2𝜅 ⋅ 2𝜋/𝜆 𝑥

𝛼

𝛼 = 4𝜋𝜅/ 𝜆

𝑥
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Dispersion (frequency dependence)

A (very) simple model for atoms in a solid: oscillator with damping  

e.g. movement of electrons against cores 

+

-

harmonic

driving force

Average amplitude of driven oscillator

inertia damping restoring

force

Dipole moment and macroscopic polarization (Clausius-Mosotti):

Find permittivity (dielectric function):

𝑚 ሷ𝑥 + 2𝛽 ሶ𝑥 + 𝜔0
2𝑥 = 𝑒𝐸0𝑒

−𝑖𝜔𝑡

𝑥0 =
𝑒𝐸0
𝑚

−𝜔2 − 2𝑖𝛽𝜔 + 𝜔0
2

𝑃 =
𝑁

𝑉
𝑝 =

𝑁

𝑉
𝑒𝑥0 = 𝜖0 𝜖 − 𝜖∞ 𝐸

𝜖 𝜔 = 𝑛 + 𝑖𝜅 2 = 𝜖∞ +
𝑒2𝑁

𝜖0𝑚𝑉

1

𝜔0
2 − 2𝑖𝛽𝜔 − 𝜔2

𝜒 (susceptibility)

empiric modification

(theoretically 𝜖∞ = 1)
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Comparison to measured dispersion (c-Si)
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Oscillator model

 e'

 e''

The primitive model with one oscillator yields dispersion effects

Two oscillators (or more) can yield better correspondence (𝜒 is additive!)

Data: c.f. Green, SEM (2008)
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Absorption coefficient (measured)
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linear plot log. plot

Oscillator model:

- OK for c-Si on linear scale

- BUT no gap behaviour (c.f. logarithmic scale!)

- fails totally for CIS 
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Absorption coefficient of semiconductors

Needs quantum mechanics

𝑃𝑎𝑏𝑠 =
1

2
𝜔𝜖0𝜖

′′𝐸0𝐸𝑜
∗ = ℏ𝜔෍

𝑘,𝑘′
𝑤𝑣𝑐

Heuristic link between 𝜖′′ and absorption:

Absorbed power

from Poynting

theorem

Absorbed power by summing 

all allowed quantum-mechanical 

transitions

More precise derivation with density operator: Adler, Phys. Rev. (1962)

solve for 𝜖′′, determine 𝜖′ via Kramers-Krönig relation

𝜖′ 𝜔 = 1 +
2

𝜋
⋅ 𝒫න

0

∞𝜔′ ⋅ 𝜖′′ 𝜔′

𝜔′2 − 𝜔2
𝑑𝜔′
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Direct absorption  (e.g. GaAs)

-2

0

2

4

KW L

 

 

E
n
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y
 (

e
V

)

 X

Band diagram (pseudopotential method)

Interaction Hamiltonian:

electron-radiation 

𝐻′ = 𝐻𝑒𝑟 = −
𝑒

𝑚
Ԧ𝐴 Ԧ𝑝

(neglect Ԧ𝐴
2

term)

Transition probability: 

Fermi’s Golden rule
𝑤𝑣𝑐 = 𝑐𝑘′ −

𝑒
𝑚

Ԧ𝐴 Ԧ𝑝 𝑣𝑘
2

⋅
2𝜋

ℏ
𝛿 𝐸𝑐 𝑘 − 𝐸𝑣 𝑘′ + ℏ𝜔

details of derivation: see e.g. Hamaguchi, Basic Semiconductor Physics
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Absorption coefficient

𝜖′′ = 2 ⋅ 𝑛𝜅

𝛼 = 4𝜋 ⋅ 𝜅/𝜆~
1

𝜔
ℏ𝜔 − 𝐸𝑔

GaAs

Direct gaps: generally high absorption ~106 cm-1 close to gap

Thus, 𝛼 proportional to square root!
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Energy (eV)

=0.34 eV (split off-band)

𝜖′′ =

0

𝑒2𝑝𝑣𝑐
2

2𝜋𝜖0𝑚
∗2𝜔2

8𝑚∗3

ℏ6
ℏ𝜔 − 𝐸𝑔

for ቐ

ℏ𝜔 < 𝐸𝑔

ℏ𝜔 > 𝐸𝑔

+ term of split-off band  for  ℏ𝜔 > 𝐸𝑔 + Δ𝐸𝑠𝑜
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Indirect absorption (e.g. Silicon)

-2

0
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4

KW L

 

 

E
n
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y 
(e

V
)

 X

1

2

Band diagram

𝐻′ = 𝐻𝑒𝑟 + 𝐻𝑒𝑙

Interaction Hamiltonian:

electron-radiation + electron-lattice 

Fermi’s Golden rule 

(second order 𝑖 → 𝑓)

𝐻𝑒𝑙 = 𝐷𝑉 ⋅ 𝛻𝑢 =

= 𝐷𝑉
ℏ

2𝑀𝜔𝑞
⋅ 𝑖 Ԧ𝑒𝑞 Ԧ𝑞 𝑎 ⋅ 𝑒𝑖𝑞 Ԧ𝑟 − 𝑎† ⋅ 𝑒−𝑖𝑞 Ԧ𝑟

𝐻𝑒𝑟 = −
𝑒

𝑚
Ԧ𝐴 Ԧ𝑝

𝑤𝑖𝑓 = ෍

𝑚

𝑓 𝐻𝑒𝑟 + 𝐻𝑒𝑙 𝑚 𝑚 𝐻𝑒𝑟 + 𝐻𝑒𝑙 𝑖

𝐸𝑚 − 𝐸𝑖

2

⋅
2𝜋

ℏ
𝛿 𝐸𝑓 − 𝐸𝑖

𝜖′′~
4𝜋𝑒2

𝜖0𝜔
2𝑚2

⋅
2

2𝜋 4

64𝑚𝑒
∗3𝑚ℎ

∗3

ℏ12
𝜋

8
ℏ𝜔 ± ℏ𝜔𝑞 − 𝐸𝑔

2 ℏ

2𝑚𝜔𝑞
𝑛 ±

1

2
+
1

2
Integrated: 

Deformation 

potential
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Absorption coefficient c-Si

𝛼 ℎ𝜈 ~
1

𝜔

1

𝑒
ℏ𝜔𝑞

𝑘𝑇 − 1

ℏ𝜔 + ℏ𝜔𝑞 − 𝐸𝑔,𝑥
2
+

1

𝑒
ℏ𝜔𝑞

𝑘𝑇 − 1

+ 1 ℏ𝜔 − ℏ𝜔𝑞 − 𝐸𝑔,𝑥
2

(lattice provides phonon, cooling) (lattice absorbs phonon, heating)

MacFarlane, PR 1955

Braunstein, PR 1959

Phonon population

ℏ𝜔𝑞 ≈ 60 meV (LO)

Excellent correspondence to measured data
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Temperature dependence of 𝐸𝑔 (c-Si)
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Collect positions of phonon signatures Empiric model:

𝐸𝑔 = 1.1557 −
7.021 × 10−4 ⋅ 𝑇2

𝑇 + 1108
+ 𝐸𝑒𝑥

Varshni, physica (1967)
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Absorption coefficient (summary)
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Direct: strong absorption close to gap 𝛼~ ℎ𝜈 − 𝐸𝑔

1

2

Indirect gap: weak onset 𝛼~ ℎ𝜈 − 𝐸𝑔
2
, requires thick absorbers!

a-Si: essentially indirect 

logarithmic scale (usually shown) linear scale (clearer proportionality)
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Other dispersion effects in c-Si

Contributions to polarizability

a) free electron plasma 

(depending on doping, can be up to vis) 

b) lattice vibrations (IR) 

c) displacement of valence electrons 

(vis and UV)

d) X-ray interactions with core electrons 

e) Compton scattering 

f) pair production

Chandler, JAP, (2005)

Green, Sol. En. Mat. (2008)

Palik, Handbook of Opt. Const.

Hubell, NIST (1969).
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400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

1
-R

, 
T

, 
A

S
i

Wavelength (nm)

Absorption in a silicon slab

- primary reflection (high refractive index) => needs AR functionality

- avoid transmission loss by rear reflector

secondary 

reflection

trans-

mission
potential

photo-generation

Eg

𝐴 = 1 − 𝑅 ෍ 1− 𝑒−𝛼𝑑 + 𝑒−𝛼𝑑𝑅 1 − 𝑒−𝛼𝑑 + 𝑒−2𝛼𝑑𝑅2 1 − 𝑒−𝛼𝑑 +⋯

= 1 − 𝑅
1−𝑒−𝛼𝑑

1−𝑅𝑒−𝛼𝑑

200 µm
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Optical improvement

secondary 

reflection

potential

photo-generation

Add AR coating (70 nm, n ≈ 2 at front)

Add reflector, eg. silver (at rear)

still significant loss due to low absorption 

=> needs absorption enhancement

Eg

200 µm
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Enhancing absorption via prolonged light path

D. Redfield, Appl. Phys. Lett. (1974)

Total internal reflection

θcrit ≈ 17° (n ≈ 4)

modern high eff. cells: inverted pyramids

Apply geometric ray optics 

for optimization

from Goetzberger, Sonnenenergie (1997)

20 μm



M
o

d
e

rn
 P

V
  

–
C

ry
s
ta

lli
n

e
 S

ili
c
o

n
 I

F
.-

J
. 
H

a
u

g
 

20

Isotropic scattering (Lambertian)

Concept: 

- surface scatters equally in all directions 

(e.g. white paper, projection screen, etc.)

- angular dependence because of projection

described by: 𝐴𝑅𝑆𝐿𝑎𝑚𝑏𝑒𝑟𝑡 =
1

𝜋
cos 𝜃

Lambert, Photometria (1760)
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Lambertian path prolongation

Prolongation of an oblique path

𝑑′ = 𝑑/ cos 𝜃

Average prolongation

𝑑𝑎𝑣 = ′𝑑׬ ⋅ 𝐴𝑅𝑆𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑑Ω

=2𝜋 ⋅ ׬
𝑑

cos 𝜃
⋅
cosθ
𝜋

⋅ sin 𝜃 𝑑𝜃 = 2 ⋅ 𝑑

length of oblique path

weighting factor, probability to find angle btw. 𝜃 and 𝜃 + 𝑑𝜃
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Absorption with (ideal) light scattering

Sum up absorption upon bouncing forth and back

𝑑

𝑅0

𝐴1𝑓 = 1 − 𝑅0 ⋅ 1 − 𝑒−2𝛼𝑑1𝑓

𝐼0 = 1

𝐴1𝑟 = 1 − 𝑅0 ⋅ 𝑒−2𝛼𝑑1𝑓 ⋅ (1 − 𝜂) ⋅ 1 − 𝑒−2𝛼𝑑1𝑟

𝐴2𝑟 = 1 − 𝑅0 ⋅ 𝑒−2𝛼𝑑1𝑓 ⋅ (1 − 𝜂) ⋅ 𝑒−2𝛼𝑑1𝑟 ⋅ 1 − 𝑏 ⋅ 1 − 𝑒−2𝛼𝑑2𝑓

Express rear reflection by rear absorption => 1 − 𝜂

Replace front reflection by total internal reflection 

except outcoupling cone => 1 − 1/𝑛2

Deckman, APL (1983)

Boccard, APL (2012)

if: 𝜂 = 0, 𝛼𝑙 ≪ 1≈ 4𝑛2𝛼𝑙 Yablonovitch, TED (1982)

𝐴
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Upper limit of light trapping (silicon)

400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

A
1
0
0
 

m

Wavelength (nm)

Single pass (100 µm): 𝐴 = 1 − 𝑒−𝛼𝑙

Lambertian enhancement:

Attention, Yablonovitch’s 4𝑛2 formula is often used wrongly: 𝐴 = 1 − 𝑒−𝛼⋅4𝑛
2𝑙

𝐴 =
1 − 𝑒 −4𝛼𝑙

1 − 𝑒 −4𝛼𝑙 + 1/𝑛2 ⋅ 𝑒 −4𝛼𝑙

Single pass 

Lambertian

wrong!
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Maximum photocurrent (silicon)

Saturation value: 46 mA/cm2

With ideal light scattering: 70 to 100 µm sufficient

Issue: most surfaces don’t scatter Lambertian

maybe for some, but not for all wavelengths Andreani, SolMat (2015)

𝑗𝑠𝑐 = 𝑞න
300

1200

Φ𝑠𝑢𝑛 ⋅ 𝐴 ⋅ 𝑑𝜆
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Maximum photocurrent vs. thickness

on jsc limit: Bozzola, EU-PVSEC (2011)

collection of data: Sai, RRL (2021)
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Real devices: 

- loss at front (e.g. 5 nm of Si or grid shading)

- non-ideal rear reflectivity
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Generation rate

Φ0 𝜆 : photon flux density entering 

at surface [cm−2nm−1s−1]
exp. decay into wafer with 𝛼 𝜆

Light absorbed at depth 𝑥: 

Φ 𝑥 −Φ 𝑥 + Δ𝑥 ≡ −𝑑Φ

Weak aStrong a Define spectral generation rate

𝐺 𝜆, 𝑥 = −
𝑑Φ

𝑑𝑥
= 𝛼Φ0 𝜆 𝑒−𝛼 𝜆 𝑥

blue: high 𝐺 at front, strong decay

red: weak 𝐺, uniform through Si 
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0 𝑥
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Generation rate

Short 𝜆: strong absorption

=> Large 𝐺(𝑥) at front

Long 𝜆: weak absorption

=> Almost uniform 𝐺(𝑥) in bulk

400 600 800 1000
200

180

160

140

120

100

80

60

40

20

0

Wavelength (nm)

D
is

ta
n

c
e

 (


m
)

1.0x1017

1.0x1018

1.0x1019

1.0x1020

1.0x1021

1.0x1022

Gen. rate

(cm3 s nm)-1 

0

2

4
F

 (
1

0
1

8
/m

2
n

m
s
)

1018 1021

G (1/cm3s)



M
o

d
e

rn
 P

V
  

–
C

ry
s
ta

lli
n

e
 S

ili
c
o

n
 I

F
.-

J
. 
H

a
u

g
 

28

Summary

• Enhanced optics (general)

– AR coating (interference or by index grading)

– reduce parasitic losses (contact layers with higher gaps)

• Enhanced absorption by scattering (needed for weakly absorbing cells, 

either indirect gap, or thin cells)

– textures (proven for Si-based cells)

– nanowires (so-so)

– plasmonic scattering (theoretically interesting, but parasitic absorption)


