Solutions Problem Sheet 12: Pure state bipartite
entanglement

Class problems

Resource Theories.

1. a) Argue that any resource theory defines a partial order p < ¢ on the set of all quantum states D based on
whether or not we can send p — ¢ under some free operation £ € F.

Answer 1.a) A partial order on a set is an arrangement such that, for certain pairs of elements, one precedes
the other. A resource theory is defined by its set of free operations. For any pair of states A and B it is either
possible to freely transform A to B or B to A or not possible to transform in either direction. Hence a resource
theory defines a partial order.

b) How can the notion of a resource measure M be defined using this partial ordering?

Answer 1.b) A resource measure is property of a quantum state (i.e. a map from quantum states to a real
number) which is non-increasing under free operations. Hence this partial ordering can be used as a necessary
condition in order to identify potential resource measures.

¢) Show that any two free states o1 and oy are equal under the partial ordering.

Answer 1.c) For free states o; (i = 1,2), we have 1 < ¢;. By transitivity, we have o1 <> o9 (i.e. we can create
one state to the other under some free operation). Using the property of the resource measure M (o) > M (E(o))
for any quantum state o and any free operations &£, we have M (01) = M(o32) for any two states o1 and o9 that
are equal under partial ordering i.e. if o1 <> 02 (see next question).

d) Show that any resource measure M must ascribe the same value to any two states that are equal under this
ordering. (Does the converse hold?)

Answer 1.d) This is what we used before. Indeed, if two states o1 and o3 are equal under partial ordering, we
have two free operations &1, &, such that oo = &1(071) and o1 = E2(03), thus M(o1) = M(E3(02)) < M(o2) =
M(&1(01) < M(oy) which implies M (01) = M (02). The converse is not always true !

2. Make up your own resource theory! (Optional)

Answer 2: Examples https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.120404, https:
//arxiv.org/abs/1804.10190 and (note the publication date) https://arxiv.org/abs/1903.12629.

3. Prove that it is possible for Bob to perform a local operation conditional on an outcome of Alice’s measurement
via LOCC. That is, show it is possible to perform pap — >,(M; ® Ui)pAB(MiT ® UJ) via LOCC.

Answer 3: Alice does some measurement {M;} and gets outcome i, she then tells Bob the value of ¢ and
conditional on this, Bob apply unitary U; on his half of the state. See lecture notes for more mathematical
detail.

4. Prove that product states are the states that can be prepared freely via LOCC.

Answer 4: For example, we can use previous exercise with input state pap = |04,05)(04,05 | and easily show
that we get product state. To be more general, instead of applying unitaries Bob may apply any quantum
operations on his half of the state i.e. same as previous exercise but Bob would perform operations of the form
1a® Eg) where 5,(;) are quantum operation applied on B. You may easily get an output state of the form

>pioly) @ ply).
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Magjorization.

1. Draw the partial order defined by majorization on the following vectors v; = (0,1/3,2/3), vo = (1/3,1/3,1/3),
vy = (1/4,1/5,1/3), vq4 = (1/5,3/5,1/5), vs = (2/5,1/2,1/10), and ve = (0, 1,0).

Answer 1: We can draw a diagram with vg < v; < vy =< vy and vg < v; < vs < vs (be careful, there is no
majorization relation between vy and v5). And vz does not sum to 1, so no relation with the rest.

2. Show that (1/N,1/N,...,1/N) <p < (1,0,...,0) for any probability distribution p.

Answer 2: Let us define S), = Zle z; and T}, = Zﬁik_ﬂ x; (with Sy + T, = 1 and 1 > 22 > ... > zy).
So, by construction we have Sy > kxy and T, < (N — k)zy for k = 1,2,..N — 1 which implies T}, < %Sk.
Finally, this leads to 1 = T} + Si < %Sk i.e. Sy > k/N i.e. any distribution majorizes the uniform distribution.
Showing that (1,0, ...,0) majorizes every distribution is trivial (Sy < 1).

3. A useful equivalent definition of majorization is that & < y iff @ is a convex combination of vectors obtained by
permuting coordinates of y.

Use this fact to show that the diagonal elements of a density operator are majorized by its eigenvalues. (Super
useful property!)

(Hint use the fact that any doubly stochastic matrix can be written as a convex combination of permutation
matrices).

Answer 3: Consider the state p = >, A\j|A;)(\;| and let us define the doubly stochastic matrix P with
coefficients Pj; = [(j|\;)|>. Thus, the diagonal of p is given by s = PA (where A is the vector containing
eigenvalues of p).Now, using the equivalent definition of majorization given above (and the hint), you can easily
show that s < A.

Bipartite Entanglement.

1. Argue that [¢)_)ap can be transformed into any state |¢) 45 via LOCC using Nielson’s Majorization Theorem.
Describe a protocol to do this in practise.

Answer 1: The reduce state of Bell states is the maximally mixed state and its spectrum correspond to the
uniform distribution. We have shown before that every distribution majorizes the uniform distribution, thus
Bell states can be transformed into any states by Nielson’s theorem. The protocol is described in the lecture
(just need to add local rotations).

2. Show that transforming between the states [¢) = 1/75]00) + /+5|11) + 1/ 75122) + 1/ 105|33) and |¢)

100
v/ 5100) 4+ 1/ 2[11) + 4/-3]22) + /15|33) is not possible deterministically via LOCC.

Answer 2: The (ordered) spectrum of the reduced states are respectively ¢ = ﬁ(407307 15,15) and ¥ =
1

155 (30, 30,30, 15), then you can easily show (as follows) that there is no majorization relation between them.

Again defining Si(x) = Zle x;, here we have Si(v) < Si(¢) for k = 1,2 but S5(¢p) > S3(¢p). Thus transfor-
mations between them are not possible deterministically via LOCC from Nielson’s Theorem.



	

