Solutions Problem Sheet 3

In this problem sheets, and all others, I highly recommend using Mathematica to deal with any messy algebra.

Class problems
1. Purifications

1. Compute purifications for the following states:

a) p1 = 1/2(10){0] + [1)(1])
b) p2 = 1/2(10){0] + [+)(+])
¢) p3 = 1/2(|¢1) (4| + |¢-) (o)

Answer 1: The purified states in system S are obtained using an ancilla subsystem A (single qubit here). The
purified states are respectively:

) [61) = L5(100s @ [0)4 + [1)s ©]1).4)
b) liz) = 5(0)s © [0 + | +)s © 1))

c) [3) = Z5(1U4)s ®[0)a +]d-)s ® 1))

where tracing out subsystem A leads to the desired mixed states.

2. Consider the single qubit state p = 3(I+0.1X +0.1Y 4 0.22)
a) Write p as a matrix in the computational basis.
b) Compute the eigen-decomposition of p.
¢) Is p mixed or pure? How do you know?
d) Compute a pure state decomposition of p involving three states.
e) Hence state i. a purification of p using a single qubit environment and ii. a purification using a qutrit
environment.

Answer 2: a) In the computational basis p = % <11—zz 1 81)'

- %\/g They are respectively associated to eigenvectors |i1) =

( (14 /D10 + G2 and p-) = 2 (1= /DI0) + G2 ).

¢) The eigenvalues of a pure state are 1 and 0 (in dimension d, 0 is degenerated d — 1 times). In this case, the
eigenvalues are not 0 and 1. Equivalently, we can argue by showing that the purity is Tr[p?] = 0.53 < 1.

b) The eigenvalues of p are Ay =

d+e) Here we first consider the purification of the state acting on S on space using a qubit environment

A. Such as [¢) = /AL |1h4)s @ [0)a + /A_[¢)—_)s ® |1) 4. Then, we can extend A to a qutrit environment with

basis {|0)4,|1)4,|2)4}. Applying any unitary U, acting on the subsystem A (i.e. 1g ® Ua) will result in the

same mixed state after partial trace over A. For example, we can use the unitary of the Fourier transform given
1 1

1
by Us=[1 w w?| where w =e
1

2

w 27i/3
w® w

. Thus, an example of the purification of p using 3 states is given by



i) = Z?:o % (N/)\JrW’Jr)S + wi\/)\,|1/)+>s> ®@|i) 4, where the |¢;) with i = 0,1,2 are these 3 pure states.

2.  Measurements

. Explain what is the difference between POVM measurements, projective measurements and a measurement of
an observable.

Answer 3: A POVM is a set of positive semi-definite operators {M;} that sum to identity i.e. >, M; = 1.
The POVM corresponds to a question you can ask of the quantum system and the individual operators the
different answers you can obtain. The probability of obtaining answer i for state p is given by Tr[M;p].

A projective measurement is a special type of POVM where the operators {II;} form an orthonormal set, i.e.
ILIL; = 6; 411;, and thus project onto certain basis.

In the case where we can associate the answer ¢ to a projective measurement with a numerical value \; we
can define an observable, i.e. a Hermitian matrix, corresponding to the measurement outcome O = >, \;II;.
This observable can then be used to directly compute properties of any state p corresponding to the quantity
associated with the observable, e.g. one can compute the kg, moments of the quantity via (OF) = Tr[O¥p].

. a) Write down a POVM measurement M that asks the question: "Is the system in the |®,) Bell state?"
b) Consider the 2-qubit separable state |1)) ® [¢)). What is the probability to find the system in [®)?

Answer 4:
(a) We have M = {M; = |¢p4) (¢4 |, M2 =1 ®@ 1 — |¢p4)(p+ |}, then the answer is "yes" if we measure M; and
the answer is "no" if we measure M. Notice that My = [¢_){(_ | + |p_)(od_ | + |1 ) (¥4 ].

(b) It is given by [(¢[(|v) ® [¥))[* = 5 (01¥)|* + [(L]¥)[* + 2Re[0|¥)*(v|1)?]).

. Consider a d dimensional system S and M = {agl, a11, asl, a3l}. Is this a valid measurement? If so, what does
the measurement do?

Answer 5: It is a valid measurement only if Vi we have real non-negative «; and Z?:o a; = 1. One
measures ¢ with probability «; for any state in S. (This can be viewed as a box with four different lights on
top. For any state you feed in the 4y, light turns on with probability «;).

. Suppose Bob hands you a quantum state and promises that it is either |¢1) = cos(8/2)|0) + sin(6/2)|1) or
[62) = cos(6/2)[0) — sin(0/2)]1).

a) Sketch these states on the Bloch sphere.

b) Design a measurement that perfectly distinguishes the states some of the time, is inconclusive at others, but
never makes a mistake.

¢) What is the probability in a single run of the experiment that you guess correctly?

d) Write down a projective measurement on a larger system that can be used to realise this POVM.

Answers 6:
(a) In term of the Bloch vector i.e. coordinates (z,y,z) on the Bloch sphere these states are given by
(sin(#), 0, cos(f)) and (—sin(h), 0, cos(f)) respectively for |¢1) and |¢s).

(b) These 2-states are not orthogonal, but we can design a measurement that contains the 2 projectors on their
respective orthogonal states that are their reflection w.r.t the Bloch sphere centre i.e. |¢i) = sin(6/2)]0) —
cos(0/2)|1) and |¢3) = sin(6/2)|0) + cos(/2)|1). Then, we can chose

M = { My = L0 0y(0] 4 LSO 1) (1], My = sy | 61) (01 | Mo = Tcbegayy| 93 ) (03 [} So
if the outcome is 0 we don’t know what is the state, but if the outcome is 1 then we know that the state is |¢2)
and inversely if the outcome is 2 then we know that the state is |¢1). Notice that this choice of the prefactors is



obtained by assuming that both projectors onto |¢71-) and |¢3 ) shared the same coefficient (same probabilities).
Then, we maximise this probability with the constraint that the three operators sums to identity and are positive
semi-definite (POVM properties).

(c) In a single run, the probability of guessing correctly is 1 — cos(f) which is the probability of not having the
outcome 0 (i.e. the probability of having either 1 or 2). Notice that this is the same in both cases (]¢1) and
|p2)) and we also see that if # = 0, then this probability is indeed 0 as |¢1) = |¢2).

(d) We can also design this POVM measurement using projectors on a 2-qubits system (using an ancilla qubit)
such as M = {]0)(0] @ |6 Yot |, 1) (1] & |62 (63 |, [0)(0] © | 1){1 |, [1)(1] @ | 62) (2]} (We can easily check
that these 4 operators projects onto 4 orthogonal vectors that forms a basis of the 2-qubit Hilbert space and so
they sum to identity i.e. 1 ® 1).

. Propose an ‘informationally complete’ measurement for a single qubit state. That is, a POVM measurement
M that allows you to perfectly reconstruct a single qubit quantum state. What about a 2-qubit state?

Answer 7: To perfectly reconstruct a single qubit state, we need to know its Bloch vector. So, we can perform
a convex mixture of projectors onto the eigen-basis of the 3 Paulis X, Y and Z :

M= {1001 1L 1L 310l + | 3lu-bo - 1]

Notice that Z and the identity share the same basis. For the 2-qubit state, we have all possible basis elements
for the Paulis on 2-qubits which is equal to 62 = 36 (6™ for n qubits). Indeed, {X,Y, Z}®? contains 9 elements
and each element has 4 distinct eigenvectors (the 9 Paulis have no common eigenvectors) so 36 in total. Here
the coefficient multiplying each projector is 1/9 (we have 9 distinct basis to measure and each of the 4 projectors
per basis sums to identity).

. Suppose M = {M;}"; and N = {N;}?_, are two different POVM measurements.

a) We can define an m + n outcome POVM from M and N by flipping a biased coin and with probability p
doing M and probability (1 — p) doing N'. Write down the measurement operators for this measurement.

b) Suppose now m = n. We can alternatively define a m measurement composed of the operators {pM; + (1 —
p)N;}7,. How does this measurement differ from the one in part (a)? How could you realise it?

Answer 8:

(a) Here the measurement operators are X = {pM;|i = 1,2,...m} | J{(1 — p)N;|i = 1,2,...,n}.

(b) Here, instead of having 2m distinct operators as in (a), we only have m that are obtained by summing (with
weight) operators in M and N. We have less information here as we cannot distinguish measurements M; and
N; after obtaining outcome i. We can imagine something similar than a), but with no information whether we
measured M; or N;, instead we only know the outcome 3.
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