

Solutions Problem Sheet 3

In this problem sheets, and all others, I highly recommend using Mathematica to deal with any messy algebra.

Class problems

1. Purifications

1. Compute purifications for the following states:

- a) $\rho_1 = 1/2(|0\rangle\langle 0| + |1\rangle\langle 1|)$
- b) $\rho_2 = 1/2(|0\rangle\langle 0| + |+\rangle\langle +|)$
- c) $\rho_3 = 1/2(|\psi_+\rangle\langle\psi_+| + |\phi_-\rangle\langle\phi_-|)$

Answer 1: The purified states in system S are obtained using an ancilla subsystem A (single qubit here). The purified states are respectively:

a) $|\psi_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle_S \otimes |0\rangle_A + |1\rangle_S \otimes |1\rangle_A)$

b) $|\psi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle_S \otimes |0\rangle_A + |+\rangle_S \otimes |1\rangle_A)$

c) $|\psi_3\rangle = \frac{1}{\sqrt{2}}(|\psi_+\rangle_S \otimes |0\rangle_A + |\phi_-\rangle_S \otimes |1\rangle_A)$

where tracing out subsystem A leads to the desired mixed states.

2. Consider the single qubit state $\rho = \frac{1}{2}(\mathbb{I} + 0.1X + 0.1Y + 0.2Z)$

- a) Write ρ as a matrix in the computational basis.
- b) Compute the eigen-decomposition of ρ .
- c) Is ρ mixed or pure? How do you know?
- d) Compute a pure state decomposition of ρ involving three states.
- e) Hence state i. a purification of ρ using a single qubit environment and ii. a purification using a qutrit environment.

Answer 2: a) In the computational basis $\rho = \frac{1}{20} \begin{pmatrix} 12 & 1-i \\ 1+i & 8 \end{pmatrix}$.

b) The eigenvalues of ρ are $\lambda_{\pm} = \frac{1}{2} \pm \frac{1}{10}\sqrt{\frac{3}{2}}$. They are respectively associated to eigenvectors $|\psi_+\rangle = \frac{1}{\sqrt{3+\sqrt{6}}} \left((1 + \sqrt{\frac{3}{2}})|0\rangle + \frac{(1+i)}{2}|1\rangle \right)$ and $|\psi_-\rangle = \frac{1}{\sqrt{3-\sqrt{6}}} \left((1 - \sqrt{\frac{3}{2}})|0\rangle + \frac{(1+i)}{2}|1\rangle \right)$.

c) The eigenvalues of a pure state are 1 and 0 (in dimension d , 0 is degenerated $d-1$ times). In this case, the eigenvalues are not 0 and 1. Equivalently, we can argue by showing that the purity is $\text{Tr}[\rho^2] = 0.53 < 1$.

d+e) Here we first consider the purification of the state acting on S on space using a qubit environment A . Such as $|\psi\rangle = \sqrt{\lambda_+}|\psi_+\rangle_S \otimes |0\rangle_A + \sqrt{\lambda_-}|\psi_-\rangle_S \otimes |1\rangle_A$. Then, we can extend A to a qutrit environment with basis $\{|0\rangle_A, |1\rangle_A, |2\rangle_A\}$. Applying any unitary U_A acting on the subsystem A (i.e. $\mathbb{1}_S \otimes U_A$) will result in the same mixed state after partial trace over A . For example, we can use the unitary of the Fourier transform given

by $U_A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w \end{pmatrix}$ where $w = e^{2\pi i/3}$. Thus, an example of the purification of ρ using 3 states is given by

$$|\tilde{\psi}\rangle = \sum_{i=0}^2 \frac{1}{\sqrt{3}} \underbrace{\left(\sqrt{\lambda_+} |\psi_+\rangle_S + w^i \sqrt{\lambda_-} |\psi_+\rangle_S \right)}_{|\psi_i\rangle} \otimes |i\rangle_A, \text{ where the } |\tilde{\psi}_i\rangle \text{ with } i = 0, 1, 2 \text{ are these 3 pure states.}$$

2. Measurements

3. Explain what is the difference between POVM measurements, projective measurements and a measurement of an observable.

Answer 3: A POVM is a set of positive semi-definite operators $\{M_i\}$ that sum to identity i.e. $\sum_i M_i = \mathbb{1}$. The POVM corresponds to a question you can ask of the quantum system and the individual operators the different answers you can obtain. The probability of obtaining answer i for state ρ is given by $\text{Tr}[M_i \rho]$.

A projective measurement is a special type of POVM where the operators $\{\Pi_i\}$ form an orthonormal set, i.e. $\Pi_i \Pi_j = \delta_{i,j} \Pi_i$, and thus project onto certain basis.

In the case where we can associate the answer i to a projective measurement with a numerical value λ_i we can define an *observable*, i.e. a Hermitian matrix, corresponding to the measurement outcome $O = \sum_i \lambda_i \Pi_i$. This observable can then be used to directly compute properties of any state ρ corresponding to the quantity associated with the observable, e.g. one can compute the k th moments of the quantity via $\langle O^k \rangle = \text{Tr}[O^k \rho]$.

4. a) Write down a POVM measurement \mathcal{M} that asks the question: "Is the system in the $|\Phi_+\rangle$ Bell state?"
 b) Consider the 2-qubit separable state $|\psi\rangle \otimes |\psi\rangle$. What is the probability to find the system in $|\Phi_+\rangle$?

Answer 4:

(a) We have $\mathcal{M} = \{M_1 = |\phi_+\rangle\langle\phi_+|, M_2 = \mathbb{1} \otimes \mathbb{1} - |\phi_+\rangle\langle\phi_+|\}$, then the answer is "yes" if we measure M_1 and the answer is "no" if we measure M_2 . Notice that $M_2 = |\psi_-\rangle\langle\psi_-| + |\phi_-\rangle\langle\phi_-| + |\psi_+\rangle\langle\psi_+|$.

(b) It is given by $|\langle\phi_+|(|\psi\rangle \otimes |\psi\rangle)|^2 = \frac{1}{2} (|\langle 0|\psi\rangle|^4 + |\langle 1|\psi\rangle|^4 + 2\text{Re}[\langle 0|\psi\rangle^2 \langle\psi|1\rangle^2])$.

5. Consider a d dimensional system S and $\mathcal{M} = \{\alpha_0 \mathbb{I}, \alpha_1 \mathbb{I}, \alpha_2 \mathbb{I}, \alpha_3 \mathbb{I}\}$. Is this a valid measurement? If so, what does the measurement do?

Answer 5: It is a valid measurement only if $\forall i$ we have real non-negative α_i and $\sum_{i=0}^3 \alpha_i = 1$. One measures i with probability α_i for any state in S . (This can be viewed as a box with four different lights on top. For any state you feed in the i th light turns on with probability α_i).

6. Suppose Bob hands you a quantum state and promises that it is either $|\phi_1\rangle = \cos(\theta/2)|0\rangle + \sin(\theta/2)|1\rangle$ or $|\phi_2\rangle = \cos(\theta/2)|0\rangle - \sin(\theta/2)|1\rangle$.
 a) Sketch these states on the Bloch sphere.
 b) Design a measurement that perfectly distinguishes the states *some* of the time, is inconclusive at others, but never makes a mistake.
 c) What is the probability in a *single* run of the experiment that you guess correctly?
 d) Write down a projective measurement on a larger system that can be used to realise this POVM.

Answers 6:

(a) In term of the Bloch vector i.e. coordinates (x,y,z) on the Bloch sphere these states are given by $(\sin(\theta), 0, \cos(\theta))$ and $(-\sin(\theta), 0, \cos(\theta))$ respectively for $|\phi_1\rangle$ and $|\phi_2\rangle$.

(b) These 2-states are not orthogonal, but we can design a measurement that contains the 2 projectors on their respective orthogonal states that are their reflection w.r.t the Bloch sphere centre i.e. $|\phi_1^\perp\rangle = \sin(\theta/2)|0\rangle - \cos(\theta/2)|1\rangle$ and $|\phi_2^\perp\rangle = \sin(\theta/2)|0\rangle + \cos(\theta/2)|1\rangle$. Then, we can chose $\mathcal{M} = \{M_0 = \frac{|\cos(\theta)| + \cos(\theta)}{1 + |\cos(\theta)|} |0\rangle\langle 0| + \frac{|\cos(\theta)| - \cos(\theta)}{1 + |\cos(\theta)|} |1\rangle\langle 1|, M_1 = \frac{1}{1 + |\cos(\theta)|} |\phi_1^\perp\rangle\langle\phi_1^\perp|, M_2 = \frac{1}{1 + |\cos(\theta)|} |\phi_2^\perp\rangle\langle\phi_2^\perp|\}$. So if the outcome is 0 we don't know what is the state, but if the outcome is 1 then we know that the state is $|\phi_2\rangle$ and inversely if the outcome is 2 then we know that the state is $|\phi_1\rangle$. Notice that this choice of the prefactors is

obtained by assuming that both projectors onto $|\phi_1^\perp\rangle$ and $|\phi_2^\perp\rangle$ shared the same coefficient (same probabilities). Then, we maximise this probability with the constraint that the three operators sums to identity and are positive semi-definite (POVM properties).

(c) In a single run, the probability of guessing correctly is $1 - \cos(\theta)$ which is the probability of not having the outcome 0 (i.e. the probability of having either 1 or 2). Notice that this is the same in both cases ($|\phi_1\rangle$ and $|\phi_2\rangle$) and we also see that if $\theta = 0$, then this probability is indeed 0 as $|\phi_1\rangle = |\phi_2\rangle$.

(d) We can also design this POVM measurement using projectors on a 2-qubits system (using an ancilla qubit) such as $\mathcal{M} = \{|0\rangle\langle 0| \otimes |\phi_1^\perp\rangle\langle\phi_1^\perp|, |1\rangle\langle 1| \otimes |\phi_2^\perp\rangle\langle\phi_2^\perp|, |0\rangle\langle 0| \otimes |\phi_1\rangle\langle\phi_1|, |1\rangle\langle 1| \otimes |\phi_2\rangle\langle\phi_2|\}$. (We can easily check that these 4 operators projects onto 4 orthogonal vectors that forms a basis of the 2-qubit Hilbert space and so they sum to identity i.e. $\mathbb{1} \otimes \mathbb{1}$).

7. Propose an ‘informationally complete’ measurement for a single qubit state. That is, a POVM measurement \mathcal{M} that allows you to perfectly reconstruct a single qubit quantum state. What about a 2-qubit state?

Answer 7: To perfectly reconstruct a single qubit state, we need to know its Bloch vector. So, we can perform a convex mixture of projectors onto the eigen-basis of the 3 Paulis X , Y and Z :

$$\mathcal{M} = \left\{ \frac{1}{3}|0\rangle\langle 0|, \frac{1}{3}|1\rangle\langle 1|, \frac{1}{3}|+\rangle\langle +|, \frac{1}{3}|-\rangle\langle -|, \frac{1}{3}|y+\rangle\langle y+|, \frac{1}{3}|y-\rangle\langle y-| \right\}$$

Notice that Z and the identity share the same basis. For the 2-qubit state, we have all possible basis elements for the Paulis on 2-qubits which is equal to $6^2 = 36$ (6^n for n qubits). Indeed, $\{X, Y, Z\}^{\otimes 2}$ contains 9 elements and each element has 4 distinct eigenvectors (the 9 Paulis have no common eigenvectors) so 36 in total. Here the coefficient multiplying each projector is $1/9$ (we have 9 distinct basis to measure and each of the 4 projectors per basis sums to identity).

8. Suppose $\mathcal{M} = \{M_i\}_{i=1}^m$ and $\mathcal{N} = \{N_i\}_{i=1}^n$ are two different POVM measurements.

- We can define an $m + n$ outcome POVM from \mathcal{M} and \mathcal{N} by flipping a biased coin and with probability p doing \mathcal{M} and probability $(1 - p)$ doing \mathcal{N} . Write down the measurement operators for this measurement.
- Suppose now $m = n$. We can alternatively define a m measurement composed of the operators $\{pM_i + (1 - p)N_i\}_{i=1}^m$. How does this measurement differ from the one in part (a)? How could you realise it?

Answer 8:

(a) Here the measurement operators are $\mathcal{X} = \{pM_i | i = 1, 2, \dots, m\} \cup \{(1 - p)N_i | i = 1, 2, \dots, n\}$.

(b) Here, instead of having $2m$ distinct operators as in (a), we only have m that are obtained by summing (with weight) operators in \mathcal{M} and \mathcal{N} . We have less information here as we cannot distinguish measurements M_i and N_i after obtaining outcome i . We can imagine something similar than a), but with no information whether we measured M_i or N_i , instead we only know the outcome i .