
Solutions Problem Sheet 3

In this problem sheets, and all others, I highly recommend using Mathematica to deal with any messy algebra.

Class problems

1. Purifications

1. Compute purifications for the following states:

a) ρ1 = 1/2(|0⟩⟨0|+ |1⟩⟨1|)
b) ρ2 = 1/2(|0⟩⟨0|+ |+⟩⟨+|)
c) ρ3 = 1/2(|ψ+⟩⟨ψ+|+ |ϕ−⟩⟨ϕ−|)

Answer 1: The purified states in system S are obtained using an ancilla subsystem A (single qubit here). The
purified states are respectively:

a) |ψ1⟩ = 1√
2
(|0⟩S ⊗ |0⟩A + |1⟩S ⊗ |1⟩A)

b) |ψ2⟩ = 1√
2
(|0⟩S ⊗ |0⟩A + |+⟩S ⊗ |1⟩A)

c) |ψ3⟩ = 1√
2
(|ψ+⟩S ⊗ |0⟩A + |ϕ−⟩S ⊗ |1⟩A)

where tracing out subsystem A leads to the desired mixed states.

2. Consider the single qubit state ρ = 1
2 (I+ 0.1X + 0.1Y + 0.2Z)

a) Write ρ as a matrix in the computational basis.
b) Compute the eigen-decomposition of ρ.
c) Is ρ mixed or pure? How do you know?
d) Compute a pure state decomposition of ρ involving three states.
e) Hence state i. a purification of ρ using a single qubit environment and ii. a purification using a qutrit
environment.

Answer 2: a) In the computational basis ρ = 1
20
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b) The eigenvalues of ρ are λ± = 1
2 ± 1
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c) The eigenvalues of a pure state are 1 and 0 (in dimension d, 0 is degenerated d− 1 times). In this case, the
eigenvalues are not 0 and 1. Equivalently, we can argue by showing that the purity is Tr[ρ2] = 0.53 < 1.

d+e) Here we first consider the purification of the state acting on S on space using a qubit environment
A. Such as |ψ⟩ =

√
λ+|ψ+⟩S ⊗ |0⟩A +

√
λ−|ψ−⟩S ⊗ |1⟩A. Then, we can extend A to a qutrit environment with

basis {|0⟩A, |1⟩A, |2⟩A}. Applying any unitary UA acting on the subsystem A (i.e. 11S ⊗ UA) will result in the
same mixed state after partial trace over A. For example, we can use the unitary of the Fourier transform given

by UA =

1 1 1
1 w w2

1 w2 w

 where w = e2πi/3. Thus, an example of the purification of ρ using 3 states is given by
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|ψ̃⟩ =
∑2
i=0

1√
3

(√
λ+|ψ+⟩S + wi

√
λ−|ψ+⟩S

)
︸ ︷︷ ︸

|ψ̃i⟩

⊗|i⟩A, where the |ψ̃i⟩ with i = 0, 1, 2 are these 3 pure states.

2. Measurements

3. Explain what is the difference between POVM measurements, projective measurements and a measurement of
an observable.

Answer 3: A POVM is a set of positive semi-definite operators {Mi} that sum to identity i.e.
∑
iMi = 11.

The POVM corresponds to a question you can ask of the quantum system and the individual operators the
different answers you can obtain. The probability of obtaining answer i for state ρ is given by Tr[Miρ].

A projective measurement is a special type of POVM where the operators {Πi} form an orthonormal set, i.e.
ΠiΠj = δi,jΠi, and thus project onto certain basis.

In the case where we can associate the answer i to a projective measurement with a numerical value λi we
can define an observable, i.e. a Hermitian matrix, corresponding to the measurement outcome O =

∑
i λiΠi.

This observable can then be used to directly compute properties of any state ρ corresponding to the quantity
associated with the observable, e.g. one can compute the kth moments of the quantity via ⟨Ok⟩ = Tr[Okρ].

4. a) Write down a POVM measurement M that asks the question: "Is the system in the |Φ+⟩ Bell state?"
b) Consider the 2-qubit separable state |ψ⟩ ⊗ |ψ⟩. What is the probability to find the system in |Φ+⟩?

Answer 4:
(a) We have M = {M1 = |ϕ+⟩⟨ϕ+ |,M2 = 11 ⊗ 11 − |ϕ+⟩⟨ϕ+ |}, then the answer is "yes" if we measure M1 and
the answer is "no" if we measure M2. Notice that M2 = |ψ−⟩⟨ψ− |+ |ϕ−⟩⟨ϕ− |+ |ψ+⟩⟨ψ+ |.

(b) It is given by |⟨ϕ+|(|ψ⟩ ⊗ |ψ⟩)|2 = 1
2

(
|⟨0 |ψ⟩|4 + |⟨1 |ψ⟩|4 + 2Re[⟨0 |ψ⟩2⟨ψ |1⟩2]

)
.

5. Consider a d dimensional system S and M = {α0I, α1I, α2I, α3I}. Is this a valid measurement? If so, what does
the measurement do?

Answer 5: It is a valid measurement only if ∀i we have real non-negative αi and
∑3
i=0 αi = 1. One

measures i with probability αi for any state in S. (This can be viewed as a box with four different lights on
top. For any state you feed in the ith light turns on with probability αi).

6. Suppose Bob hands you a quantum state and promises that it is either |ϕ1⟩ = cos(θ/2)|0⟩ + sin(θ/2)|1⟩ or
|ϕ2⟩ = cos(θ/2)|0⟩ − sin(θ/2)|1⟩.
a) Sketch these states on the Bloch sphere.
b) Design a measurement that perfectly distinguishes the states some of the time, is inconclusive at others, but
never makes a mistake.
c) What is the probability in a single run of the experiment that you guess correctly?
d) Write down a projective measurement on a larger system that can be used to realise this POVM.

Answers 6:
(a) In term of the Bloch vector i.e. coordinates (x,y,z) on the Bloch sphere these states are given by
(sin(θ), 0, cos(θ)) and (− sin(θ), 0, cos(θ)) respectively for |ϕ1⟩ and |ϕ2⟩.

(b) These 2-states are not orthogonal, but we can design a measurement that contains the 2 projectors on their
respective orthogonal states that are their reflection w.r.t the Bloch sphere centre i.e. |ϕ⊥1 ⟩ = sin(θ/2)|0⟩ −
cos(θ/2)|1⟩ and |ϕ⊥2 ⟩ = sin(θ/2)|0⟩+ cos(θ/2)|1⟩. Then, we can chose
M = {M0 = | cos(θ)|+cos(θ)

1+| cos(θ)| |0⟩⟨0 | + | cos(θ)|−cos(θ)
1+| cos(θ)| |1⟩⟨1 |,M1 = 1

1+| cos(θ)| |ϕ
⊥
1 ⟩⟨ϕ⊥1 |,M2 = 1

1+| cos(θ)| |ϕ
⊥
2 ⟩⟨ϕ⊥2 |}. So

if the outcome is 0 we don’t know what is the state, but if the outcome is 1 then we know that the state is |ϕ2⟩
and inversely if the outcome is 2 then we know that the state is |ϕ1⟩. Notice that this choice of the prefactors is
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obtained by assuming that both projectors onto |ϕ⊥1 ⟩ and |ϕ⊥2 ⟩ shared the same coefficient (same probabilities).
Then, we maximise this probability with the constraint that the three operators sums to identity and are positive
semi-definite (POVM properties).
(c) In a single run, the probability of guessing correctly is 1− cos(θ) which is the probability of not having the
outcome 0 (i.e. the probability of having either 1 or 2). Notice that this is the same in both cases (|ϕ1⟩ and
|ϕ2⟩) and we also see that if θ = 0, then this probability is indeed 0 as |ϕ1⟩ = |ϕ2⟩.

(d) We can also design this POVM measurement using projectors on a 2-qubits system (using an ancilla qubit)
such as M = {|0⟩⟨0 | ⊗ |ϕ⊥1 ⟩⟨ϕ⊥1 |, |1⟩⟨1 | ⊗ |ϕ⊥2 ⟩⟨ϕ⊥2 |, |0⟩⟨0 | ⊗ |ϕ1⟩⟨ϕ1 |, |1⟩⟨1 | ⊗ |ϕ2⟩⟨ϕ2 |}. (We can easily check
that these 4 operators projects onto 4 orthogonal vectors that forms a basis of the 2-qubit Hilbert space and so
they sum to identity i.e. 11 ⊗ 11).

7. Propose an ‘informationally complete’ measurement for a single qubit state. That is, a POVM measurement
M that allows you to perfectly reconstruct a single qubit quantum state. What about a 2-qubit state?

Answer 7: To perfectly reconstruct a single qubit state, we need to know its Bloch vector. So, we can perform
a convex mixture of projectors onto the eigen-basis of the 3 Paulis X, Y and Z :

M =

{
1

3
|0⟩⟨0 |, 1

3
|1⟩⟨1 |, 1

3
|+⟩⟨+ |, 1

3
|−⟩⟨−|, 1

3
|y+⟩⟨y + |, 1

3
|y−⟩⟨y − |

}
.
Notice that Z and the identity share the same basis. For the 2-qubit state, we have all possible basis elements
for the Paulis on 2-qubits which is equal to 62 = 36 (6n for n qubits). Indeed, {X,Y, Z}⊗2 contains 9 elements
and each element has 4 distinct eigenvectors (the 9 Paulis have no common eigenvectors) so 36 in total. Here
the coefficient multiplying each projector is 1/9 (we have 9 distinct basis to measure and each of the 4 projectors
per basis sums to identity).

8. Suppose M = {Mi}mi=1 and N = {Ni}ni=1 are two different POVM measurements.
a) We can define an m + n outcome POVM from M and N by flipping a biased coin and with probability p
doing M and probability (1− p) doing N . Write down the measurement operators for this measurement.
b) Suppose now m = n. We can alternatively define a m measurement composed of the operators {pMi + (1−
p)Ni}mi=1. How does this measurement differ from the one in part (a)? How could you realise it?

Answer 8:
(a) Here the measurement operators are X = {pMi|i = 1, 2, ...,m}

⋃
{(1− p)Ni|i = 1, 2, ..., n}.

(b) Here, instead of having 2m distinct operators as in (a), we only have m that are obtained by summing (with
weight) operators in M and N . We have less information here as we cannot distinguish measurements Mi and
Ni after obtaining outcome i. We can imagine something similar than a), but with no information whether we
measured Mi or Ni, instead we only know the outcome i.
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