
Solutions Problem Sheet 13: Entanglement Theory
(Part 2)

Class problems

1. Asymptotic entanglement distillation. Roughly how many singlets are needed to construct 100 copies of the
state |ϕ⟩ = α(2|01⟩ − 3| + 0⟩ + 5|22⟩), where α is a normalization constant (that you have to determine) and
|+⟩ = 1√

3
(|0⟩+ |1⟩+ |2⟩), under LOCC?

Answer 1: The spectrum of the reduced state is approximately ϕ ≈ (0.035, 0.205, 0.760), thus the entropy
of the reduced state is S ≈ 0.9396. Therefore, we need 94 singlets to create N = 100 copy of the state (as
NS ≈ 93.96).

2. Hyperplanes. In R3 determine the hyperplanes defined by the vector v for the cases a) v = (0, 1, 0), b) v =
(0,−2, 0) and c) v = (1, 1,−1). In each case determine the ‘positive’ and ‘negative’ sides of the plane.
Answer 2: Straightforward with the definition of the hyperplane. The points r = (x, y, z) in the hyper plane
given by v satisfy v · r = xv1 + yv2 + zv3 = 0 and the positive side is all points s.t. v · r > 0 (< 0 for the
negative sign). a) XZ-plane with positive with y > 0, negative y < 0 b) same plane as a) with inverse relation
for positive/negative sides. c) plane x+ y − z = 0 with positive (negative) side in volume x+ y − z > 0 (< 0).

3. Superoperators to detect entanglement.

Define the maximally entangled state |Ω⟩ = |vec(I)⟩ and the Choi state associated with an operator E as
J(E) = E ⊗ I(|Ω⟩⟨Ω|).

a) Show that |Ω⟩⟨Ω|TA = SWAP.
Answer 3.a) Straightforward J(E) =

∑
i,j E(|i⟩⟨j|)⊗ |i⟩⟨j| with E(.) = (.)T .

b) Show that Tr[A⊗B SWAP] = Tr[AB].
Answer 3.b) Also straightforward: Tr[A ⊗ B SWAP] = AijBklTr[|i⟩⟨l| ⊗ |k⟩⟨j|] = AijBji = Tr[AB] (implicit
summation over indices).

c) Assuming that every positive superoperator E has a decomposition E(X) =
∑

i AiXB†
i deduce that we can

define a ‘dual map’ E∗ such that Tr[E(ρ)B] = Tr[ρE∗(B)] for all states ρ and Hermitian operators B.
Answer 3.c) Using linearity and cyclicity respectively leads to Tr[E(ρ)B] =

∑
i Tr[AiρB

†
iB] =

∑
i Tr[ρB

†
iBAi] =

Tr[ρE∗(B)] with E∗(X) =
∑

i B
†
iXAi.

d) Prove that

Tr[(B ⊗ σT )J(E)] = Tr[E(σ)B] (1)

Answer 3.d) We have Tr[(B ⊗ σT )J(E)] = Tr[(B ⊗ σT )E ⊗ I(|Ω⟩⟨Ω|)] = Tr[(E∗(B) ⊗ σT )|Ω⟩⟨Ω|)] =
Tr[(E∗(B) ⊗ σ)|Ω⟩⟨Ω|TB ] = Tr[(E∗(B) ⊗ σ)SWAP ] = Tr[E∗(B)σ] = Tr[E(σ)B] where the first and the sec-
ond equality can be easily shown, the third one is obtained by applying partial transpose (on the second register
called B here) and then we use a), b) and c) respectively. Notice that from the second equality we could also
use the relations |vec(AXB)⟩ = A⊗BT |vec(X)⟩ (ricochet property with X = 11) and Tr[O ⊗ 11|Ω⟩⟨Ω|] = Tr[O]
to show Tr[(E∗(B)⊗ σT )|Ω⟩⟨Ω|)] = Tr[(E∗(B)σ ⊗ 11)|Ω⟩⟨Ω|] = Tr[E∗(B)σ].

Let use define the super-operator ΦJ (ρ) = Tr2[(I⊗ ρT )J ]

e) Show that ΦJ (E)(ρ) = E(ρ) and J (ΦJ (E)) = J (E). How does this connect to Eq. (1)?

Answer e) This is very similar to what we have done before. Notice that Tr2[O⊗ 11|Ω⟩⟨Ω|] = O, thus by using
first the ricochet property and this property we have ΦJ (E)(ρ) = Tr2[E(ρ)⊗ 11] = E(ρ), so we have shown that
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ΦJ (E) = E which also proves J (ΦJ (E)) = J (E). We can directly obtain Eq. (1) from these relations. You
can also use more brute force method as follows: Tr2[(11 ⊗ ρT )J (E)] =

∑
i,j Tr2[(11 ⊗ ρT )(E(|i⟩⟨j|) ⊗ |i⟩⟨j|)] =∑

i,j E(|i⟩⟨j|)⟨j|ρT |i⟩ =
∑

i,j E(|i⟩⟨j|)⟨i|ρ|j⟩ = E(ρ) (notice that Tr2[A⊗B] = ATr[B]).

f) What is the connection between SWAP and the Peres-Horodecki criterion?
Answer f): The SWAP operator is the entanglement witness corresponding to the Peres-Horodecki criterion.
That is, Tr[ρ SWAP] < 0 implies ρTB has a negative eigenvalue. To see this note that Tr[ρSWAP] =
Tr[ρTB |Ω⟩⟨Ω|]. Writing ρTB in terms of its eigendecomposition it follows that if Tr[ρ SWAP] < 0 then ρTB

has a negative eigenvalue.


	

