
Solutions Problem Sheet 2: Quantum Basics

Don’t initially use mathematica for this! (But maybe use it to double check your answers).

Quantum Theory

1. The state space of a single qubit can be represented by a Bloch vector r with norm less than 1, i.e. |r| ⩽ 1.
A pure state is a state that cannot be written in the form ρ = pσ0 +(1− p)σ1 for any two states σ0, σ1 and any
0 < p < 1.
a) Argue (geometrically!) that any pure state has a Bloch vector of norm 1 and hence can be written as |ψ⟩⟨ψ|.
b) Sketch on the Bloch sphere the states: |1⟩, |+⟩ := 1√

2
(|0⟩+ |1⟩), |+y⟩ := 1√

2
(|0⟩+ i|1⟩), and 1√

5
(|0⟩+ i

√
4|1⟩).

c) Tr[ρ2] is known as the purity of a state. Argue why this is an appropriate name.

Solution:
a) As seen in class, the state ρ = pσ0 + (1− p)σ1 with 0 < p < 1 is necessarily between σ0 and σ1 which means
that it is necessarily a point inside the sphere i.e. with r < 1. In other word, we can only have r = 1 when
σ0 = σ1 or p = 0 or p = 1 which just means that we cannot write ρ as ρ = pσ0 + (1− p)σ1 with 0 < p < 1 for
any two (different) states σ0 and σ1.
b) The associated coordinates (x, y, z) on the Bloch sphere (BS) are: (0, 0,−1) for |1⟩, (1, 0, 0) for |+⟩, (0, 1, 0)
for |+ y⟩, and (0, 4/5,−3/5) for the state 1√

5
(|0⟩+ i

√
4|1⟩).

c) We have Tr[ρ2] = 1+r2

2 . The centre of the BS, 11/2, is the maximally mixed state which corresponds to r = 0
and the pure states are on the sphere i.e. with r = 1. In other word, the closer we are to a pure state (mixed
states) the larger (smaller) will be Tr[ρ2].
Notice that Tr[ρ2] is a better quantity than r as it can be generalised to higher dimensions (not just 2). Indeed,
for a state in dimensions d with eigenvalues {λi}di=1, we have Tr[ρ2] =

∑d
i=1 λ

2
i that is maximal when the λi

are uniform (i.e. 1/d) which corresponds to the maximally mixed state 11/d. And the maximum of the purity is
reached for a pure state i.e. λi = 0 for a given i (and all other eigenvalues are 0 by definition).

2. Are the following states pure or mixed?
a) ρ = 1

2 (|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|)
b) ρ = 1

6 (3|0⟩⟨0| − |0⟩⟨1| − |1⟩⟨0|+ 3|1⟩⟨1|)

Solution:
A simple way to check whether a state is pure or mixed is to check if ρ = ρ2.
a) In this case ρ is pure (it is the state |+⟩).
b) In this case ρ is mixed (Tr[ρ2] = 5/9).

3. a) Sketch the points 1
5 |0⟩⟨0|+

4
5 |1⟩⟨1|,

1
3 | − y⟩⟨−y|+ 2

3 |0⟩⟨0| on the Bloch sphere.
(A geometric answer will suffice I don’t need the exact messy algebra).
b) Give a geometric argument to show that 1

2 I/2 can be written as a convex combination of an infinite number
of pairs of states.
c) Write 1

2 I as a convex combination of 4 states (easy). How about as a convex combination of three states?

Solution:
a) The point for state 1

5 |0⟩⟨0| +
4
5 |1⟩⟨1| corresponds to 1

5 along z and 4
5 along −z, i.e. the point is (0, 0,− 3

5 )

inside of the Bloch sphere. The point for state 1
3 | − y⟩⟨−y| + 2

3 |0⟩⟨0| corresponds to −1/3 along y and +2/3
along z, i.e. the point (0,−1/3, 2/3).
b) The state 1

2 I is the centre of the Bloch sphere, so we can take any state and compute its superposition with its
reflection w.r.t. to the centre of the Block sphere to obtain the identity. The simplest case is 11 = |0⟩⟨0 |+ |1⟩⟨1 |
(equivalently we can consider any basis for a single qubit state and add its reflection). We have to chose
appropriate coefficients to ensure that the overall sums to 1

211. So, each pairs of opposite states (projectors)



2

are multiplied by a common coefficient and the sum of these coefficients should be 1/2. For example, with
spherical coordinates (θ, ϕ) (r = 1 for pure states) states are |ψ⟩ = cos(θ/2)|0⟩+eiϕ sin(θ/2)|1⟩ and its reflection
corresponds to point point (ϕ+π, π−θ) which indeed is its perpendicular state |ψ⊥⟩ sin(θ/2)|0⟩−eiϕ cos(θ/2)|1⟩
by averaging 1

2 (|ψ⟩⟨ψ |+ |ψ⊥⟩⟨ψ⊥ |) over continuous variables θ and/or ϕ indeed leads to 11/2 and corresponds
to an infinite sum of pairs states.

c) For example, we can write 11 = 1
4 (|0⟩⟨0 | + |1⟩⟨1 | + |+⟩⟨+ | + |−⟩⟨−|). For 3 states it is also much simpler

to think geometrically. Any 3 points that forms an equilateral triangle on the sphere. For example, we can
chose consider the pure states |ψ1⟩ = cos(π/12)|0⟩ + i sin(π/12)|1⟩ and |ψ2⟩ = cos(5π/12)|0⟩ + i sin(5π/12)|1⟩
such that |ψ1⟩⟨ψ1 |+ |ψ2⟩⟨ψ2 | = |y+⟩⟨y + |, so we have 1

211 = 1
2 (|ψ1⟩⟨ψ1 |+ |ψ2⟩⟨ψ2 |+ |y−⟩⟨y − |) (if you have

another answer, trying to check where are these states on the BS to convince yourself can be a good exercise).

4. Given any quantum state ρ of a d-dimensional quantum system S, explain why we can write
∑
k λk|λk⟩⟨λk|

where λk are real and positive and ⟨λk|λj⟩ = δjk. What does this tell us about how we can interpret ρ?

Solution:
This comes from the properties of density operators. As ρ is hermitian it directly follows from the spectral
theorem that we can write ρ =

∑
k λk|λk⟩⟨λk| where λk are real and ⟨λk|λj⟩ = δjk. And as ρ is positive definite,

λk are positive. Notice also that the eigenvalues sums to 1 because Tr[ρ] = 1. It means that any (mixed) state
ρ can be written as a statistical ensemble of pure states.

Class problems

1. Compute the partial trace ρA of the following states:

a) |ψ⟩AB = 1√
2
(|01⟩+ |10⟩)

b) |ψ⟩AB ∝ (α|0+⟩+ β|11⟩)
c) |ψ⟩AB ∝ (|0+⟩+ 3|ψ1⟩+ 5i|2−⟩)), where |ψ⟩ is a state acting on A.

Solution:
We compute the partial trace over subsystem B to obtain the reduced state of subsystem A, formally

ρA =TrB (|ψ⟩AB⟨ψ|AB)

=
∑
|i⟩B

(IA ⊗ ⟨i|B)|ψ⟩AB⟨ψ|AB(IA ⊗ |i⟩B) ,

which gives:

a) ρA = 11/2.

b) ρA = 1
|α|2+|β|2 (|α|

2|0⟩⟨0 |+ |β|2|1⟩⟨1 |+ αβ∗
√
2
|0⟩⟨1 |+ α∗β√

2
|1⟩⟨0 |)

c) ρA = 1
35+ 3√

2
(⟨0 |ψ⟩+⟨ψ |0⟩)+ 15i√

2
(⟨2 |ψ⟩−⟨ψ |2⟩)

(
|0⟩⟨0 |+ 9|ψ⟩⟨ψ |+ 25|2⟩⟨2 |+ 3√

2
(|0⟩⟨ψ |+ |ψ⟩⟨0 |)− 15i√

2
(|2⟩⟨ψ | − |ψ⟩⟨2 |)

)

2. Optional! If you’ve done this before and are happy with it feel free to skip.

a) Use a series expansion to show that e−iθσi/2 = cos(θ/2)11 − i sin(θ/2)σi.

Solution:
As σ2k+1

i = σi and σ2k
i = 11 for all integers k, then we use the serie expansion of the exponential, split it into



3

even and odd power terms and we recognise the sine and cosine series:

e−iθσi/2 =

∞∑
k=0

(−iθ/2)kσki
k!

= 11
∞∑
n=0

(−iθ/2)2n

(2n)!
+ σi

∞∑
k=0

(−iθ/2)2n+1

(2n+ 1)!
.

Finally, we use (−i)2n = (−1)n and (−i)2n+1 = −i(−1)n to get

e−iθσi/2 = 11
∞∑
n=0

(−1)n(θ/2)2n

(2n)!
− iσi

∞∑
k=0

(−1)n(θ/2)2n+1

(2n+ 1)!
,

where we directly recognise expansions of cos(θ/2) and sin(θ/2).

b) What is the effect of evolving the state |+⟩ under e−iθσz/2 for θ = π/2? State the final state and sketch this
evolution on the Bloch sphere.

Solution:
The state |+⟩ is just the unit vector on the x-axis (i.e. (1, 0, 0)) and e−iθσz/2 for θ = π/2 corresponds to a
rotation of angle π/2 around the z axis, which brings the state to |y+⟩ i.e. the vector (0, 1, 0) on the BS.

c) What about evolving ρ = p|0⟩⟨0|+ (1− p)|1⟩⟨1| under e−iθσx/2 for θ = −3π/4?
Solution:
Applying the rotation to states |0⟩ and |1⟩ leads to

e−iθσx/2|0⟩⟨0 |e+iθσx/2 =
1

2
√
2

(√
2− 1 −i
i

√
2 + 1

)
=

1

2
(11 − 1√

2
Z +

1√
2
Y )

and

e−iθσx/2|1⟩⟨1 |e+iθσx/2 =
1

2
√
2

(√
2 + 1 i

−i
√
2− 1

)
=

1

2
(11 +

1√
2
Z − 1√

2
Y ).

So, the state ρ after the rotation becomes

e−iθσx/2ρe+iθσx/2 =
1

2
(11 +

1− 2p√
2

Z − 1− 2p√
2

Y ).

Notice that applying rotation to Bloch vector r0 = (0, 0, 1) leads to r′0 = (0, 1√
2
,− 1√

2
) and as the initial state

has Bloch vector r = (0, 0, 2p− 1) we just multiply r′0 by 2p− 1.


	

