

Solutions of Problem Sheet 1: Classical Theory

- Let S be a single DNA base, which can be in one of four sharp states A,T,G,C.
 - Define an appropriate set of basis states for this system.
 - What is the state of the system if you know that the DNA strand is not C but otherwise are completely uncertain?
 - Define a measurement to ask: "Is the base 'A or T'?"

Solution:

We use 4-dimensional probability vectors to describe the states of this DNA system.

- We define for those four sharp states A , T , G and C a set of probability vectors $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$ and $e_4 = (0, 0, 0, 1)$, respectively. Then, any state of the system can be described by a vector v such that its components are probabilities of the corresponding basis states i.e.

$$r = (\Pr("A"), \Pr("T"), \Pr("G"), \Pr("C")) .$$

- The state is $\frac{1}{3}e_1 + \frac{1}{3}e_2 + \frac{1}{3}e_3$.
- Here we design a measurement $\mathcal{M} = \{m_0 = (1, 1, 0, 0), m_1 = (0, 0, 1, 1)\}$. The measurement outcome 0 leads to answer "yes" and measuring 1 leads to answer "no" and we indeed have the outcome probabilities given by $p(i) = m_i \cdot r$ for $i = 0, 1$.
- Consider the bars and stripes data set (shown below) as corresponding to different possible states of a classical system.
 - Define an appropriate set of basis states for this system.
 - Write down the classical states corresponding to the first three in the first line.
 - What is the state space for this system?
 - Define a measurement to determine whether the system is fully shaded.
 - Define a measurement to determine whether the system contains blue or white stripes or bars, i.e. the first six patterns on the left.

Solution:

- Here we have 16 different basis states. We can use a similar approach as before but in 16 dimensions such the basis states are given by $\{e_i\}_{i=0}^{15}$ (here e_i denotes the vector where the $(i+1)$ -th component is 1 and all the others are 0, e.g. $e_0 = (1, 0, 0, \dots, 0)$). For example, each element can be chosen such that i is the decimal value of the binary string corresponding to each image where a shaded (or unshaded) area corresponds to a digit of 1 (or 0, respectively), with the convention that we transfer the arrays line by line from top to bottom into bit-strings. Note that there are multiple conventions.

- The first three states in the first line are e_{15}, e_{10}, e_5 respectively. (From the top left to top right we have respectively $e_{15}, e_{10}, e_5, e_{11}, e_{14}, e_{13}, e_7, e_9$ and from the bottom left to the bottom right $e_0, e_{12}, e_3, e_4, e_1, e_2, e_8, e_6$.)
- It is a 16 dimensional state space where the components of probability vectors are real non-negative and their sum is 1, i.e. for a state $r = \sum_{i=0}^{15} r_i e_i$ we have $0 \leq r_i \leq 1$ for all i and $\sum_i r_i = 1$.
- If the system is fully shaded, the system is in state e_{15} . So, we can define a measurement

$$\mathcal{M} = \{m_0 = e_{15}, m_1 = \sum_{i=0}^{14} e_i\} ,$$

such that we will obtain the answer "yes" for measuring 0 and "no" for measuring 1.

- Here, the states that contains visible stripes or bars are $e_0, e_3, e_5, e_{10}, e_{12}, e_{15}$. So, we define

$$\mathcal{M} = \{m_0 = e_0 + e_3 + e_5 + e_{10} + e_{12} + e_{15}, m_1 = e_1 + e_2 + e_4 + e_6 + e_7 + e_8 + e_9 + e_{11} + e_{13} + e_{14}\}$$

such that we will obtain the answer "yes" for measuring 0 and "no" for measuring 1.

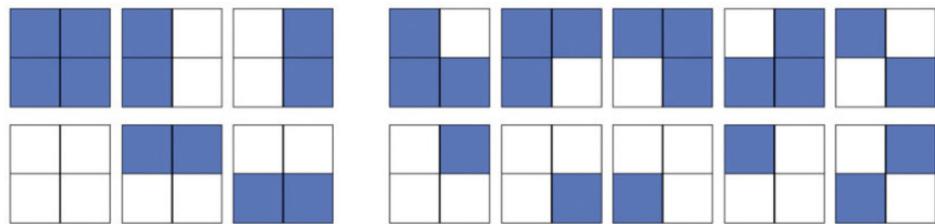


FIG. 1. **Bars and stripes data set.** Suppose each image here corresponds to a different state of a system.