
Solutions Problem Sheet 10: Entropy

Text Book

Many solutions in this problem sheet can be found in the standard text books. We will refer to some parts of
“Quantum Computation and Quantum Information” 10th edition by Michael A. Nielsen and Isaac L. Chuang, which
can be found online for free here, or by googling “Quantum Computation and Quantum Information”.

Class problems

1. Compute the entropy of the full state and reduced states of:

a) ρ = 3/4|Φ+⟩⟨Φ+|+ 1/4|Ψ−⟩⟨Ψ−|

b) ρ = 3/7|00⟩⟨00|+ 4/7|++⟩⟨++ |

c) ρ = 3/7|00+⟩⟨00 + |+ 4/7|++−⟩⟨++−|

Answers 1: For a), the full density matrix is already expressed in a diagonal form in the Bell basis with
eigenvalues λ1 = 3/4, λ2 = 1/4 and zero for the rest. Thus, the entropy of the full state is

S(ρ) = −
∑
i

λi log(λi) = −3/4 log(3/4)− 1/4 log(1/4) ≈ 0.811 . (1)

The reduced state to any qubit is a maximally mixed state of one qubit i.e., ρ1 = ρ2 = 11/2, leading to

S(ρ1) = S(ρ2) = −1/2 log(1/2)− 1/2 log(1/2) = 1 . (2)

For b), the density matrix is not diagonalized yet and we have to do that (as |00⟩ and |++⟩ are not orthogonal
the eigenvalues are not {3/7, 4/7} as in c)). The density matrix can be written out explicitly as

ρ =

4/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7

 (3)

. Diagonalizing this ρ by hands is really painful, so please use Mathematica to do it. By doing so, the eigenvalues
are found to be {a = (7 +

√
13)/14, 1 − a = (7 −

√
13)/14, 0, 0}, leading to the entropy of S(ρ) ≈ 0.799. The

reduced state to any of the qubits is ρ1 = ρ2 = 3/7|0⟩⟨0|+ 4/7|+⟩⟨+|, which has eignevalues of {6/7, 1/7} and
corresponding entropy of around 0.592.

For c), As ⟨00 + |++−⟩ = 0, the density matrix is already in the diagonal form with non-zero eigenvalues 3/7
and 4/7, leading to the entropy of S(ρ) = −(3/7) log(3/7) − (4/7) log(4/7) ≈ 0.985. Now, we want to look at
the subsystems. By tracing out the last qubit, we come back to the question b). For other subsystems contains
two qubits, the entropy is the same as the full state – can you see why ?

2. Prove that the relative entropy S(ρ||σ) ⩾ 0. (Hint - you can use that for any doubly stochastic matrix P ,
concave function f and probability distribution q we have that

∑
j Pijf(qj) ⩽ f(pi), where pi =

∑
j Pijqj .)

Answers 2: See the proof in p. 511 and 513 in the Nielsen and Chuang’s book. Notice that the inequality
given here is simply Jensen’s inequality which is also used to show the positivity of the KL in an easy way (you
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can also show that the KL is minimized iif p(x) = q(x) and in this case the KL is 0).

−
∑
x

p(x) log(q(x)/p(x)) = Ex∼p[− log(q(x)/p(x)] (4)

⩾ − log(Ex∼p[q(x)/p(x)]) (5)
= 0 . (6)

Notice that to show that the minimum is obtained iif q(x) = p(x), you can use Lagrange multipliers method
(i.e. minimize the KL w.r.t {q(x)} with condition

∑
x q(x) = 1).

3. Show that a pure state |ψ⟩AB is entangled between subsystems A and B if and only if the conditional entropy
is less than zero i.e., S(A|B) < 0.

Answers 3: Consider the conditional entropy S(A|B) = S(A,B) − S(B), where S(A,B) = Tr[ρAB log(ρAB)]
and S(B) = Tr[ρB log(ρB)] with ρB = TrA[ρAB ] is a reduced state on a subsystem B. When ρAB is pure, then
S(ρAB) = 0 and the expression is simplified to

S(A|B) = −S(B) , (7)

If ρAB is entangled, we have ρB to be mixed and S(B) > 0, leading to S(A|B) < 0. This proves one direction
of a ‘if and only if’ statement. To prove the other direction, if S(A|B) < 0, we have that S(B) > 0, implying
that ρB is mixed. This happens only when ρAB is entangled, which completes the proof.

4. For a composite system AB in a pure state |ψ⟩AB , show that S(ρA) = S(ρB) (Hint - think about the Schmidt
decomposition.)
Answers 4: When the composite system is in a pure state, by the Schmidt decomposition both subsystems A
and B share the same eigenvalues, which implies that they have the same entropy.

5. Prove the triangle inequality: |S(ρA) − S(ρB)| ⩽ S(ρAB) ⩽ S(ρA) + S(ρB) (Hint - for the first inequality,
consider purification and, for the second inequality, consider the result of Question 2).

Answers 5: See the proof in p. 515-516 in the Nielsen and Chuang’s book. (We first prove the second inequality
which is obtained using H(A : B) = S(ρAB∥ρA ⊗ ρB) and Question 2 (which states that S(ρAB∥ρA ⊗ ρB) ⩾ 0).
The first inequality is obtained by considering the purification of ρAB , the results of Question 4 and the second
inequality.)

6. Verify that H(A : B) = S(ρAB∥ρA ⊗ ρB), and show that discarding a quantum system can never increase
mutual information i.e., H(AB : C) ⩾ H(B : C). (Hint - consider the data-processing inequality)

Answers 6: First let us prove that log(ρA ⊗ ρB) = log(ρA) + log(ρB). Consider the eigendecomposition of
ρA and ρB as ρA =

∑
i αi|αi⟩⟨αi| and ρB =

∑
i βi|βi⟩⟨βi|. Note that ρA ⊗ ρB =

∑
i,j αiβj |αi⟩⟨αi| ⊗ |βj⟩⟨βj | is

already in the diagonal form. So, we have

log(ρA ⊗ ρB) = log

∑
i,j

αiβj |αi⟩⟨αi| ⊗ |βj⟩⟨βj |

 (8)

=
∑
i,j

log(αiβj)|αi⟩⟨αi| ⊗ |βj⟩⟨βj | (9)

=
∑
i,j

(log(αi) + log(βj)) |αi⟩⟨αi| ⊗ |βj⟩⟨βj | (10)

=
∑
i

log(αi)|αi⟩⟨αi|+
∑
j

log(βj)|βj⟩⟨βj | (11)

= log(ρA)⊗ 11B + 11A ⊗ log(ρB) . (12)
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We are ready to verify the expression.

S(ρAB∥ρA ⊗ ρB) =Tr[ρAB log(ρAB)]− Tr[ρAB log(ρA ⊗ ρB)] (13)
=− S(ρAB)− Tr [ρAB (log(ρA)⊗ 11B + 11A ⊗ log(ρB))] (14)
=− S(ρAB)− TrA [TrB [ρAB ] log(ρA)]− TrB [TrA[ρAB ] log(ρB)] (15)
=− S(ρAB) + S(ρA) + S(ρB) (16)
=H(A : B) , (17)

where in the third equality we used TrA[QAB(11A ⊗ OB)] = TrA[QAB ]OB (you can easily check it). Now, we
can write H(AB : C) = S(ρABC∥ρAB ⊗ ρC) and H(B : C) = S(ρBC∥ρB ⊗ ρC). Recall the entropy version of
data-processing inequality. For quantum states ρ and σ as well as a channel E(·), we have

S(E(ρ)∥E(σ)) ⩽ S(ρ∥σ) . (18)

In this case, we have the channel to be a partial trace over the system A i.e., E(·) = TrA[·] and ρ = ρABC and
σ = ρAB ⊗ ρC . Plugging these into the data-processing inequality leads to the desired result.


	

