

Problem Sheet 11: Fidelity

In this problem sheets, and all others, I highly recommend using Mathematica to deal with any messy algebra.

Class problems

1. Compute the fidelity between the following pairs of states:

- a) $\rho = |\Phi_+\rangle\langle\Phi_+|$ and $\sigma = |00\rangle\langle 00|$
- b) $\rho = 3/4|\Phi_+\rangle\langle\Phi_+| + 1/4|\Psi_-\rangle\langle\Psi_-|$ and $\sigma = |00\rangle\langle 00|$.
- c) $\rho = 3/4|\Phi_+\rangle\langle\Phi_+| + 1/4|\Psi_-\rangle\langle\Psi_-|$ and $\sigma = 3/7|00\rangle\langle 00| + 4/7|+\rangle\langle +| + |-\rangle\langle -|$

2. We will keep using this polar decomposition throughout this class problem. So, here is some kick-start for you to prove it.

- a) Show that any complex square matrix A can be expressed in the polar decomposition $A = |A|U$ where $|A| = \sqrt{AA^\dagger}$ and U is some unitary (Hint - singular value decomposition).
- b) Show that $\sqrt{\rho^{1/2}\sigma\rho^{1/2}} = \sqrt{\rho}\sqrt{\sigma}\tilde{V}$ for some unitary \tilde{V} .
- 3. This question works you through the proof of Uhlmann's theorem.
 - a) Use Cauchy–Schwarz inequality to show that $\text{Tr}[AU] \leq \text{Tr}[|A|U]$ where we write A in terms of its polar decomposition as $A = |A|V$. In addition, verify that equality is attained with $U = V^\dagger$.
 - b) Why can the purification of a state ρ be written as $|\psi\rangle = U_R \otimes \sqrt{\rho}U_S|\text{Vec}(\mathbb{I})\rangle$? Where U_S and U_R are unitaries. (Hint: Schmidt decomposition).
 - c) Show that $\langle \text{Vec}(\mathbb{I})|A^* \otimes B|\text{Vec}(\mathbb{I})\rangle = \text{Tr}[A^\dagger B]$
 - d) Hence show that $\max_{|\psi\rangle, |\phi\rangle} |\langle\psi|\phi\rangle| = \text{Tr}[\sqrt{\rho^{1/2}\sigma\rho^{1/2}}] = F(\rho, \sigma)$ where the maximisation is taken over all purifications $|\psi\rangle$ and $|\phi\rangle$ of ρ and σ .
- 4. (optional) Use Uhlmann's theorem to show that the data processing inequality holds for quantum fidelity, i.e. $F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \geq F(\rho, \sigma)$ for any trace preserving quantum operation \mathcal{E} .
- 5. This question works you through the derivation of the following operational expression for the fidelity

$$F(\rho, \sigma) = \text{Tr}[\sqrt{\rho^{1/2}\sigma\rho^{1/2}}] = \min_{\{M_i\}} \sum_i \sqrt{\text{Tr}[\rho M_i]\text{Tr}[\sigma M_i]}. \quad (1)$$

- a) Show that $\text{Tr}[\sqrt{\rho^{1/2}\sigma\rho^{1/2}}] = \sum_i \text{Tr}[\sqrt{\rho}\sqrt{M_i}\sqrt{M_i}\sqrt{\sigma}V]$ for a set of POVMs $\{M_i\}$ where V is some unitary (Hint - polar decomposition).
- b) Hence use Cauchy-Schwarz to show Eq. (1).