

Problem Sheet 9: Distinguishing quantum states and Matrix norms

In this problem sheets, and all others, I highly recommend using Mathematica to deal with any messy algebra.

Class problems

1. Suppose you are given a state ρ_0 with probability p and a state ρ_1 with probability $1 - p$ (single qubit states).
 - a) What is the optimum binary POVM to answer the question ‘Is the system in the state ρ_0 or ρ_1 ’?
 - b) What is the probability of successfully distinguishing ρ_0 and ρ_1 ?
2. Show that the Schatten p-norms are unitarily invariant. That is, $\|A\|_p = \|UAV\|_p$ for any unitaries U and V .
3. Write $\|Q\|_\infty$ in terms of the eigenvalues of Q (you may assume Q is square).
4. Use the unitary invariance of the Schatten p-norms and the triangle inequality to show that
$$\|U^N - V^N\|_p \leq N\|U - V\|_p.$$
5. Show that $\|Q\|_1 \geq \|Q\|_2 \geq \|Q\|_\infty$.
6. Now for any $p, q \geq 1$, show that $\|Q\|_p \leq \|Q\|_q \iff p \geq q$. Notice that $p > q$ does not imply that $\|Q\|_p > \|Q\|_q$. (Hint: you can use the fact that for real positive x_i and $r \geq 0$, we have $\sum_i x_i^{1+r} \leq (\sum_i x_i)^{1+r}$. If you use it, try at least to show it.).
7. Write (/find in built functions) in Python and Mathematica code that can compute the Schatten 1, 2, and infinity norms of a (Haar) random unitary matrix. What is the average distance (for each norm) between two randomly chosen unitaries.

Assessed Problem

Say you have some arbitrary channel \mathcal{E} and you want to bound $\|\mathcal{E}(O)\|_2$ where O is an arbitrary observable. You can assume that \mathcal{E} maps a d_S dimensional system to a d_S dimensional system.

We will assume that this channel can be written in Kraus form as $\mathcal{E}(\dots) = \sum_{k=1}^M B_k \dots B_k^\dagger$.

You can also assume that the channel has the Stinespring dilation using a d_E dimensional ancilla system.

1. Derive the tightest upper bound you can for $\|\mathcal{E}(O)\|_2$ in terms M , d_S , and the norm of O (you can pick the norm).
Hint- you may want to derive multiple bounds depending on whether O is a projector or a (sum of) Pauli operators.
2. Derive the tightest possible upper bound you can for $\|\mathcal{E}(O)\|_2$ which is independent of M . It may, or may not, also depend on d_E and/or d_S . It will depend on the norm of O (you can pick the norm).
Hint- you may want to derive multiple bounds depending on whether O is a projector or a (sum of) Pauli operators.
3. Discuss which of these bounds is tighter?
4. What is the tightest bound you can obtain on $\|\mathcal{E}^*(P)\|_2$ where \mathcal{E}^* is the adjoint of a channel and P is a Pauli? (Note: the adjoint of a channel is not necessarily a channel.)