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Problem 1 : Matrix-vector and matrix-matrix products


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×


0
0
1
1

 =


0
0
1
1


1

2


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

×


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

 =


1/2 0 0 0

0 1/2 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

×


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×


1 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 =


1 0 0 0
0 1 1 2
0 1 2 1
0 2 1 1


(
1 0 0 0

)
×


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =
(
1 1 1 1

)

Problem 2 : Eigenvalues and eigenvectors

In this problem we are requested to find the set of eigenvalues λi with corresponding eigenvectors
vi of a matrix M such that

Mvi = λivi

We start by finding the roots of the characteristic polynomial det(M − λI).

For the matrix M =

(
1 i
2 1

)
it is given by

det(M − λI) = det(

(
1-λ i
2 1-λ

)
) = (1− λ)2 − 2i .

Setting it to 0 and expanding 2i = (i + 1)2 we arrive at the solutions λ1,2 = 1 ± (i + 1) which
constitute the eigenvalues of M .

Next we can find the eigenvectors vi corresponding to each eigenvalue λi by solving the linear
system of equations (M − λiI)vi = 0.
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For the first eigenvalue λ1 = 2 + i we have that

M − λ1I =

(
1-(2+i) i

2 1-(2+i)

)
=

(
-1-i i
2 -1-i

)
this gives us the redundant system of equations(

-1-i i
2 -1-i

)
v1 = 0

with a particular solution given by the normalized eigenvector v1 = 1√
6

(
1+i

2

)
.

The complete set of solutions (eigenspace) is given by the span(v1) =
{
c · v1 | c ∈ C \ {0}

}
Similarly for the second eigenvalue λ2 = −i we find the normalized eigenvector v2 = 1√

6

(
-1-i
2

)
Finally with the matrix of eigenvectors

U =
(
v1 v2

)
=

1√
6

(
1+i -1-i

2 2

)
and the diagonal matrix of eigenvalues

Λ = diag(

(
λ1

λ2

)
) =

(
λ1 0
0 λ2

)
=

(
2+i 0

0 -i

)
we can easily verify that M can be diagonalized as

M = UΛU−1 (1)

Problem 3 : Pauli matrices

To solve this problem we can apply the definition of product between matrices and verify the
equivalences with the results of calculations.

Problem 4 : Exponential of a matrix

From the definition of the matrix-matrix product it is easy to see that powers of a diagonal
matrix Λij = δijΛii can be calculated by taking the element-wise power of the diagonal:

(Λ2)ij =
∑
k

ΛikΛkj =
∑
k

δikΛiiδkjΛjj = δijΛ
2
ii

Consequently, with the matrix exponential being defined as the sum of powers

eM ≡
∞∑
n=0

Mn

n!
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we have that the matrix exponential of a diagonal matrix amounts to taking the element-wise
exponential of the diagonal.

We notice that the Pauli matrix Z =

(
1 0
0 −1

)
is diagonal and so it’s matrix exponential is

given by

eiαZ = exp

(
iα 0
0 −iα

)
=

(
eiα 0

0 e−iα

)
Next we want to calculate the matrix exponential of iαY which is given by

eiαY =
∞∑
n=0

1

n!
(iα)nY n

In the previous problem we saw that Y 2 = I, thus we have that for even powers Y 2n = I and
for odd powers Y 2n+1 = Y . We can split the sum into it’s even and odd parts:

∞∑
n=0

1

n!
(iα)nY n =

∞∑
n=0

1

(2n)!
(iα)2nI +

∞∑
n=0

1

(2n+ 1)!
(iα)2n+1Y

we have that (iα)2n = (−1)nα2n and (iα)2n+1 = i(−1)nα2n+1 and so we can decompose it
further(while also taking out the now constant matrices I and Y and the factor i)

= I
∞∑
n=0

1

(2n)!
(−1)n(α)2n

︸ ︷︷ ︸
=cos(α)

+iY
∞∑
n=0

1

(2n+ 1)!
(−1)n(α)2n+1

︸ ︷︷ ︸
=sin(α)

Seeing that the remaining power series are those of sin and cos respectively we get that the matrix
exponential of iαY is given by

eiαY = cos(α) I + sin(α) iY =

(
cos(α) - sin(α)
sin(α) cos(α)

)
In the following we present an alternative, more pedestrian approach for calculating the matrix

exponential (which works for more general cases and not just those which happen to be rotation
matrices) using diagonalization.

Given the diagonalization of a matrix M = UΛU−1 (which we have seen in exercise 2) we can
compute it’s square

M2 = UΛU−1U︸ ︷︷ ︸
=I

ΛU−1 = UΛ2U−1

by taking the element-wise square of the eigenvalues in Λ2 since U and it’s inverse cancel out. For
higher powers the matrix of eigenvectors U and it’s inverse U−1 cancel out in a similar way.

Using the same reasoning as in the diagonal case before we can thus calculate the matrix expo-
nential of a matrix by diagonalizing it and taking the element-wise exponential of the eigenvalues
on the diagonal of Λ, so for M = UΛU−1

eM = eUΛU−1

= UeΛU−1
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Now we can take the Pauli matrix Y =

(
0 -i
i 0

)
. We notice that Y is hermitian. By the spectral

theorem it can diagonalized by a unitary Matrix U with real eigenvalues.
Following problem 2, we calculate the diagonalization of Y :(

0 i
-i 0

)
︸ ︷︷ ︸

Y

=
1√
2

(
-1 1
-i -i

)
︸ ︷︷ ︸

U

(
-1 0
0 1

)
︸ ︷︷ ︸

Λ

1√
2

(
-1 i
1 i

)
︸ ︷︷ ︸

U−1=UH

Here we only diagonalized the Pauli matrix Y , however an additional constant iα simply scales
all of it’s eigenvalues:

iαY = iαUΛUH = U(iαΛ)UH

By taking the element-wise exponential of iαΛ we find that

eiαY = UeiαΛUH =
1

2

(
-1 1
-i -i

)(
e-iα 0
0 eiα

)(
-1 i
1 i

)
=

(
eiα+e−iα

2
i e
iα−e−iα

2

−i eiα−e−iα
2

eiα+e−iα

2

)
Using the Euler identity eiφ = cos(φ) + i sin(φ) it is easy to show that sin(φ) = eiφ−e−iφ

2i
and

cos(φ) = eiφ+e−iφ

2

and so the matrix exponential eiαY is equal to
(

cos (α) − sin (α)
sin(α) cos (α)

)
.

Problem 5 : Tensor product

•

(
1 0
0 0

)
⊗
(

1 0
0 1

)
+

(
0 0
0 1

)
⊗
(

0 1
1 0

)
=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• Take A =

(
1 0
0 1

)
and B =

(
1 0
0 −1

)
.

Then

A⊗B =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


and

B ⊗ A =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


are not equal.
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• To prove the equivalence we can simply apply the definition of tensor product and do the
calculations on both sides.

• Now we have to prove that the matrix(
1 0
0 0

)
⊗
(

1 0
0 1

)
+

(
0 0
0 1

)
⊗
(

1 0
0 −1

)
can not be written as a tensor product of two matrices A⊗B. First, we have to calculate the
product. Using the definition of tensor product given in the exercise session we have

(
1 0
0 0

)
⊗
(

1 0
0 1

)
+

(
0 0
0 1

)
⊗
(

1 0
0 −1

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Considering a matrix A of the form

A =

(
a11 a12

a21 a22

)
the tensor product A⊗B has the form(

a11B a12B
a21B a22B

)
.

Therefore we have

a12B = a21B =

(
0 0
0 0

)
that means either B = 0 or a12 = a21 = 0. Since B can’t be the null matrix, we can conclude
a12 = a21 = 0. For the diagonal blocks, we have that

a11B =

(
1 0
0 1

)
, a22B =

(
1 0
0 −1

)
or, equivalently

a22

(
1 0
0 1

)
= a11

(
1 0
0 −1

)
which has no nonzero solution, hence writing the matrix as a tensor product of two matrices
is not possible.
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• For the last part we need to show that |ψ〉 = |00〉+ |11〉 cannot be written as a simple tensor
product of two states.

Taking two general states |φ1〉 = α|0〉 + β|1〉 and |φ2〉 = γ|0〉 + δ|1〉 their tensor product is
given by

|φ1〉 ⊗ |φ2〉 = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉

.

Comparing the coefficients with the state |ψ〉 = |00〉+|11〉 we arrive at the system of equations

αγ = 1

αδ = 0

βγ = 0

βδ = 1

Clearly this has no solution and so writing |ψ〉 as a tensor product of two states is impossible.
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