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Problem 1 : Matrix-vector and matrix-matrix products
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Problem 2 : Eigenvalues and eigenvectors

In this problem we are requested to find the set of eigenvalues \; with corresponding eigenvectors
v, of a matrix M such that

MVl' = )\Z'V,‘

We start by finding the roots of the characteristic polynomial det(M — AI).
For the matrix M = (; i) it is given by

det(M — AT) = det (1; 13)) (1= A2 -2

Setting it to 0 and expanding 2i = (i + 1)* we arrive at the solutions A\;o = 1 4 (i + 1) which
constitute the eigenvalues of M.

Next we can find the eigenvectors v; corresponding to each eigenvalue \; by solving the linear
system of equations (M — \;I)v; = 0.



For the first eigenvalue \; = 2 4+ ¢ we have that

M —\NI= (1_<22+i) 1-(21@)) B (12Z fl)

this gives us the redundant system of equations

i
( 2 12) vi=0

with a particular solution given by the normalized eigenvector v, = \/ig < ;LZ)

The complete set of solutions (eigenspace) is given by the span(vy) = {c vy | ceC\ {0}}

Similarly for the second eigenvalue Ay = —i we find the normalized eigenvector vy = \/Lé (_ 12_1)
Finally with the matrix of eigenvectors
I (14 -1-i
U= V2)Z_6< 2 2)
and the diagonal matrix of eigenvalues
oAy (M 0 (24 0
e ()= (0 0) = (o' %)
we can easily verify that M can be diagonalized as
M =UAU (1)

Problem 3 : Pauli matrices

To solve this problem we can apply the definition of product between matrices and verify the
equivalences with the results of calculations.

Problem 4 : Exponential of a matrix

From the definition of the matrix-matrix product it is easy to see that powers of a diagonal
matrix A;; = d;;A\;; can be calculated by taking the element-wise power of the diagonal:

(A%);; = Z NigAy; = Z OieNiiOri N5 = 0357,
P P

Consequently, with the matrix exponential being defined as the sum of powers
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we have that the matrix exponential of a diagonal matrix amounts to taking the element-wise

exponential of the diagonal.
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Next we want to calculate the matrix exponential of iaY which is given by

We notice that the Pauli matrix Z = ( > is diagonal and so it’s matrix exponential is

given by

o0

eiaY _ Z 1 (Za)nyn

n!
n=0
In the previous problem we saw that Y2 = I, thus we have that for even powers Y?" = I and

for odd powers Y2"*t!1 =Y. We can split the sum into it’s even and odd parts:

o0 o0 [e.9]
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we have that (ia)*® = (—1)"a*" and (i)™ = i(—1)"a?"*! and so we can decompose it

further(while also taking out the now constant matrices I and Y and the factor 7)

[e.e]

1
2n Y —1)" 2n+1
; i Z 2n—|—1)< )'(@)
:cSSr(oz) :s?rir(a)

Seeing that the remaining power series are those of sin and cos respectively we get that the matrix
exponential of iaY is given by

'Y = cos(a) I + sin(a) iV = (Z?S((g)) _ng:(<§)))

In the following we present an alternative, more pedestrian approach for calculating the matrix
exponential (which works for more general cases and not just those which happen to be rotation
matrices) using diagonalization.

Given the diagonalization of a matrix M = UAU™! (which we have seen in exercise 2) we can
compute it’s square

M?=UAUT'UAU' =UANU™!
~——
=I
by taking the element-wise square of the eigenvalues in A? since U and it’s inverse cancel out. For
higher powers the matrix of eigenvectors U and it’s inverse U ! cancel out in a similar way.
Using the same reasoning as in the diagonal case before we can thus calculate the matrix expo-

nential of a matrix by diagonalizing it and taking the element-wise exponential of the eigenvalues
on the diagonal of A, so for M = UAU !

1 _
GM — 8UAU — UeAU 1



0 -2

0

theorem it can diagonalized by a unitary Matrix U with real eigenvalues.
Following problem 2, we calculate the diagonalization of Y:

()-50 96 )50 )

A U-1=UH

Now we can take the Pauli matrix Y = > . We notice that Y is hermitian. By the spectral

Here we only diagonalized the Pauli matrix Y, however an additional constant iav simply scales
all of it’s eigenvalues:

iaY = iaUAUY = U(iaA)UH

By taking the element-wise exponential of 1aA we find that

e . eia_’_efia el _p—ia
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Using the Euler identity e’ = cos(¢) + isin(¢) it is easy to show that sin(¢) = “=¢— and
cos(p) = —6““26_”’
and so the matrix exponential e is equal to | > () —sin(a) :
sin(a)  cos (a)
Problem 5 : Tensor product
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are not equal.



e To prove the equivalence we can simply apply the definition of tensor product and do the
calculations on both sides.

e Now we have to prove that the matrix

(o)1) ()6 2)

can not be written as a tensor product of two matrices A ® B. First, we have to calculate the
product. Using the definition of tensor product given in the exercise session we have

100 0
10\ _ (10,0 0\_(1 0 010 0
(0 ())@(0 1)+(0 1)®(0 —1)_ 001 0

000 —1

Considering a matrix A of the form
A= (an CL12)
Qg1 QA22
the tensor product A ® B has the form
allB algB
ang ang
Therefore we have

00
a12B = an B = <0 0)

that means either B = 0 or a13 = as; = 0. Since B can’t be the null matrix, we can conclude
a2 = ag; = 0. For the diagonal blocks, we have that

10 1 0
allB:<0 1) ) a22B:(0 _1>
I A 1 0
@280 1) 7" 0 -1

which has no nonzero solution, hence writing the matrix as a tensor product of two matrices
is not possible.

or, equivalently



e For the last part we need to show that |1)) = |00) + |11) cannot be written as a simple tensor
product of two states.

Taking two general states |¢1) = a|0) + 5|1) and |¢2) = 7|0) + §|1) their tensor product is
given by
|61) @ [d2) = a]00) + ad|01) + S~[10) + B4[11)

Comparing the coefficients with the state |¢)) = |00)+|11) we arrive at the system of equations

ay=1
ad =0
fy=0
£o=1

Clearly this has no solution and so writing |1)) as a tensor product of two states is impossible.



