
Grover_algorithm_qiskit

November 7, 2024

1 Quantum information and quantum computing - Problem set
08

1.0.1 Problem 1 : Code Grover’s search algorithm

In this notebook we are going to see a simple implementation of the Grover algorithm on a database
of dimension 𝑁 = 8 possibile data, so using 𝑛 = 3 qubits.

Between all the possibile state |𝑥𝑦𝑧⟩ , let’s consider |110⟩ and |101⟩ as the solutions of our problem.

[1]: #initialization
import matplotlib.pyplot as plt
import numpy as np
import math

importing Qiskit
from qiskit_aer import QasmSimulator
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

Creating the oracle The first thing to make is a oracle function, that adds a phase to the states
that are solution of our search problems. Considering 𝑓(𝑥) = 1 iff 𝑥 is a solution of the problem,
the unitary has the form

𝑈|𝑥⟩𝑛 = (−1)𝑓(𝑥)|𝑥⟩𝑛 (1)

In our case the oracle function is easy to make: we have to control if the first qubit (the last, for
qiskit order) is 1 and then perform a X gate on second and third qubit.

Note that, since we already know the solutions, we can construct the oracle without the ancilla
qubit.

[2]: def oracle(circuit):
circuit.cz(2,0)
circuit.cz(2,1)

circuit.barrier() # Barriers are added to divide the different parts of the␣
↪circuits

return circuit

1

Creating the Grover gate Now we want to add the Grover gate. Remember that it is made
of three parts:

• Apply Hadamard gates on all qubits
• Apply a phase shift to all the |𝑥⟩𝑛 except |0⟩𝑛
• Apply again Hadamard to all the qubits

[3]: def grover_gate(circuit):
Hadamard
for i in range(circuit.num_qubits):

circuit.h(i)

To add a phase at all the solutions except |0>, we create a set of
transformations that only |0> won't trigger
circuit.z(0) # address |**1> states
circuit.x(0) # now target |**0> states
circuit.cz(0,1) # for |*10> states
circuit.cx(1,2) # control if the second qubit is in 1
circuit.cz(0,2) # for |100> state

now bring the qubit back to their original state
circuit.cx(1,2)
circuit.x(0)

#Hadamard again
for i in range(circuit.num_qubits):

circuit.h(i)

circuit.barrier()
return circuit

Construct the circuit We can now assemble the Grover circuit for our problem. As a first
thing, apply the Hadamard:

[4]: grover= QuantumCircuit(3,3)

for i in range(3):
grover.h(i)

grover.barrier()

[4]: CircuitInstruction(operation=Instruction(name='barrier', num_qubits=3,
num_clbits=0, params=[]), qubits=(Qubit(QuantumRegister(3, 'q'), 0),
Qubit(QuantumRegister(3, 'q'), 1), Qubit(QuantumRegister(3, 'q'), 2)),
clbits=())

Then the oracle and the grover gate (since we have 2 solutions in 𝑁 = 8 possibilities, one iteration

2

is sufficient to obtain the exact result):

[5]: grover = oracle(grover)
grover = grover_gate(grover)

Don’t forget to measure!

[6]: for i in range(grover.num_qubits):
grover.measure(i,i)

Print the circuit

[7]: # We can simply print the circuit
#print(grover)

Or draw it just like in IBM Quantum Experience
to do this, install pylatexenc with 'pip install pylatexenc'
and then use the draw function

grover.draw('mpl')

[7]:

Run the algorithm on QASM
[8]: backend = QasmSimulator()

results = backend.run(grover, backend=backend, shots=2048).result()
answer = results.get_counts()

Visualize the results
[9]: plt.suptitle("Results of Grover's algorithm")

plt.bar(answer.keys(), answer.values(), color='royalblue')
plt.show()

print(answer)

3

{'110': 1032, '101': 1016}

As you can see, the results are exactly what we expected! Since we prepared a equiprobable
superposition of the two result states, half of the time we get |101⟩ and the other half |110⟩.
In this case we have only the solutions of the problem as outcome of the measurements, because
with one rotation you have exactly the superposition of the solutions.

In general, the aim of the Grover’s algorithm is to get as close as possibile to the superposition of
the solutions, in order to have statistically the right answers.

1.0.2 Extra : Run with noise model

[10]: from qiskit_aer.noise import NoiseModel
from qiskit.providers.fake_provider import GenericBackendV2

fake_backend = GenericBackendV2(num_qubits=3)
noise_model = NoiseModel.from_backend(fake_backend)
shots = 2048

4

results = fake_backend.run(grover, backend=fake_backend,␣
↪shots=shots,noise_model = noise_model).result()

answer = results.get_counts()

[11]: plt.suptitle("Results of Grover's algorithm")
plt.bar(answer.keys(), answer.values(), color='royalblue')
plt.show()

print(answer)

{'011': 1, '111': 5, '100': 9, '110': 1037, '001': 10, '000': 2, '010': 7,
'101': 977}

[]:

5

	Quantum information and quantum computing - Problem set 08
	Problem 1 : Code Grover's search algorithm
	Extra : Run with noise model

