8.1 Energy schemes in CF with different symmetries

Make a qualitative plot (highlighting split doublets and states belonging to the same family) of the energy scheme characterizing a
magnetic atom in the following situations (assuming B = 0) :

1) J=15/2 in a CF with C,, symmetry

2) J=8in a CF with C3, symmetry

3) J=7in a CF with C,, symmetry

4) In which of the three cases we can have QTM?
5) In which of the three cases we can have TA-QTM?

Adapted from: C. Hubner et al., Phys. Rev.B 90, 155134 (2014)
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8.1 Energy schemes in CF with different symmetries - Solution

EPFL

In a CF with C,, symmetry all
states having a J, differing by 2 are
mixed = 2 families of states.

In addition Jf — J; # 2 for all
doublets = no split doublets i.e.
no TA-QTM

In a CF with C5, symmetry all
states having a J, differing by 3 are
mixed = 3 families of states.

In addition J} — J; = 3ifor ], =
6 and 3 = two split doublets and
two paths for TA-QTM

In a CF with C,4, symmetry all
states having a J, differing by 4 are
mixed = 4 families of states.

In addition Jf — J; = 4ifor ], =
6 and 2 = two split doublets and
two paths for TA-QTM

1) CF with C,, symmetry

o,
(Hz)

2) CF with C;3, symmetry

(ij 2) 'L

3) CF with Cg4, symmetry

(Hy)

4) No QTM in all three cases-> magnetization preserved without external perturbation
5) TA-QTM only in case 2) and 3)

—7 0 7

(S.)
States belonging to the same family are
shown with the same color



8.2 Perturbation of a two-levels system “PFL

Consider an atom with total angular momentum J and thus 2J+1 J, states. The interaction with a CF breaks the degeneracy of the J, states.

In a perfect axial CF (Cw,,) all eigenstates are pure and characterized by one of the 2/+1 values of J,. In a CF with reduced symmetry, transverse
terms (O;* m # 0) appear in the Hamiltonian and produce the splitting of the doublets characterized by AJ, = m.

We want to calculate such splitting.

For simplicity we consider a system that has only two eigenstates described by an Hamiltonian H = H® + H', where H? describes the axial

terms and H? the transverse terms. We denote with | 1) and | 2) the eigenstates of H? having energies E; and E,, respectively i.e.
H°|la) =E,la) a=1,2.
Assuming that H' is a perturbation to the axial part, demonstrate that:

1) the eigenvalues of the Hamiltonian H are given by E; = %(El + E,) + %\/(EjL — E;)? + 4e?  where €% = Hi,H3; and H; = (i|[H'[})

2) how the difference in energy E, — E_ dependson E; — E,?

1 1
3) the eigenstates of the Hamiltonian H are given by | +) =~ | 1) — EH—lz_ 12) and | -)= [2)+ EH—li, 1)
2751 2751

N.B.: the same arguments apply to the discussion of the hot spots in the DOS as source of the MAE (see lecture 4, slide 13). In that case the
SOC play the role of the perturbation



8.2 Perturbation of a two-levels system - Solution “PFL

The variation of the energies of the system as the separation of the states of
the model system is increased is illustrated in Fig. 6.1. As can be seen, the lower
of the two levels is lowered 1n energy whereas that of the upper level is raised.

Hy = Ey (2) In other words, the effect of the perturbation is to drive the energy levels apart

and to prevent their crossing. This non-crossing rule is a common feature of all

0 0 perturbations. A second general feature can also be seen from the illustration:

Vo=aph +aypy 3) the effect of the perturbation is greater the smaller the energy separation of the

unperturbed levels. For instance, when the two original energies have the same
energy (E, = E,), then

The wavefunctions of the true system differ only slightly from those of the
model system, and we can hope to solve the equation

in terms of them by writing

where a, and a, are constants.
To find the constants a, we insert the linear combination into the

Schrédinger equation and obtain (using ket notation) E.—E_ =2
ay(H - E)|1) + ay(H — E)[2) = 0
2
When this equation is multiplied from the left by the bras (1| and (2| in turn, and (a) e/AE
use 18 made of the orthonormality of the two states, we obtain the two equations o L E— -
o
ay(Hy—E)+aH, =0  aHy +a,(Hy—E)=0 4) e
w
where H,,, = (m|H|n). —
The condition for the existence of non-trivial solutions of this pair of equa- ib)
tions is that the determinant of the coefficients of the constants a, and a, should 2
disappear: AE
H,—-E H, | _ 0
Hy, Hy, -E
This condition is satisfied for the followmg values of E:
. 2 12 Y
E. =5(Hy, + Hy) £ 3{(Hy, — Hy)" + 4H My, } (5) \T
2
In the special but common case of a perturbation for which the diagonal matrix e/AE
elements are zero (H,‘,,l,ﬂ = 0), this expression simplifies to
| | p 511/2 Fig. 6.1 The variation of the energics of a Fig. 6.2 (a) When the unperturbed levels
E, = E(El + EZ) + 5{(E1 - Ez) + 4e } ' (6) two-level system with a constant are far apart in cnergy, the shift in energ
2 (D) (1) 1 . . 2 1ppl1)2 perturbation as the separation of the mtlscd by a perturbation of strength ¢ is
where &* = H, HZ} . Because H'" is hermitian, we can write &= = |H},’|". unperturbed levels is increased. The pale = /AE. (b) If the levels arc initially
When the perturbation is absent, &£ = 0 and E_=E, E_=E,, the two unper- lines show the energies according to degencrate, then the shift in energy is

turbed energies. second-order perturbation theory. much larger, and is equal to & 4



8.2 Perturbation of a two-level system - Solution

Equation 6.6 also shows that the stronger the perturbation, the stronger the
effective repulsion of the levels (Fig. 6.2). In summary:

1. When a perturbation is applied, the lower level moves down in energy and
the upper level moves up.

2. The closer the unperturbed states are in energy, the greater the effect of a
perturbation.

3. The stronger the perturbation, the greater the effect on the energies of the
levels.

The effect of the perturbation can be seen in more detail by considering the
case of a perturbation that is weak compared with the separation of the energy
levels in the sense that &2 < (E, — EZ) When this condmon holds, eqgn 6.6
can be expanded by making use of (1 + x)l =1+3x+... toobtain

2¢2
E. =4(E, +E,;) £5(E, —Ez)<1 +ZT+ )

where AE = E, — E,. Then, to second-order in & we have

G R 7
AE -T2 TAE )

These two solutions converge on the exact solutions when (Zs/AE)2 < 1, as
shown in Fig. 6.1. A general feature of all perturbation theory calculations is
that the shifts in energy are of the order of &°/AE.

E, ~E —

The perturbed wavefunctions are obtained by solving eqn 6.4 for the coeffi-
cients setting in turn E = E_ (to obtain i) and E = E (to obtain i/_). A
convenient way to express the solutions 1s to write

V =¥ cos { + 3 sin{ W= -\ sing Y cos ¢ (8)
and then it is found that’

|H(i\

'E, —E, ©)

tan 2{ =
For a degenerate model system (E, = E,), we have tan 2{ = oo, corresponding
to { = n/4. In this case the perturbed wavefunctions are

I i

It follows that each perturbed state is a 50 per cent mixture of the two model
states. In contrast, for a perturbation acting on two widely separated states we
can write tan2({ ~ 2{ = —2|H”\|/AE. Furthermore, because sin{ =~ ( and
cos( = 1, it follows that

(1) (1
10) |H;2 | (0) — (0) |H1 | ]

We see that each model state is slightly contaminated by the other state.

(11)
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8.3 Fe atominaC,, CF “PFL

Consider an Fe atom adsorbed on a site with C;, symmetry, like the one shown in the figure, in a magnetic field B applied along the z axis.
1) Write the most general spin Hamiltonian that can be used to describe the energy scheme.
2) For the CF part, let’s use a spin Hamiltonian with a minimum number of terms, Hcp = BS02 + B0} with 09 = 352 (neglecting the

S(S + 1) term which just generates a shift in energy) and OZLL = %(Sﬁ + $%); we also assume no magnetic field. Calculate the energy

scheme assuming Bg = —1 and a negligible transverse termi.e. Bf = 0

3) Calculate the energy scheme assuming Bg = —1 and a small transverse term i.e. Bf = 0.01. Express the wave functions of the two states
forming the ground doublet

4) At which value of the magnetic field the two states of the ground multiplet become almost pure (assuming g = 2)?



8.3 Fe atom in a C;, CF - Solution

EPFL

1) Fe is a 3dg transition metal with the magnetism originating from the 3d statesi.e. /=2 and $=2 . The
most general spin Hamiltonian in an external magnetic field along the z direction with a C,, CF is then

Herr = gupS,B + B303 + B0 + BLO;.

2) With the given conditions, the spin Hamiltonian becomes Herp = B303 = —3S7
We need to calculate H, |5,s,) = —352[S,S,) =
Hepr 1S, £2) = =125, £2); Hopp 1S, 1) = =3 [S,£1); HeprlS,0)=0

3) The spin Hamiltonian becomes Horr = B303 + B{0f = —352 + 0.01 %(Sj‘; + S4).
We can consider the effect of the O} as a perturbation of the previous energy scheme given the relative

intensity of the BJ* coefficients weighting the effect of the operators (B = 1—(1)033).

We have that S% | S,—2) = V453 |S,—1) = V4V6 52 |5,0) = V4 6 S, | S, 1) = 24| S, 2) and similarly for
the S* term. Thus the transverse term mixes the two states | 1) = |S,—2)and | 2) = | S, 2) of the ground
multiplet. All the other states are not affected since they can not be projected onto one of the other states
by the Ofoperator.

To evaluate the splitting we can use the result of the previous exercise showing that two degenerate states

split by 2¢ with e = Hy, = Bf %Si = 0.12. Then the new energy scheme is the one shown on the side.

The wave functions of the two mixed states are | S, +) = %( | S, —2)+ | S,2))

Ea

12 L

Ea

-11.88
-12.12




8.3 Fe atom in a C,, CF - Solution “PFL

4) In an applied magnetic field, the two states of the ground multiplet are not anymore degenerate and their difference in
energy depends on B; thus the effect of the perturbation generated by the transverse term of the CF is to add a correction to
the energy E1 ,(B) = gugS,B + B3 07 of the pure states of the order of

- -
E1-E;  2guplSsB
The field dependence of the mixed states is then given by E, (B) = E1,(B) + §E4(B)

with the g-factor g =2 and |S,| = 2.

We can assume that the two states of the ground multiplet become almost pure when

26E4(B) £ 2 _ _ : _
m = (—29M3|SZ|B) =001 = Zg,uBlSle ~14e =>B=35T (Wlth Up = 0.06 meV/T)
£
E1—-E;

At this field | +) = | 1) — | 2) = | 1) — 0.07 | 2)i.e. thereis onlya 0.07%2 = 5 - 103 weight of state | 2) in state | +)



8.4 Butterfly shaped magnetization curve of TbPc, “PFL

From the crystallographic structure of the TbPc, molecule we know that the Tb atom is in a C4, crystal field.

1) Write the Spin Hamiltonian that describe the Tb atom

2) From a series of different measurements, the energy scheme shown in the figure has been deduced. This simplified energy scheme
(nuclear spin effects are not shown) qualitatively explain the magnetization curve of the TbPc, molecules showing a butterfly shape
characterized by fast relaxation for B = 0. Qualitatively, at which magnetic field fast relaxation should set in according to this scheme?

3) Always neglecting the nuclear spin effects, what should be the zero-field splitting of the ground doublet to have a fast relaxation starting at
B =~ 50 mT as seen in the magnetization curve shown in the figure?

a) b)
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Adapted from 10.1002/anie.200462638 9



8.4 Butterfly shaped magnetization curve of ThPc, - Solution “PFL

1) Tbis a rare earth element with the magnetism originating from the 4f statesi.e. /=3 and J = 6 . The most general spin Hamiltonian in an
external magnetic field along the z direction with a C,, CF is then
Herr = gugl,B + B303 + B{0Q + B{0f + B0g + B¢O¢.

2) From the figures we see that the two states of the ground multiplet mix for fields smaller than about 4 - 10™* mT, with a zero-field splitting
of about 9 - 108 meV. Then fast relaxation via QTM should set in for fields smaller than 4 - 10~% mT,

2
3) We have seen in the previous exercises that the states start to mix when #&Z)@ =2 (m) =0.01 = £ =2v0.005 g;ugl/,|B

With g; = 1.5 we find that € = 0.0038 meV

Adapted from 10.1002/anie.200462638 10



8.5 Spin dynamics “P=L

Consider an atom of Dy adsorbed on a crystal surface and assume that the CF defined by the interaction with the surrounding atoms has a Cg,
symmetry. The Dy electronic configuration is similar to the one it has in gas phase : [Xe] 6s% 410,

1) Write the most general spin Hamiltonian describing the energy scheme of the Dy atom

Assuming a ground doublet with maximum J, and absence of magnetic field, what is the minimum number of scattering events for spin
relaxation of a fully occupied J, = -8 state assuming that:

2) the spin can relax only via spin-electron scattering. Sketch the possible paths.

3) the spin can relax only via spin-phonon scattering. Sketch the possible paths.

Consider the energy scheme shown in the figure which correspond to Dy adsorbed on graphene.

4) Repeat point 2) and 3) for this configuration. What happens in a small magnetic field, just large enough to avoid split doublets?

15 F .
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Energy (meV)
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R. Baltic et al., Nano Letters 16, 7610 (2016) 11




8.5 Spin dynamics - Solution “P-L

1) Dy is a rare earth element with the magnetism originating from the 4f states i.e. / = 3 and from the electronic configuration we deduce J = 8 .
The most general spin Hamiltonian in an external magnetic field along the z direction with a C¢, CF is then

Hepr = gligl,B + B303 + B0 + BE0OQ + BEO¢.

E E
2) Since Hspin—electron - Jexc JZ Gy +1/2 Jexc ( J+ o.+J. G-i-) : . : \
a minimum of 4 spin-electron scattering are needed. - ' -
The path using QTM via the split doublet is the fastest -

one. Other three paths exist but they are less probable

A
\

\
/

since the mixing of non degenerate states is much

smaller __)' \_ //
8-765-4-3-2-101234561738 —;—7-6—5—4—3—2—101 23456738
E E
3) Since Hyyin phonon = @ (1, J. )+ b (J.2, 12) = o - o
a minimum of 2 spin-phonon scattering are needed. -
Also in this case the path using QTM via the split h " h
. . «y . - S_ \ [ S- \
doublet is the fastest one. Another path exists but it is = P - = P
less probable since the mixing of non degenerate states / \: N
is much smaller — - — -

8-76-5-4-3-2-1012345¢6738 8-76-5-4-3-2-1012345¢6738 12



8.5 Spin dynamics - Solution

4) In case of spin-phonon scattering a single
scattering is enough but the probability is low.
The most probable spin-phonon scattering
path passes via the spilt doublet and it
requires two scattering events.

In case of spin-electron, a minimum of 2

scattering events are needed.

In an applied field, the reversal paths are the
same but the one via the split doublet is not
anymore the most probable. Two calculate
the probability of each path one need to
calculate the matrix elements and consider
the electron (phono) density as well as the
electron (phonon) population ( given by the
Fermi-Dirac (Bose-Einstein) function)
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