

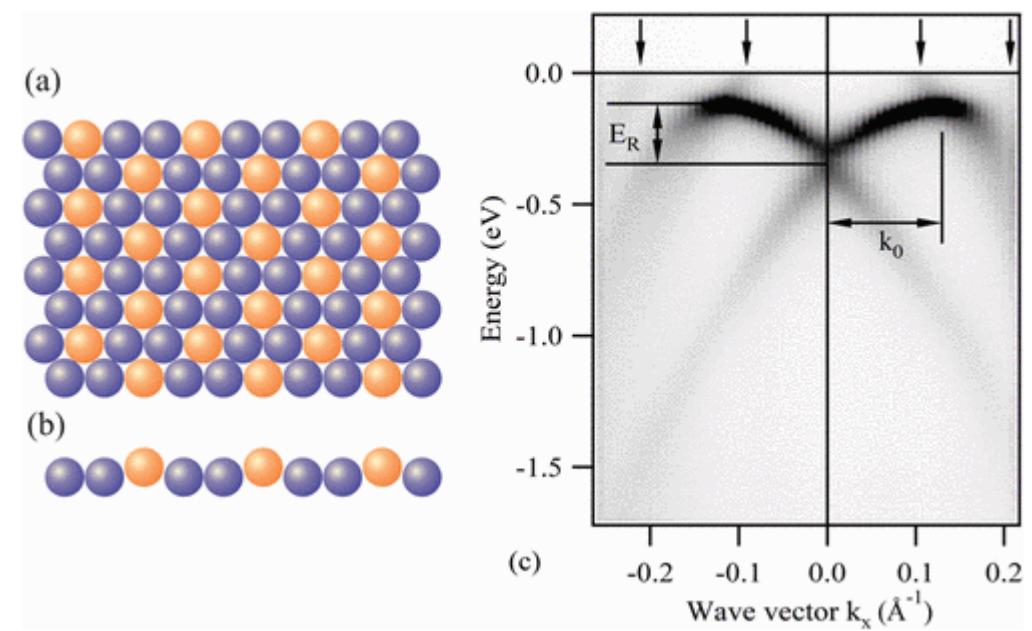
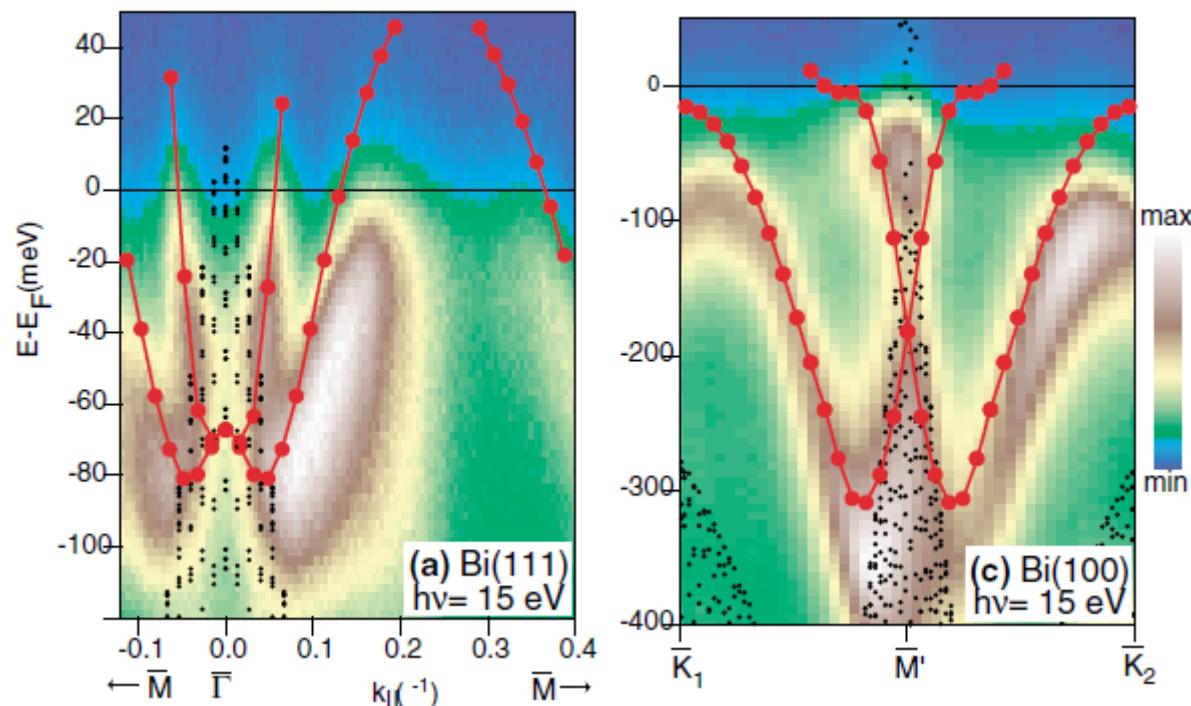
7.1 RE energy: Bi(111) vs Au(111)

The RE band splitting has been measured on Bi(111) as reported in the figure below.

- 1) Evaluate the RE energy E_R
- 2) Compare the Bi(111) surface ($[\text{Xe}] 4f^{14} 5d^{10} 6s^2 6p^3$) with the case of Au(111) shown in the lecture ($[\text{Xe}] 5d^{10} 6s^1$) .

Are the splitting the same? Is there a correlation between E_R and the work function (i.e. the potential one needs to overcome to extract an electron from a given material)? Comment

¹ H	13.598	² He	24.58
0.7542		-0.22	
³ Li	9.32	³ He	21.56
5.39	4.98	⁴ He	
2.9	-0.19	⁵ Be	
0.6182		⁶ B	11.26
⁷ Na	12Mg	⁷ C	5.0
5.14	7.64	⁸ N	14.54
2.75	3.66	⁹ O	13.61
0.5479	-0.22	¹⁰ F	17.42
¹¹ Ne		¹¹ S	21.56
24.58		¹² Cl	
-0.22		¹³ Ar	15.76
¹⁴ K	²⁰ Ca	¹⁴ C	
4.34	6.11	¹⁵ Si	
2.30	6.56	¹⁶ P	
0.5015	6.83	¹⁷ S	
¹⁵ Rb	²¹ Sc	¹⁸ O	
4.18	6.38	¹⁹ F	
2.16	6.95	²⁰ Ne	
0.4859	6.88	²¹ Ar	
¹⁶ Sr	²² Ti	²² Na	
4.18	6.74	²³ V	
2.16	6.76	²⁴ Cr	
0.4859	7.43	²⁵ Mn	
¹⁷ Y	²⁶ Fe	²⁶ Co	
4.18	7.90	²⁷ Co	
2.16	7.86	²⁸ Ni	
0.4859	7.63	²⁹ Cu	
¹⁸ Zr	³⁰ Zn	³¹ Ga	
4.18	7.72	³² Ge	
2.16	7.76	³³ As	
0.4859	7.74	³⁴ Se	
¹⁹ Nb	⁴¹ Tc	³⁵ Br	
4.18	7.18	³⁶ Kr	
2.16	4.6	³⁷ Ar	
0.4859	4.71	³⁸ Xe	
²⁰ Mo	⁴⁴ Ru	³⁹ Kr	
4.18	7.28	⁴⁰ Rb	
2.16	7.46	⁴¹ Ca	
0.4859	8.343	⁴² Sc	
²¹ Tc	⁴⁵ Rh	⁴³ Sc	
4.18	7.36	⁴⁴ Pd	
2.16	4.98	⁴⁵ Ag	
0.4859	5.12	⁴⁶ Cd	
²² Fe	⁴⁷ Rh	⁴⁷ Ag	
4.18	4.5	⁴⁸ Cd	
2.16	5.0	⁴⁹ Sn	
0.4859	5.15	⁵⁰ Sb	
²³ Cr	⁵¹ Mn	⁵¹ Te	
4.18	4.5	⁵² Te	
2.16	4.1	⁵³ I	
0.4859	4.5	⁵⁴ Xe	
²⁴ Mn	⁵⁴ Fe	⁵⁵ At	
4.18	5.0	⁵⁶ Rn	
2.16	5.1	⁵⁷ Rb	
0.4859	5.15	⁵⁸ Fr	
²⁵ Fe	⁵⁵ Co	⁵⁹ Rb	
4.18	5.1	⁶⁰ Rb	
2.16	4.9	⁶¹ Fr	
0.4859	5.1	⁶² Fr	
²⁶ Co	⁵⁶ Ni	⁶³ Fr	
4.18	5.1	⁶⁴ Fr	
2.16	4.9	⁶⁵ Fr	
0.4859	5.1	⁶⁶ Fr	
²⁷ Co	⁵⁷ Ni	⁶⁷ Fr	
4.18	5.1	⁶⁸ Fr	
2.16	4.9	⁶⁹ Fr	
0.4859	5.1	⁷⁰ Fr	
²⁸ Ni	⁵⁸ Cu	⁷¹ Fr	
4.18	5.1	⁷² Fr	
2.16	4.9	⁷³ Fr	
0.4859	5.1	⁷⁴ Fr	
²⁹ Cu	⁵⁹ Fe	⁷⁵ Fr	
4.18	5.1	⁷⁶ Fr	
2.16	4.9	⁷⁷ Fr	
0.4859	5.1	⁷⁸ Fr	
³⁰ Zn	⁶⁰ Fe	⁷⁹ Fr	
4.18	5.1	⁸⁰ Fr	
2.16	4.9	⁸¹ Fr	
0.4859	5.1	⁸² Fr	
³¹ Ga	⁶¹ Fe	⁸³ Fr	
4.18	5.1	⁸⁴ Fr	
2.16	4.9	⁸⁵ Fr	
0.4859	5.1	⁸⁶ Fr	
³² Ge	⁶² Fe	⁸⁷ Fr	
4.18	5.1	⁸⁸ Fr	
2.16	4.9	⁸⁹ Fr	
0.4859	5.1	⁹⁰ Fr	
³³ As	⁶³ Fe	⁹¹ Fr	
4.18	5.1	⁹² Fr	
2.16	4.9	⁹³ Fr	
0.4859	5.1	⁹⁴ Fr	
³⁴ Se	⁶⁴ Fe	⁹⁵ Fr	
4.18	5.1	⁹⁶ Fr	
2.16	4.9	⁹⁷ Fr	
0.4859	5.1	⁹⁸ Fr	
³⁵ Br	⁶⁵ Fe	⁹⁹ Fr	
4.18	5.1	¹⁰⁰ Fr	
2.16	4.9	¹⁰¹ Fr	
0.4859	5.1	¹⁰² Fr	
³⁶ Kr	⁶⁶ Fe	¹⁰³ Fr	
4.18	5.1	¹⁰⁴ Fr	
2.16	4.9	¹⁰⁵ Fr	
0.4859	5.1	¹⁰⁶ Fr	
³⁷ Xe	⁶⁷ Fe	¹⁰⁷ Fr	
4.18	5.1	¹⁰⁸ Fr	
2.16	4.9	¹⁰⁹ Fr	
0.4859	5.1	¹¹⁰ Fr	
³⁸ Rb	⁶⁸ Fe	¹¹¹ Fr	
4.18	5.1	¹¹² Fr	
2.16	4.9	¹¹³ Fr	
0.4859	5.1	¹¹⁴ Fr	
³⁹ Rb	⁶⁹ Fe	¹¹⁵ Fr	
4.18	5.1	¹¹⁶ Fr	
2.16	4.9	¹¹⁷ Fr	
0.4859	5.1	¹¹⁸ Fr	
⁴⁰ Rb	⁷⁰ Fe	¹¹⁹ Fr	
4.18	5.1	¹²⁰ Fr	
2.16	4.9	¹²¹ Fr	
0.4859	5.1	¹²² Fr	
⁴¹ Fr	⁷¹ Fe	¹²³ Fr	
4.18	5.1	¹²⁴ Fr	
2.16	4.9	¹²⁵ Fr	
0.4859	5.1	¹²⁶ Fr	
⁴² Fr	⁷² Fe	¹²⁷ Fr	
4.18	5.1	¹²⁸ Fr	
2.16	4.9	¹²⁹ Fr	
0.4859	5.1	¹³⁰ Fr	
⁴³ Fr	⁷³ Fe	¹³¹ Fr	
4.18	5.1	¹³² Fr	
2.16	4.9	¹³³ Fr	
0.4859	5.1	¹³⁴ Fr	
⁴⁴ Fr	⁷⁴ Fe	¹³⁵ Fr	
4.18	5.1	¹³⁶ Fr	
2.16	4.9	¹³⁷ Fr	
0.4859	5.1	¹³⁸ Fr	
⁴⁵ Fr	⁷⁵ Fe	¹³⁹ Fr	
4.18	5.1	¹⁴⁰ Fr	
2.16	4.9	¹⁴¹ Fr	
0.4859	5.1	¹⁴² Fr	
⁴⁶ Fr	⁷⁶ Fe	¹⁴³ Fr	
4.18	5.1	¹⁴⁴ Fr	
2.16	4.9	¹⁴⁵ Fr	
0.4859	5.1	¹⁴⁶ Fr	
⁴⁷ Fr	⁷⁷ Fe	¹⁴⁷ Fr	
4.18	5.1	¹⁴⁸ Fr	
2.16	4.9	¹⁴⁹ Fr	
0.4859	5.1	¹⁵⁰ Fr	
⁴⁸ Fr	⁷⁸ Fe	¹⁵¹ Fr	
4.18	5.1	¹⁵² Fr	
2.16	4.9	¹⁵³ Fr	
0.4859	5.1	¹⁵⁴ Fr	
⁴⁹ Fr	⁷⁹ Fe	¹⁵⁵ Fr	
4.18	5.1	¹⁵⁶ Fr	
2.16	4.9	¹⁵⁷ Fr	
0.4859	5.1	¹⁵⁸ Fr	
⁵⁰ Fr	⁸⁰ Fe	¹⁵⁹ Fr	
4.18	5.1	¹⁶⁰ Fr	
2.16	4.9	¹⁶¹ Fr	
0.4859	5.1	¹⁶² Fr	
⁵¹ Fr	⁸¹ Fe	¹⁶³ Fr	
4.18	5.1	¹⁶⁴ Fr	
2.16	4.9	¹⁶⁵ Fr	
0.4859	5.1	¹⁶⁶ Fr	
⁵² Fr	⁸² Fe	¹⁶⁷ Fr	
4.18	5.1	¹⁶⁸ Fr	
2.16	4.9	¹⁶⁹ Fr	
0.4859	5.1	¹⁷⁰ Fr	
⁵³ Fr	⁸³ Fe	¹⁷¹ Fr	
4.18	5.1	¹⁷² Fr	
2.16	4.9	¹⁷³ Fr	
0.4859	5.1	¹⁷⁴ Fr	
⁵⁴ Fr	⁸⁴ Fe	¹⁷⁵ Fr	
4.18	5.1	¹⁷⁶ Fr	
2.16	4.9	¹⁷⁷ Fr	
0.4859	5.1	¹⁷⁸ Fr	
⁵⁵ Fr	⁸⁵ Fe	¹⁷⁹ Fr	
4.18	5.1	¹⁸⁰ Fr	
2.16	4.9	¹⁸¹ Fr	
0.4859	5.1	¹⁸² Fr	
⁵⁶ Fr	⁸⁶ Fe	¹⁸³ Fr	
4.18	5.1	¹⁸⁴ Fr	
2.16	4.9	¹⁸⁵ Fr	
0.4859	5.1	¹⁸⁶ Fr	
⁵⁷ Fr	⁸⁷ Fe	¹⁸⁷ Fr	
4.18	5.1	¹⁸⁸ Fr	
2.16	4.9	¹⁸⁹ Fr	
0.4859	5.1	¹⁹⁰ Fr	
⁵⁸ Fr	⁸⁸ Fe	¹⁹¹ Fr	
4.18	5.1	¹⁹² Fr	
2.16	4.9	¹⁹³ Fr	
0.4859	5.1	¹⁹⁴ Fr	
⁵⁹ Fr	⁸⁹ Fe	¹⁹⁵ Fr	
4.18	5.1	¹⁹⁶ Fr	
2.16	4.9	¹⁹⁷ Fr	
0.4859	5.1	¹⁹⁸ Fr	
⁶⁰ Fr	⁹⁰ Fe	¹⁹⁹ Fr	
4.18	5.1	²⁰⁰ Fr	
2.16	4.9	²⁰¹ Fr	
0.4859	5.1	²⁰² Fr	
⁶¹ Fr	⁹¹ Fe	²⁰³ Fr	
4.18	5.1	²⁰⁴ Fr	
2.16	4.9	²⁰⁵ Fr	
0.4859	5.1	²⁰⁶ Fr	
⁶² Fr	⁹² Fe	²⁰⁷ Fr	
4.18	5.1	²⁰⁸ Fr	
2.16	4.9	²⁰⁹ Fr	
0.4859	5.1	²¹⁰ Fr	
⁶³ Fr	⁹³ Fe	²¹¹ Fr	
4.18	5.1	²¹² Fr	
2.16	4.9	²¹³ Fr	
0.4859	5.1	²¹⁴ Fr	
⁶⁴ Fr	⁹⁴ Fe	²¹⁵ Fr	
4.18	5.1	²¹⁶ Fr	
2.16	4.9	²¹⁷ Fr	
0.4859	5.1	²¹⁸ Fr	
⁶⁵ Fr	⁹⁵ Fe	²¹⁹ Fr	
4.18	5.1	²²⁰ Fr	
2.16	4.9	²²¹ Fr	
0.4859	5.1	²²² Fr	
⁶⁶ Fr	⁹⁶ Fe	²²³ Fr	
4.18	5.1	²²⁴ Fr	
2.16	4.9	²²⁵ Fr	
0.4859	5.1	²²⁶ Fr	
⁶⁷ Fr	⁹⁷ Fe	²²⁷ Fr	
4.18	5.1	²²⁸ Fr	
2.16	4.9	²²⁹ Fr	
0.4859	5.1	²³⁰ Fr	
⁶⁸ Fr	⁹⁸ Fe	²³¹ Fr	
4.18	5.1	²³² Fr	
2.16	4.9	²³³ Fr	
0.4859	5.1	²³⁴ Fr	
⁶⁹ Fr	⁹⁹ Fe	²³⁵ Fr	
4.18	5.1	²³⁶ Fr	
2.16	4.9	²³⁷ Fr	
0.4859	5.1	²³⁸ Fr	
⁷⁰ Fr	¹⁰⁰ Fe	²³⁹ Fr	
4.18	5.1	²⁴⁰ Fr	
2.16	4.9	²⁴¹ Fr	
0.4859	5.1	²⁴² Fr	
⁷¹ Fr	¹⁰¹ Fe	²⁴³ Fr	
4.18	5.1	²⁴⁴ Fr	
2.16	4.9	²⁴⁵ Fr	
0.4859	5.1	²⁴⁶ Fr	
⁷² Fr	¹⁰² Fe	²⁴⁷ Fr	
4.18	5.1	²⁴⁸ Fr	
2.16	4.9	²⁴⁹ Fr	



- 1) E_R is about 17 meV for Bi(111)
- 2) In the case of Au(111) E_R is about 2 meV i.e about 10 times smaller. The work function of Bi (4.22 eV) is smaller than the one of Au (5.1 eV). On the other end both Bi (Z=83) and Au (Z=79) are heavy metals with similar SOC. This big difference suggests that the Rashba effect is very sensitive to the detail of the local atomic potential

7.2 RE energy on Bi surfaces

The RE band splitting has been measured on different Bi surfaces as reported in the figures below.

- 1) Evaluate the RE energy E_R for the different samples
- 2) Compare the different Bi surfaces: are the splitting the same? comment

- 1) E_R is 17 meV for Bi(111), 130 meV for Bi(100) and 250 meV for the AgBi alloy
- 2) The big difference observed between the three Bi surface demonstrates that the Rashba effect is very sensitive to potential gradient in z direction but also in the x-y plane