5.1 Bit magnetization reversal: Band T # 0 “P=L

Brown model.

Consider a particle of magnetization ¢ and uniaxial magnetic anisotropy energy K. The magnetization
Erev

relaxation time is given by T = tye ¥BT . In zero field, the barrier for magnetization reversal is the same

for up and down state. In an applied field, this is not necessarly true.

In the approximation of small magnetic fields demonstrate that:
1) When the field is applied along the magnetization easy axis, state up and down need to overcome

different barriers, as shown in the figure with h = Hi and Hy = %
K
2) When the field is applied along the magnetization hard axis, state up and down have to overcome

the same barrier, E,., = K(1 — h)?

Erev,r = KA+ h)? Erev,l'l = K(1 - h)?
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5.1 Bit magnetization reversal: B and T # 0 - Solution “P=L

1) The particle energy is given by € = Ksin?6 — uHcos0
The extremes of the curve can be found by equating to zero the derivative of the energy: % = sinf (2K cos6 + uH) = 0
The solution sinf = 0 leads to two minima &; = —uH and &, = uH

U2H?
4K

2
The other solution cosf = —% corresponds to the maximum ¢,,, = K + =K (1 + %) = K(1 + h?)
K
The reversal barrier for magnetization up is Eyep 1 = &€ — & = K(1 + h*) + pH = K(1 + h*) + 2hK = K(1 + h)? and for

magnetization down is Eyep, | = €, — & = K(1 + h%) — uH = K(1 + h?) — 2hK = K(1 — h)?

2) The particle energy is given by € = Ksin?6 — uHcos (% — 0) = Ksin?0 — uHsinf = K(sin*6 — 2h sin@)

The extremes of the curve can be found by equating to zero the derivative of the energy: % = K cos6(2 sin@ — 2h) =0

The solution cosf = 0 i.e. sinf = 1 leads to the maximum ¢,,, = K — 2hK

The other solution sinf = h corresponds to two minima &; = &, = —Kh?

The barrier for magnetization reversal does not dipend on the direction of the magnetization and
equals Eypp 1y = €n — €12 = K — 2hK + K h* = K(1 — h)?



5.2 Magnetization reversal for Fe islands on Mo(110) “P=L

Spin polarized STM is used to characterize Fe nanostructures, 1
atomic layer high, grown on Mo(110). Switching rate vs area of
individual island is shown in the figure. What is the size of a domain
wall expected on larger islands
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FIG. 3 (color). (a) Topography and (b) magnetic dI /dU signal
of numbered Fe islands on Mo(110). (c) Plot of the switching
rate versus the area of individual islands. The scatter of the
switching rate points to a shape-dependent crossover from
coherent rotation of compact Fe islands towards nucleation
and expansion of reversed domains in elongated islands.
Insets: topography of selected Fe islands (scale bar: 5 nm).

From DOI: 10.1103/PhysRevLett.92.067201



m 5.2 Magnetization reversal for Fe islands on Mo(110) - Solution =P

From the figure we realize that elongated islands, with a dimension longer than 5 nm,
switch faster than small circular islands with diameter d < 5 nm. We can then deduce

A T

that L., = 5 nm. The size of the domain wallis §pyy = — = ZL” ~ 4nm

The experimental value is shown in the figure. The small difference is due to the fact
that formulas are for ideal geometrical shape while reality has more complex
geometris

FIG. 4 (color). (a) Overview showing
the topography (left panel) and mag-
netic dI/dU signal (middle panel) of
Fe nanowires on Mo(110). Four do-
main walls can be recognized. Right
panel: two domain walls at higher
magnetification. (b) Zoom into the do-

= %0r ‘ 7 main wall region (inset, rotated by 90°).
4+ —— P, ; The domain wall width is w =29 *
T S 2L =2.8+0.1 oy AR AN - 0.1 nm (orange line).
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From DOI: 10.1103/PhysRevLett.92.067201



5.3 LLG equation application “PEL

With the help of the LLG equation, try to figure out the behavior of a spin in the following situations (you can test by
yourself the correctness of the answer with the help of the simulator
https://demonstrations.wolfram.com/PrecessionOfMagnetizationUsingThelLandaulifshitzEquation/ )

In particular we are interesting to predict if the spin reverses and compare reversal speeds

1)
2)
3)
4)

5)

Let consider the situation of a strong damping parameter (¢ = 0.1). Spin pointing up (8 = 0) and external field pointing
down (H, < 0): does the spin reverse?

Spin pointing up (6 = 0) and external field with two components (H, < 0, H, = 0.001) and o = 0.1 : does the spin
reverse? Does the value oh H, has an effect on the reversal time? Does H, has an effect on the reversal time (H, << H,)?

Spin canted (6 = 0.1) and external field along z (H, = —1, Hx = 0.0) and @ = 0.1 : does the spin reverse? Is reversal

time different with respect to the situation8 =0, H, = —1,Hx = 0.1?

Spin pointing up (6 = 0) and external field with two components (H, = —1, Hx = 0.1): is the reversal faster for small

orlargea ? Heff

Spin pointing up (6 = 0) and external field with two components (H, = —1, Hx = 0.1): what does the spindo if o =0
?



https://demonstrations.wolfram.com/PrecessionOfMagnetizationUsingTheLandauLifshitzEquation/

5.4 Equivalence of the LLG equation expressions P

Demonstrate that the two expressions for the LLG equation

a

1) dm=— r (m/\Heff)— 14

dt 1+a? 1+a?m

(m A [m N\ Heff])

dm

2) E = —y(m/\Heff) +%(m/\%)
are equivalent

(hints:
- start from expression 2
- use the vector relations in the table)

General vector relations:

axb=—-bxa (A1)
(a+b)xe=(axe)+(bxe) (A.2)
(Aaxb)=(axAb)=A(a xb) (A.3)
a-(bxey=b-(cxa)=c-(axb) (A4)
ax(bxe)=bla-¢)—cla-b) (A.5)
(axb)-(exd)=a-[bx(exd)]=(a-e)(b-d)—(b-e)(a-d) (A.6)
(axb)x(exd)=c[(axb)-d]—d[(axb)-e] (A.T)
ax[laxb)xa]l=ax[ax(bxa)]=axb (A.8)
ey X &, = e,
ey X e, =e,
€. X e, = ey (A.9)




=P

) dm dm dm , dm
We re-write mA|{mA— | =m|m- — (m-m) =-m*“—

dm

a
s = —y(m/\Heff) — yam/\ (m/\Heff) — a?

dt

dm 5 a
E(l + ) = —]/(m/\Heff) —yam/\(m/\Heff)

N.B.: following 2) m and C;—T are orthogonal



