3.1 Monolayer with high Curie temperature “P=L

The Curie temperature of bulk Fe, Co and Ni is respectively 1043 K, 1388 K, and 627 K.
- Fe has a bcc structure with lattice constant a = 0.287 nm;

- Co has fcc structure (B-Co) with a = 0.355nm (for simplicity; in reality, hcp is the most frequent structure for Co);
- Ni has an fcc structure with a =0.352 nm.

1) Calculate J,, between a pair of atoms in each of the mentioned systems.

2) We want to grow a single atomic layer (monolayer) on Cu(100) with the highest Curie temperature. Assume that the

bulk lattice constants are preserved and no hybridization takes place at the interface: which element among Fe, Co and
Ni you chose?



3.1 Monolayer with high Curie temperature - Solution “P=L

2SS+ 1N Jex
B 3 kg

1) We know that T,

Fe has a bcc structure; thus each atom has N = 8 nearest neighbors.

Fe has a 4s? 3d°® electronic configuration; thus, S=2-> J,, = 3fTc_ _5 g mev
2 S(S+1)N

Co has a fcc structure; thus each atom has N = 12 nearest neighbors.

5 517 : . o _ ) _ 3kpT, _

Co has a 4s2 3d” electronic configuration; thus, S=3/2 -> J,, = TSGIDN - 4 meV

Ni has a fcc structure; thus each atom has N = 12 nearest neighbors.

Ni has a 4s? 3d® electronic configuration; thus, S=1-> J,, = _34BTe __ 3.4 mev
2 S(S+1)N

2) In a monolayer on a (100) surface, the number of nearest neighbor atoms is N = 4. We can use the previously calculated values of /. to
calculate T for each element

We have T(Fe) = 521 K; T-(Co) = 465 K; T -(Ni) = 211 K.

Then in the monolayer regime Fe is the element with the highest Curie temperature (while in bulk it is Co)



3.2 Making a bit with 3 exchange coupled spins “P-L

We want to form a bit using 3 spins S; coupled by an Heisenberg like exchange
interaction. To be able to store information, a bit must be a binary system
corresponding to the “0” or “1” stored information.

We arrange the three spins at the corners of a equilateral triangle such that each
spin is coupled by an exchange constant J_, to the two neighbors.

1) Assume that you can form a molecule like the one sketched in the figure with
both Cu (S; = %) and Ni (S; = 1), which species has to be used?

2) What is the value § of the spin molecule in the ground state?

3) What quantity can be used to define the states “0” and “1”?

4) Assume to be at T=0. Let define as “1” the value of the spin in the ground state
when the external field is B = 0; what has to be the sign of /., to be able to write
the bit applying a magnetic field?

ex | = 0.1 meV, what is the value of the magnetic field we need to

5) Assuming | J
apply to put the system in state “0”? Assumetobe atT=0.

Adapted from: Inorg. Chem. 2022, 61, 31, 12138-12148
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3.2 Making a bit with 3 exchange coupled spins - solution cP=

The Hamiltonian of the systemis H = —2J,, (81 - S, + 8, - $3+ 83 - S1)
PuttingS =S; +S, + S;wefindthat S =52 + S2 + S22+ 2(5,-S, + S, - S3+55-S;)
ThenH = —/,, (8% — 82 — §2 — S2) with§? = S(S+ 1)

We also note that we can define §; , =§; + S, running from |51 -5, | to S1+S,andrewrite § =8, +5, + 53 =51, + 53

With this in mind we have that:

S1=S,=5;=1/2 implying S?=3/4 and $=3/2,1/2 ie. §?= 1:5, %‘ ThenE = —%]ex, %]ex

S1=S,=S;=1 implying $# =2 and §=3,2,1,0 ie. §%=12,6,2,0. ThenE = —6Jcy, 0,40y, 6]0ox E 4 ]ex >0

1) Three spins S; =% produce the required binary system, while 4 states are found with S; = 1. Cu is the correct choice <\

2) The spin value in the ground state is S = 3/2 for /., > 0, whileitisS=1/2forJ,, <0 < B'

3) The bit value is defined by the high/low spin molecular state. The choice for “0” and “1” is arbitrary. x

4) The energy splitting in an external magnetic field is sketched on the side for the two cases. At T = 0 only the lowest state of each
multiplet is occupied. We see that only when the ground multiplet has S = % a crossing between the lowest states of the two E & ]ex <0
multiplets is possible, meaning that we need J,, <O0.

5) The lowest states of the two multiplets cross when 3J,, = ugge G - %) By = 2ugBy,, i.e By, = 2.6 T § BW B



3.3 Spin structure in a trimer “PEL

) ] . ] . . Adapted from: Inorg. Chem. 2022, 61, 31, 12138-12148
The relative orientation of the spins S; of the atoms in a trimer depends on

the interactions at play.
J. \%}

Jex =0

Consider 3 identical spins §,=1/2, forced to stay in the molecule plain, and the
P
3) both D and /., are not zero. :

spin alignments sketched below. Which is the ground state in case of:
1) a FM Heisenberg like exchange (-2]y S; - S,) interaction and D = 0
2) a DMl interaction (D - (S; A S;)) with the D vector entering the sheet and
O ESE
d o
J"(J o .>5°' 2

Real tricopper(Il) complex Model bicopper(11) complex

J and D effective coupling




3.3 Spin structure in a trimer - Solution “P-L

1) The evaluation of -2/,,.S - S in the five cases gives: 2) The evaluation of D - (§ A S) in the five cases gives:
a) -6J,,5° a) 0
b) 2/, S? b) 0
c) 3]ex52 c) ﬂDSZ
d) 3/exS? 2
&) 20 S? d) -2ps?
e) -2DS?

Then a) is the ground state
Then d) is the ground state

3) The energy in the five cases is:
a) -6/,,S%+0
b) 2J,,S?+0

Q) 3Jer5? + 22 D52

3v/3

d) 3/exS? —=>DS?

e) 2J.,.5%—2DS?
Comparing the energy of case a) and d) we find that for:

-6J,,S% < 3],,5%2 - 3/2DV352 =

! D; d)isthe ground state for J,, < =D

a) is the ground state for J,,, > NG 3



3.4 Helical order

Helical magnetic structures in rare-earths can be the basis of all-spin-based technology.

These structures can be formed also in absence of DMI interaction. They are essentially due to the presence of
competing Heisenberg exchange interactions (RKKY type) but the structure is not chiral (i.e. there are coexisting
domains with the two chirality).

Rare earths possess hexagonal-type structures, i.e. layered crystalline structures composed of stacked planes. For
hcp the sequence is ABAB... The magnetic structure is characterized by a parallel alignment of the N spins S within
each layer, i.e. each plane shows ferromagnetic behavior. A rotation of the magnetization by an angle 8 occurs from
layer to layer.

The interaction between the layers is described by a nearest-neighbor exchange constant J; and a next-nearest-
neighbor exchange constant J, .

Depending on the values of 8, and of /; and J,, the system can present ferromagnetic order (FM), antiferromagnetic
order (AFM), or helical magnetic order (HM). The latter is represented in the figure.

1) Find the expression for the energy of layer 0 exchanged-coupled with layers 1 and 2
2) Find the conditions that minimize the exchange energy

3) Find the condition on |J;| and |/, | for helical order

4) Find the expression for the energies Egrp, Eqrpy and Eyy

5) Find the sign of J, required for helical order

6) Consider now a system in which there is antiferromagnetic coupling between next-nearest neighbors, i.e. J, < 0,

and |J;| = ]1\/5/6 .

Show that this material is helimagnetic. Find the angle 8 of the magnetization between adjacent layers.

From: M. Getzlaff: Fundamentals of Magnetism, Springer editor (2008)




3.4 Helical order - Solution

the Hamiltonian leads to an energy of:
E = —2NS?%(J; cos@ + J; cos 26) (5.131)

with N being the number of atoms per layer. The energy as a function of the
rotation angle # is minimum at dE /90 = 0 which leads to:

(Jy +4J3cos8)sind =0 (5.132)

This equation can be solved on the one hand by sinf =0, i.e. # =0or 8§ = 7.
In this situation we have a ferromagnetic or an antiferromagnetic alignment,
respectively, between adjacent layers. On the other hand the equation is solved
by:
H = N (5.133)
cost = —- A 5.
which characterizes helical order or helimagnetism.
Let us discuss the behavior if helical arrangement is present. Due to
| cos@| < 1 we can deduce:
|.;T1| < 4|J2| (5.134}

The energies for ferro-, antiferro-, and helimagnetic arrangement amount
to (see (5.131)):

Epy = —2NS%(Jy + Jo) (5.135)

Earm = —2NS?(—Jy + J2) (5.136)
2

Eqm = —2N 52 (—J—l — Jg) (5.137)
8.Jo

The last equation is obtained using cos28 = cos®># — sin?f = 2cos? 6 — 1.
For an energetic preference of helimagnetism two conditions must be fulfilled:
(a) EFum < Erm and (b) Eum < EarMm. From condition (a) we can conclude:

J,
A
antiferromagnetic ferromagnetic
order order
> J,
3
B
°
8
©
£
180°  90° 0°

Fig. 5.14. Phase diagram for the model of planes being coupled by Ji1 and .2

J—lz Jz > Ji+ J (5.138)
EHA 2 1+ J2 2.
which implies: 72
Z1 5.
2J2+J1+8J2<0 {5 139}
Thus: 1
5(16J§+8J1J2+Jf) <0 (5.140)
2
which leads to: . . 2
s (JQ + Irl) <0 (5.141)

We directly see that Jy must be negative for the occurrence of helimagnetism.
Condition (b) leads to:

L J. IJ ’ <0 (5.142)
8Jp \ 72 g7t o
which results in the same conclusion.

Therefore, helical order requires an antiferromagnetic coupling between
next nearest layers. The phase diagram shown in Fig. 5.14 summarizes our
results.

=Pr-L



3.4 Helical order - Solution

5.4 Helimagnetism

(a) The prerequisites for helimagnetism (see (5.141) and (5.134)) are: J, < 0
and |J;| < 4|Jz|. The first condition is fulfilled. The second condition can be
written as:

Ji
—1<4 18.36
ik (18.36)
Inserting results in:
h_ 6 _s46<4 (18.37)
Jﬂ B \/E o o .

Thus, this material exhibits helical arrangement.
(b) The angle # between adjacent layers can be calculated (see (5.133)) by:

Jy —6.J3

— = ().866 18.38
ih - aj, (18.38)

cost = —

which leads to & = 30°.
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