

1.1 Hund's rules

Use the Hund's rules to determine the ground state for the following atoms:

Carbon: $1s^2 2s^2 2p^2$

Oxygen: $1s^2 2s^2 2p^4$

1.1 Hund's rules - Solution

Carbon: $1s^2 2s^2 2p^2$

Only the 2p subshell is partially occupied

m	+1	0	-1
m_s	↑	↑	

Maximize M_S

$$M_S = +1 \rightarrow S = 1$$

Maximize M_L

$$M_L = +1 \rightarrow L = 1$$

subshell less than half-filled $\rightarrow J = L - S = 0$

Oxygen: $1s^2 2s^2 2p^4$

Only the 2p subshell is partially occupied

m	+1	0	-1
m_s	↑ ↓	↑	↑

Maximize M_S

$$M_S = +1 \rightarrow S = 1$$

Maximize M_L

$$M_L = +1 \rightarrow L = 1$$

subshell more than half-filled $\rightarrow J = L + S = 2$

In the previous exercise we have found the ground state of carbon and oxygen.

Now, we want to determine the excited states of oxygen, in the situation where:

- the 1s shell and the 2s subshell are full;
- the occupation of the 2p orbitals is modified, but not the number of 2p electrons.

For the moment, neglect the spin-orbit coupling.

Explain qualitatively the energy sequence

Hints for the procedure:

- consider a $2p^2$ filling, equivalent to the $2p^4$ filling (easier to visualize);
- consider all the possible combinations of m and m_s , compatibly with the Pauli principle, giving rise to (M_L, M_S) microstates;
- group them to identify the pairs of L and S values;
- write the spectroscopic terms.

1.2 Energy spectrum of oxygen - Solution

m	1	0	-1
m_s	\uparrow	\uparrow	
	\uparrow		\uparrow
		\uparrow	\uparrow
	\downarrow	\downarrow	
	\downarrow		\downarrow
		\downarrow	\downarrow
	\uparrow	\downarrow	
	\uparrow		\downarrow
		\uparrow	\downarrow
	\downarrow	\uparrow	
		\downarrow	\uparrow
	\uparrow	\downarrow	
		\uparrow	\downarrow
			\uparrow

M_L	M_S
+1	+1
0	+1
-1	+1
+1	-1
0	-1
-1	-1
+1	0
0	0
-1	0
+1	0
0	0
-1	0
+2	0
0	0
-2	0

Equivalent

M_L	M_S	+1	0	-1
+2			$(+1^\uparrow, +1^\downarrow)$	
+1		$(+1^\uparrow, 0^\uparrow)$	$(+1^\uparrow, 0^\downarrow)$ $(+1^\downarrow, 0^\uparrow)$	$(+1^\downarrow, 0^\downarrow)$
0		$(+1^\uparrow, -1^\uparrow)$ $(+1^\downarrow, -1^\uparrow)$ $(0^\uparrow, 0^\downarrow)$	$(+1^\uparrow, -1^\downarrow)$ $(+1^\downarrow, -1^\uparrow)$	$(+1^\downarrow, -1^\downarrow)$
-1		$(0^\uparrow, -1^\uparrow)$	$(0^\uparrow, -1^\downarrow)$ $(0^\downarrow, -1^\uparrow)$	$(0^\downarrow, -1^\downarrow)$
-2			$(-1^\uparrow, -1^\downarrow)$	

1.2 Energy spectrum of oxygen - Solution

		M_S	
	+1	0	-1
+2		1	
+1	1	2	1
M_L	0	1	3
-1	1	2	1
-2		1	

Overall, there are 15 (micro)states.

The table above reports the multiplicity of each state.

For example there are 2 states with $M_L = -1$ and $M_S = 0$.

The maximum M_L is ± 2 . These M_L are projections of a $L = 2$ state, together with $M_L = \pm 1$ and $M_L = 0$. All these states have $M_S = 0$, so the first configuration that we can identify is $L = 2, S = 0$.

We remove these 5 states from the table, to find the other ones.

		M_S	
	+1	0	-1
+2		1	
+1	1	1	1
M_L	0	1	2
-1	1	1	1
-2		1	

The maximum M_L now is ± 1 . These M_L are projections of a $L = 1$ state, together with $M_L = 0$. For all of them $M_S = +1, 0, -1$, corresponding to $S = 1$.

The identified configuration is $L = 1, S = 1$.

We remove these 9 states from the table.

	M_S		
	+1	0	-1
+2			
+1			
M_L	0		1
-1			
-2			

There is only one state left, with $M_L = 0$ and $M_S = 0$. The configuration is $L = 0, S = 0$

1.2 Energy spectrum of oxygen - Solution

To summarize, we have three terms:

$$S = 0, L = 2$$

$$S = 0, L = 0$$

$$S = 1, L = 1$$

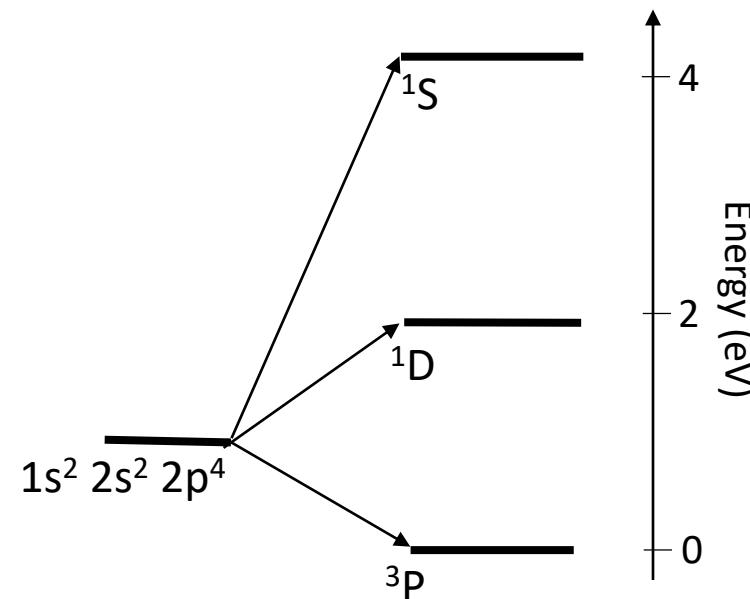
This is valid for both carbon and oxygen.

From the Hund's first and second rule: the ground term is $S = 1, L = 1$. In spectroscopic notation ^{2S+1}X ($L = 1 \rightarrow X = P$ and $2S + 1 = 3$): 3P

The other terms:

$$S = 0, L = 2 (L = 2 \rightarrow X = D \text{ and } 2S + 1 = 1): ^1D$$

$$S = 0, L = 0 (L = 0 \rightarrow X = S \text{ and } 2S + 1 = 1): ^1S$$



Qualitative explanation of energy order:

- from the Hund's first and second rule, we know that $S = 1, L = 1$ is the ground term;
- the $L = 0, S = 0$ term is the highest in energy, since it has both low spin and low orbital angular momentum.

You can apply the same procedure to find the configurations for Ti [Ar] 4s² 3d² shown in the lecture.

The spin-orbit coupling (SOC) lifts the degeneracy of states with same S and L , but different J .

a) Demonstrate that

$$\langle L, S, J, M | \mathbf{L} \cdot \mathbf{S} | L, S, J, M \rangle = \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$

where $|L, S, J, M\rangle$ is the angular part of the many-electron wave function.

b) We want to demonstrate the relation between λ , the SOC factor for a many-electron system, and the one-electron SOC parameter ζ_{nl} .

We can write that (i occupied states):

$$\langle R_{nl}, L, M_L, S, M_S | \sum_i \xi_{nl} \mathbf{l}_i \cdot \mathbf{s}_i | R_{nl}, L, M_L, S, M_S \rangle = \lambda M_L M_S$$

and equivalently that:

$$\langle R_{nl}, L, M_L, S, M_S | \sum_i \xi_{nl} \mathbf{l}_i \cdot \mathbf{s}_i | R_{nl}, L, M_L, S, M_S \rangle = \zeta_{nl} \sum_i m_i m_{s_i}$$

Consider the ground term of a system with a subshell **less** than half-filled, characterized by L and S according to Hund's rules (if it helps, as example you can use carbon).

Using the two previous relations, show that $\lambda = \frac{\zeta_{nl}}{2S}$

Consider now the ground term of a system with a subshell **more** than half-filled, characterized by L and S according to Hund's rules (as example you can use oxygen).

Show that $\lambda = -\frac{\zeta_{nl}}{2S}$

c) Use these results to find the expressions of $\Delta E_{SO} = \lambda \mathbf{L} \cdot \mathbf{S}$ for the two cases.

Deduce that for a subshell less than half-filled the state with minimum J has the lowest energy, while for a subshell more than half-filled the maximum J has the lowest energy.

a) $J = \mathbf{L} + \mathbf{S}$

$$\mathbf{J}^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2 \mathbf{L} \cdot \mathbf{S} \rightarrow \mathbf{L} \cdot \mathbf{S} = \frac{1}{2} (\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2)$$

$$\langle L, S, J, M | \frac{1}{2} (\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2) | L, S, J, M \rangle =$$

$$= \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)] \quad (\text{in principle in units of } \hbar^2)$$

b) From the expressions given, we deduce that (i occupied states)

$$\lambda M_L M_S = \zeta_{nl} \sum_i m_i m_{s_i}$$

For the **less** than half-filled subshell, according to the Hund's rules:

$$\sum m = M_L = L \text{ and } \sum m_s = M_S = S \rightarrow$$

$$\lambda L S = \zeta_{nl} \frac{1}{2} \sum m = \zeta_{nl} \frac{1}{2} L \rightarrow \lambda = \frac{\zeta_{nl}}{2S}$$

For the **more** than half-filled subshell :

$$\lambda L S = \zeta_{nl} \left[\frac{1}{2} \sum_{-l}^l m - \frac{1}{2} \sum m \right] = -\zeta_{nl} \frac{1}{2} L \rightarrow \lambda = -\frac{\zeta_{nl}}{2S}$$

We notice that the sign of λ changes as we go from a less than half-filled to a more than half-filled subshell.

c) The ground term is a multiplet with J that can assume the following values: $J = |L - S|, \dots, L + S$

Subshell **less** than half-filled:

$$\Delta E_{SO} = \lambda \mathbf{L} \cdot \mathbf{S} = +\frac{\zeta_{nl}}{2S} \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$

This expression has the maximum negative value (energetically favored) for the minimum J

→ the SOC makes the state with $J = |L - S|$ the ground state

For carbon this corresponds to : $L = 1, S = 1, J = 0$.
States with $J = 1, 2$ are higher in energy

Subshell **more** than half-filled:

$$\Delta E_{SO} = \lambda \mathbf{L} \cdot \mathbf{S} = -\frac{\zeta_{nl}}{2S} \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$

This expression has the maximum negative value for the maximum J

→ the SOC makes the state with $J = L + S$ the ground state

For carbon this corresponds to : $L = 1, S = 1, J = 2$.
States with $J = 0, 1$ are higher in energy.

We want to evaluate the effect of the spin-orbit coupling on the terms of oxygen found previously.

Does it act on all the terms?

Calculate the energy splitting ΔE_{SO} for the states where the SOC lifts the degeneracy.

Hints:

- use the relation demonstrated in the previous exercise
- estimate the value of ζ for the 2p electrons of oxygen ($Z=8$) from the graph given in the lecture, express λ as a function of ζ , and provide the energy values in meV.

1.4 Spin-orbit coupling in oxygen- Solution

The SOC acts only on states where both L and S are non-zero. Therefore it leaves unperturbed the multiplet 1D ($L = 2, S = 0$), that remains 5-fold degenerated. With $J = 2$, the symbol can be written as 1D_2 . The other state is the singlet 1S ($L = 0, S = 0$), 1S_0 .

The SOC acts on the multiplet with $S = 1, L = 1, ^3P$. The possible values of J are: $J = |L - S|, \dots, L + S = 0, 1, 2$

The subshell is more than half-filled, therefore $\lambda = -\frac{\zeta_{2p}}{2S}$:

$$\Delta E_{SO} = \lambda \mathbf{L} \cdot \mathbf{S} = -\frac{\zeta_{2p}}{4S} [J(J+1) - L(L+1) - S(S+1)]$$

$$J = 0 \rightarrow \Delta E_{SO} = -\frac{\zeta_{2p}}{4} [0 - 2 - 2] = \zeta_{2p}$$

$$J = 1 \rightarrow \Delta E_{SO} = -\frac{\zeta_{2p}}{4} [2 - 2 - 2] = \frac{\zeta_{2p}}{2}$$

$$J = 2 \rightarrow \Delta E_{SO} = -\frac{\zeta_{2p}}{4} [6 - 2 - 2] = -\frac{\zeta_{2p}}{2}$$

As already deduced in the previous exercise, we find that the state with maximum J is energetically favorable for a more than half-filled shell once the SOC is switched on.

