1.1 Hund'’s rules “PFL

Use the Hund’s rules to determine the ground state for the following atoms:
Carbon: 1s? 252 2p?

Oxygen: 1s? 2s2 2p*



1.1 Hund’s rules - Solution

Carbon: 1s? 252 2p?
Only the 2p subshell is partially occupied

Maximize Mg

Maximize M;

subshell less than half-filled > =L -5 =0

Oxygen: 1s? 2s? 2p*
Only the 2p subshell is partially occupied

m +1 0 —1
m Tl 7 T

S

Maximize Mg
M¢g=+1->5=1

Maximize M;

subshell more than half-filled > J =L+ 5 =2

=P



1.2 Energy spectrum of oxygen

In the previous exercise we have found the ground state of carbon and oxygen.

Now, we want to determine the excited states of oxygen, in the situation where:
- the 1s shell and the 2s subshell are full;
- the occupation of the 2p orbitals is modified, but not the number of 2p electrons.

For the moment, neglect the spin-orbit coupling.
Explain qualitatively the energy sequence

Hints for the procedure:

- consider a 2p? filling, equivalent to the 2p* filling (easier to visualize);

- consider all the possible combinations of m and m,, compatibly with the Pauli principle, giving rise to (M; ,Ms) microstates;
- group them to identify the pairs of L and § values;

- write the spectroscopic terms.

=P



1.2 Energy spectrum of oxygen - Solution “PEL
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1.2 Energy spectrum of oxygen - Solution “P=L

MS MS MS
+1 0 -1 +1 0 —1] +1 0 —1
+2 1 +2 +2
+1 1 2 1 +1 1 1 1 +1
M, 0 1 3 1 M, 0 1 2 1 M, 0 1
—1 1 2 1 —1 1 1 1 —1
—2 1 =7 —2
Overall, there are 15 (micro)states. The maximum M; now is £1. These There is only one state
The table above reports the multiplicity of M; are projections of a L = 1 state, left, with M; = 0 and
each state. together with M; = 0. For all of Mg = 0. The configuration
For example there are 2 states with M; = them Mg = +1,0, -1, isL=0,5=0
— 1and Mg = 0. correspondingto S = 1.
The maximum M; is £2. These M; are The identified configurationis L =
projections of a L = 2 state, together with 1,5 =1.
M; = +1 and M; = 0. All these states
have Mg = 0, so the first configuration We remove these 9 states from the
that we can identifyis L = 2,5 = 0. table.

We remove these 5 states from the table,
to find the other ones.



1.2 Energy spectrum of oxygen - Solution “P=L

To summarize, we have three terms:

S=0,L=2
S=0,L=0
S=1,L=1

This is valid for both carbon and oxygen.
From the Hund'’s first and second rule: the ground termisS =1,L = 1.In
spectroscopic notation X (L=1->X =Pand 2S5+ 1 = 3): 3P

The other terms:
S=0,L=2(L=2->X=Dand2S5+1=1): 1D
S=0,L=0(L=0->X=Sand2S+1=1):1S

Qualitative explanation of energy order:

- from the Hund’s first and second rule, we knowthat S =1,L =1

is the ground term;

-the L = 0, S = 0 term is the highest in energy, since it has both low spin
and low orbital angular momentum.

N
(A3) ASuau3

1s? 252 2p*

3p

You can apply the same procedure to find
the configurations for Ti [Ar] 4s2 3d? shown
in the lecture.



1.3 Spin-orbit coupling and third Hund’s rule

=P

The spin-orbit coupling (SOC) lifts the degeneracy of states with
same S and L, but different J.

a) Demonstrate that

(L,S,],M|L - S|L,S,],M) = %[](I +1)—-L(L+1)—-SES+1)]

where |L, S, J, M) is the angular part of the many-electron wave
function.

b) We want to demonstrate the relation between A, the SOC factor
for a many-electron system, and the one-electron SOC parameter

(nl-

We can write that (i occupied states):
(Rny, LMy, S, Mg| X S Ui - Si|Rny, L, My, S, Mg) = A M M

and equivalently that:

(Rpi, L, My, S, M| Yi¢u li - Si|lRpy, L, My, S, Mg) = (nlzmi mg
i

Consider the ground term of a system with a subshell less than
half-filled, characterized by L and S according to Hund’s rules (if

it helps, as example you can use carbon).

Using the two previous relations, show that 4 = %

Consider now the ground term of a system with a subshell more
than half-filled, characterized by L and S according to Hund’s

rules (as example you can use oxygen).

Show that A = — Snt

28

c) Use these results to find the expressions of AEg, = AL - S for
the two cases.

Deduce that for a subshell less then half-filled the state with
minimum J has the lowest energy, while for a subshell more than
half-filled the maximum J has the lowest energy.

L



1.3 Spin-orbit coupling and third Hund’s rule - Solution

=Pr-L

a) J=L+S§
J2=12+S8+2L-S - L-S=-(*-1>-$?)

<L,S,],M|% J? — L2 — §?) |L,S,],M> =
= % [JU+1)—L(L+1)—5S(S+1)] (inprinciple in units of A?)

b) From the expressions given, we deduce that (i occupied states)

AM Mg = anzmi mg
i

For the less than half-filled subshell, according to the Hund’s rules:
Ym=M,=Land)m;, =M =58>

2 2 2S5

For the more than half-filled subshell :

ALS = uls l ! ) j=—

We notice that the sign of A changes as we go from a less than half-
filled to a more than half-filled subshell.

c) The ground term is a multiplet with J that can assume the
following values: J = |[L — S|, ...L+ S

Subshell less then half-filled:

AESO=/1L-S=+%%[](]+1)—L(L+1)—S(S+1)]

This expression has the maximum negative value (energetically
favored) for the minimum J
- the SOC makes the state with ] = |L — S| the ground state

For carbon this correspondsto:L =1, S=1, ] =0.
States with / = 1, 2 are higher in energy

Subshell more then half-filled:

AESO=/1L-S=—%%[1(]+1)—L(L+1)—S(S+1)]

This expression has the maximum negative value for the
maximum J
— the SOC makes the state with | = L + S the ground state

For carbon this correspondsto:L =1, S=1, ] = 2.
States with /| = 0, 1 are higher in energy.



1.4 Spin-orbit coupling in oxygen

We want to evaluate the effect of the spin-orbit coupling on the terms
of oxygen found previously.

Does it act on all the terms?

Calculate the energy splitting AE, for the states where the SOC lifts
the degeneracy.

Hints:

- use the relation demonstrated in the previous exercise

- estimate the value of { for the 2p electrons of oxygen (Z=8) from the
graph given in the lecture, express A as a function of ¢, and provide the
energy values in meV.

=Pr-L



1.4 Spin-orbit coupling in oxygen- Solution “P=L

The SOC acts only on states where both L and S are non-zero. 1000f T T T T 5. o 6:7 o
Therefore it leaves unperturbed the multiplet 1D (L = 2,5 = 0), = ; 4p P . _f
that remains 5-fold degenerated. With J = 2, the symbol can be g I / 5f
written as 'D,. 5. | o 4d ar” ;]
. . o 100- 2 3d =
The other state is the singlet 1S (L = 0,5 = 0), 1S, I 7 i
% 10F =
The SOC acts on the multiplet withS =1, L = 1, 3P. n% g
The possible valuesof Jare:J = |[L—S|,... L+5=0,1,2 [
¢ o 20 a0 s 80 100
The subshell is more than half-filled, therefore A = —% : ‘ Atomic number Z
AEso=/1L'5=—iz—g[]([+1)—L(L+1)—S(S+1)] 2p = 18 meV
¢
] =0-AEgy = —% [0—2—2] = (2p
J=1-AEp= —2[2-2-2]="2 - 3p,  |~27 meV
2p
] =2-AEsp = —qz—p[6—2—2]=—<2—p B3 .
4 2 7 - 3P1 ~18 meV 3
2P og
As already deduced in the previous exercise, we find that the state v ¢ =
with maximum J is energetically favorable for a more than half- 3p - {ap 2P %
filled shell once the SOC is switched on. \ R
3P 0 meV
2
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