
1.1 Hund’s rules
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Use the Hund’s rules to determine the ground state for the following atoms:  

Carbon: 1s2 2s2 2p2

Oxygen: 1s2 2s2 2p4
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Carbon: 1s2 2s2 2p2

Only the 2p subshell is partially occupied

𝑚 +1 0 −1

𝑚s ↑ ↑

Maximize 𝑀𝑆

𝑀𝑆 = +1 → 𝑆 = 1

Maximize 𝑀𝐿

𝑀𝐿 = +1 → 𝐿 = 1

subshell less than half-filled → 𝐽 = 𝐿 − 𝑆 = 0

Oxygen: 1s2 2s2 2p4

Only the 2p subshell is partially occupied

𝑚 +1 0 −1

𝑚s ↑ ↓ ↑ ↑

Maximize 𝑀𝑆

𝑀𝑆 = +1 → 𝑆 = 1

Maximize 𝑀𝐿

𝑀𝐿 = +1 → 𝐿 = 1

subshell more than half-filled → 𝐽 = 𝐿 + 𝑆 = 2
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In the previous exercise we have found the ground state of carbon and oxygen.

Now, we want to determine the excited states of oxygen, in the situation where: 
- the 1s shell and the 2s subshell are full;
- the occupation of the 2p orbitals is modified, but not the number of 2p electrons. 

For the moment, neglect the spin-orbit coupling.

Explain qualitatively the energy sequence

Hints for the procedure:
- consider a 2p2 filling, equivalent to the 2p4 filling (easier to visualize); 
- consider all the possible combinations of 𝑚 and 𝑚𝑠 , compatibly  with the Pauli principle, giving rise to (𝑀𝐿 ,𝑀𝑆) microstates;
- group them to identify the pairs of 𝐿 and 𝑆 values;
- write the spectroscopic terms.
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𝑚 1 0 −1

𝑚s ↑ ↑

↑ ↑

↑ ↑

↓ ↓

↓ ↓

↓ ↓

↑ ↓

↑ ↓

↑ ↓

↓ ↑

↓ ↑

↓ ↑

↑ ↓

↑ ↓

↑ ↓

𝑀𝐿 𝑀𝑆

+1 +1

0 +1

−1 +1

+1 −1

0 −1

−1 −1

+1 0

0 0

−1 0

+1 0

0 0

−1 0

+2 0

0 0

−2 0

𝑀𝑆

𝑀𝐿
+1 0 −1

+2
(+1↑, +1↓)

+1 (+1↑, 0↑)
(+1↑, 0↓)

(+1↓, 0↑)
(+1↓, 0↓)

0 (+1↑, −1↑)

+1↑, −1↓

+1↓, −1↑

0↑, 0↓
(+1↓, −1↓)

−1 (0↑, −1↑)
(0↑, −1↓)

(0↓, −1↑)
(0↓, −1↓)

−2 (−1↑, −1↓)

Equivalent
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𝑀𝑆

+1 0 −1

+2 1

+1 1 2 1

𝑀𝐿 0 1 3 1

−1 1 2 1

−2 1

Overall, there are 15 (micro)states. 
The table above reports the multiplicity of 
each state. 
For example there are 2 states with 𝑀𝐿 =
− 1 and 𝑀𝑆 = 0.

The maximum 𝑀𝐿 is ±2. These 𝑀𝐿 are 
projections of a 𝐿 = 2 state, together with 
𝑀𝐿 = ±1 and 𝑀𝐿 = 0. All these states 
have 𝑀𝑆 = 0 , so the first configuration 
that we can identify is 𝐿 = 2, 𝑆 = 0. 

We remove these 5 states from the table, 
to find the other ones. 

𝑀𝑆

+1 0 −1

+2

+1 1 1 1

𝑀𝐿 0 1 2 1

−1 1 1 1

−2

The maximum 𝑀𝐿 now is ±1. These 
𝑀𝐿 are projections of a 𝐿 = 1 state, 
together with 𝑀𝐿 = 0. For all of 
them 𝑀𝑆 = +1,0, −1, 
corresponding to 𝑆 = 1.

The identified configuration is 𝐿 =
1, 𝑆 = 1. 

We remove these 9 states from the 
table. 

There is only one state 
left, with 𝑀𝐿 = 0 and 
𝑀𝑆 = 0. The configuration 
is 𝐿 = 0, 𝑆 = 0

𝑀𝑆

+1 0 −1

+2

+1

𝑀𝐿 0 1

−1

−2
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To summarize, we have three terms:
𝑆 = 0 , 𝐿 = 2
𝑆 = 0 , 𝐿 = 0
𝑆 = 1 , 𝐿 = 1

This is valid for both carbon and oxygen. 
From the Hund’s first and second rule: the ground term is 𝑆 = 1 , 𝐿 = 1. In 
spectroscopic notation 2S+1X (𝐿 = 1 → X = P and 2𝑆 + 1 = 3):  3P

The other terms:
𝑆 = 0 , 𝐿 = 2 (𝐿 = 2 → X = D and 2𝑆 + 1 = 1):  1D
𝑆 = 0 , 𝐿 = 0 (𝐿 = 0 → X = S and 2𝑆 + 1 = 1):  1S

Qualitative explanation of energy order: 
- from the Hund’s first and second rule, we know that 𝑆 = 1 , 𝐿 = 1
is the ground term; 
- the 𝐿 = 0, 𝑆 = 0 term is the highest in energy, since it has both low spin 
and low orbital angular momentum.

You can apply the same procedure to find 
the configurations for Ti [Ar] 4s2 3d2 shown 
in the lecture.

1D

3P

1S

1s2 2s2 2p4

2

4

0

En
ergy (eV

)
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The spin-orbit coupling (SOC) lifts the degeneracy of states with 
same 𝑆 and 𝐿, but different 𝐽. 

a) Demonstrate that 

𝐿, 𝑆, 𝐽,𝑀 𝑳 ⋅ 𝑺 𝐿, 𝑆, 𝐽, 𝑀 =
1

2
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

where | ۧ𝐿, 𝑆, 𝐽, 𝑀 is the angular part of the many-electron wave 
function. 

b) We want to demonstrate the relation between 𝜆, the SOC factor 
for a many-electron system, and the one-electron SOC parameter 
𝜁𝑛𝑙. 

We can write that (𝑖 occupied states):

𝑅𝑛𝑙 , 𝐿, 𝑀𝐿 , 𝑆, 𝑀𝑆 σ𝑖 𝜉𝑛𝑙 𝒍𝑖 ⋅ 𝒔𝑖 𝑅𝑛𝑙 , 𝐿,𝑀𝐿 , 𝑆,𝑀𝑆 = 𝜆 𝑀𝐿𝑀𝑆

and equivalently that:

𝑅𝑛𝑙 , 𝐿,𝑀𝐿 , 𝑆,𝑀𝑆 σ𝑖 𝜉𝑛𝑙 𝒍𝑖 ⋅ 𝒔𝑖 𝑅𝑛𝑙 , 𝐿,𝑀𝐿 , 𝑆, 𝑀𝑆 = 𝜁𝑛𝑙 ෍

𝑖

𝑚𝑖𝑚𝑠 𝑖

Consider the ground term of a system with a subshell less than 
half-filled, characterized by 𝐿 and 𝑆 according to Hund’s rules (if 
it helps, as example you can use carbon).

Using the two previous relations, show that 𝜆 =
𝜁𝑛𝑙

2𝑆

Consider now the ground term of a system with a subshell more
than half-filled, characterized by 𝐿 and 𝑆 according to Hund’s 
rules (as example you can use oxygen).

Show that 𝜆 = −
𝜁𝑛𝑙

2𝑆

c) Use these results to find the expressions of Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺 for 
the two cases. 
Deduce that for a subshell less then half-filled the state with 
minimum 𝐽 has the lowest energy, while for a subshell more than 
half-filled the maximum 𝐽 has the lowest energy.
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a)     𝑱 = 𝑳 + 𝑺

𝑱2 = 𝑳2 + 𝑺2+ 2 𝑳 ⋅ 𝑺 → 𝑳 ⋅ 𝑺 =
1

2
(𝑱2 − 𝑳2 − 𝑺2)

𝐿, 𝑆, 𝐽, 𝑀
1

2
(𝑱2 − 𝑳2 − 𝑺2) 𝐿, 𝑆, 𝐽,𝑀 =

=
1

2
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1 (in principle in units of ℏ2 )

b) From the expressions given, we deduce that (𝑖 occupied states)

𝜆 𝑀𝐿𝑀𝑆 = 𝜁𝑛𝑙 ෍

𝑖

𝑚𝑖𝑚𝑠 𝑖

For the less than half-filled subshell, according to the Hund’s rules: 
σ𝑚 = 𝑀𝐿 = 𝐿 and σ𝑚𝑠 = 𝑀𝑆 = 𝑆 → 

𝜆 𝐿 𝑆 = 𝜁𝑛𝑙
1

2
෍𝑚 = 𝜁𝑛𝑙

1

2
𝐿 → 𝜆 =

𝜁𝑛𝑙
2𝑆

For the more than half-filled subshell :

𝜆 𝐿 𝑆 = 𝜁𝑛𝑙
1

2
෍

−𝑙

𝑙

𝑚 −
1

2
෍𝑚 = −𝜁𝑛𝑙

1

2
𝐿 → 𝜆 = −

𝜁𝑛𝑙
2𝑆

We notice that the sign of 𝜆 changes as we go from a less than half-
filled to a more than half-filled subshell. 

c) The ground term is a multiplet with 𝐽 that can assume the 
following values: 𝐽 = 𝐿 − 𝑆 ,…𝐿 + 𝑆

Subshell less then half-filled: 

Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺 = +
𝜁𝑛𝑙
2𝑆

1

2
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

This expression has the maximum negative value (energetically 
favored) for the minimum 𝐽
→ the SOC makes the state with 𝐽 = |𝐿 − 𝑆| the ground state  

For carbon this corresponds to : 𝐿 = 1, 𝑆 = 1, 𝐽 = 0. 
States with 𝐽 = 1, 2 are higher in energy

Subshell more then half-filled: 

Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺 = −
𝜁𝑛𝑙
2𝑆

1

2
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

This expression has the maximum negative value for the 
maximum 𝐽
→ the SOC makes the state with 𝐽 = 𝐿 + 𝑆 the ground state  

For carbon this corresponds to : 𝐿 = 1, 𝑆 = 1, 𝐽 = 2. 
States with 𝐽 = 0, 1 are higher in energy.
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We want to evaluate the effect of the spin-orbit coupling on the terms 
of oxygen found previously.
Does it act on all the terms?
Calculate the energy splitting Δ𝐸𝑆𝑂 for the states where the SOC lifts 
the degeneracy.

Hints:
- use the relation demonstrated in the previous exercise
- estimate the value of 𝜁 for the 2p electrons of oxygen (Z=8) from the 
graph given in the lecture, express 𝜆 as a function of 𝜁, and provide the 
energy values in meV. 
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The SOC acts only on states where both 𝐿 and 𝑆 are non-zero.
Therefore it leaves unperturbed the multiplet 1D (𝐿 = 2, 𝑆 = 0), 
that remains 5-fold degenerated. With 𝐽 = 2 , the symbol can be 
written as 1D2. 
The other state is the singlet 1S (𝐿 = 0, 𝑆 = 0), 1S0.

The SOC acts on the multiplet with 𝑆 = 1 , 𝐿 = 1, 3P. 
The possible values of 𝐽 are: 𝐽 = 𝐿 − 𝑆 ,… 𝐿 + 𝑆 = 0, 1, 2

The subshell is more than half-filled, therefore 𝜆 = −
𝜁2𝑝

2𝑆
:

Δ𝐸𝑆𝑂 = 𝜆𝑳 ⋅ 𝑺 = −
𝜁2𝑝

4𝑆
𝐽 𝐽 + 1 − 𝐿 𝐿 + 1 − 𝑆 𝑆 + 1

𝐽 = 0 → Δ𝐸𝑆𝑂 = −
𝜁2𝑝

4
0 − 2 − 2 = 𝜁2𝑝

𝐽 = 1 → Δ𝐸𝑆𝑂 = −
𝜁2𝑝

4
2 − 2 − 2 =

𝜁2𝑝

2

𝐽 = 2 → Δ𝐸𝑆𝑂 = −
𝜁2𝑝

4
6 − 2 − 2 = −

𝜁2𝑝

2

As already deduced in the previous exercise, we find that the state 
with maximum 𝐽 is energetically favorable for a more than half-
filled shell once the SOC is switched on. 

𝜁2𝑝 ≈ 18 meV

3P

3P2

3P1

3P0

𝜁2𝑝

2

𝜁2𝑝

2

𝜁2𝑝

2

𝜁2𝑝

0 meV

≈18 meV

≈27 meV

En
ergy (eV

)


